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Abstract

Covert timing channels are security threats that have concerned the expert
community from the beginnings of secure computer networks. In this paper
we explore the nature of covert timing channels by studying the behavior
of a selection of features used for their detection. Insights are obtained
from experimental studies based on ten covert timing channels techniques
published in the literature, which include popular and novel approaches. The
study digs into the shapes of flows containing covert timing channels from a
statistical perspective as well as using supervised and unsupervised machine
learning algorithms. Our experiments reveal which features are recommended
for building detection methods and draw meaningful representations to
understand the problem space. Covert timing channels show high histogram-
distance based outlierness, but insufficient to clearly discriminate them from
normal traffic. On the other hand, traffic features do show dependencies that
allow separating subspaces and facilitate the identification of covert timing
channels. The conducted study shows the detection difficulties due to the
high shape variability of normal traffic and suggests the implementation of
semi-supervised techniques to develop accurate and reliable detectors.
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1 Introduction

Covert channels are parasitic communication channels, which are exploited
to hide the existence of actual communications but for the senders and the
receivers of the covert information. They are parasitic because they are built on
top of other systems, usually related to technology or information transmission
means. In the case of TCP/IP protocols, covert channels use either TCP/IP
header fields or time properties of network traffic packets to hide the secret
message.

The existence of covert channels is usually—but not necessarily—related
to illegal and criminal activities, e.g., data leakage, malware propagation,
penetration attacks. One example is the network attacks during December
2015 on Ukraine power companies, whose computers were infected with Gcat.
The Gcat malware created covert channels on Gmail applications to conceal
C&C (command-and-control) operations and to pass unperceived by security
systems [8]. Covert channels are a serious problem related to security and
system vulnerabilities; not in vain, they were already identified as a security
threat for communication networks almost 40 years ago [25].

This work focuses on covert channels over TCP/IP and, specifically, on
covert timing channels, i.e., whenever time properties of TCP/IP transmissions
are exploited. We continue the investigations started with [12], where covert
channels were classified by studying the implications and challenges faced
from the detection side. Additionally, in [12] a general solution for covert
channel identification called DAT (from Descriptive Analytics of Traffic) is
proposed. The DAT methodology is based on representing traffic flows with a
set of statistical measurements and estimations. In [13] and [15] the scope
was reduced to timing channels, analyzing and testing the detection with
supervised classification in [13] and with unsupervised algorithms in [15].
Even in spite of the fact that covert timing channels are anomalies from a
semantic understanding, from the perspective of statistical properties they
remain in zones also occupied by normal traffic, yet they can be differentiated
by supervised analysis (as shown in [15]). In other words, the separation
boundaries between traffic flows with and without covert timing channels are
not located in low density areas of the problem space (at least when analyzing
the spaces created by the features studied in [15]).

In this paper, we extend the experiments and improve the cited research
in [12, 13, 15] as follows:

1. Study of new features for randomness and predictability
The suitability of five new coefficients related to the estimation of ran-
domness and predictability in time series is studied. The addition of new
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features to the basic DAT vector format increases computational costs but
is expected to enhance detection performance, being therefore justified in
environments that demand high security and deal with assumable traffic
volumes.

2. Validation with novel techniques
A validation phase was added to the experiments. In the validation
phase, in addition to the eight covert timing techniques used in previous
experiments, detectors are evaluated versus two new covert timing
channels published in 2017, which are not present during training
and testing phases. The robustness of statistical detection frameworks
is therefore here tested as well as the hypothesis that suggests that
different covert timing techniques are prone to similarly exploit the
timing capacities of network traffic (within the scope of the features under
test).

The rest of the paper is organized as follows: Section 2 briefly describes the
covert timing channel techniques used in the experiments. Section 3 describes
the features under study. Section 4 depicts the experimental design and
Section 5 discusses the obtained results. Finally, conclusions are drawn in
Section 6.

2 Explored Covert Timing Channel Techniques

For the experiments we have selected ten covert timing channel techniques.
Eight of them are popular in the field of covert channel detection, widely
described in [13] and in the original papers (we provide the corresponding
references). The last two techniques have been published recently in [7]. We
use them here for validation and testing detectors against unknown/novel
techniques. We abbreviate technique names with three capital letters (or two
and one number) that refer to the authors who published them. Techniques are
briefly described later in this section, and Table 1 lists the specific parameters
used for the generation of covert channels.

For a better understanding of the developed methods, it is important
to clarify two different terms related to time properties. The Inter Arrival
Time (IAT) refers to the time between packets seen from the perspective
of the receiver; on the other side, the Inter Departure Time (IDT) is the
time between packets seen from the perspective of the sender. Synthetically
expressed: IAT = IDT + tx delay, where “tx delay” is the transmission
delay.



248 F. Iglesias et al.

2.1 Packet Presence (CAB)

In this technique communication partners are time synchronized and agree on
a predefined time interval tint. The presence or absence of a packet within the
predefined time interval stands for the covert symbol 1 or 0 respectively [4].

2.2 Differential/Derivative (ZAN)

This is a technique originally described for the Time-to-Live (TTL) field [33],
yet easily applicable to IATs. This technique makes use of two parameters, tb
and tinc. tb refers to the base IDT at which packets may be sent and tinc to the
time that may be added or substracted from tb. If the covert symbol 0 is to be
transmitted, the IDT is set to tb; if the covert symbol 1 is to be transmitted,
however, the IDT is set to tb ± tinc. Addition and substraction are applied
alternately on subsequently occurring 1 symbols.

2.3 Fixed Intervals (BER)

This straightforward technique [1] agrees on two different IDTs to mask binary
symbols. For instance, t0 for 0 and t1 for 1.

2.4 Jitterbug/Modulus (SHA)

The technique [28] is designed to interfere legitimate communications. It uses
a base sample interval ω and adds some delay to IDTs. A covert 1 or a 0 is
interpreted depending on if a given IAT is divisible by ω or only by ω/2.

2.5 Huffman Coding (JIN)

By using Huffman coding, every covert symbol is encoded in a set of
packets with different IDTs [32]. The proposed codification tries to optimize
communication bandwidth based on the frequency ofASCII symbols observed
in English texts. The given implementation only covers a set of basic lower
case characters and numbers.

2.6 One Threshold (GAS)

This technique [9] uses a time threshold th to discriminate 0s and 1s. If a
given IAT is above th it will mark 1, 0 if below. For the implementation we
used additional times to create the covert channel and match the proposed rule
(Section 1).
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2.7 Packet Bursts (LUO)

In this technique [20] packets are sent in bursts. The number of packets sent per
burst marks the intended covert symbol to transmit. Between two subsequent
bursts, some time tw is waited. In principle, this technique is not exploited for
binary channels, but manages some symbols (few, about 10 or 16).

2.8 TCP Timestamp Manipulation (GIF)

This technique [10] uses TCPtimestamps to convey covert information. Packet
IDTs are altered in such a way that the least significant bit (LSB) of the TCP
timestamp matches the covert information. TCP timestamps are updated at
a specific clock frequency, usually 100, 250, or 1000 Hz. For this reason,
this technique establishes a waiting tb between consecutive packets (authors
suggest a minimum of 10 ms). If the LSB is the same as the desired numerical
covert symbol, the packet is sent; if not, the sender checks the LSB again after
a defined tw.

2.9 ASCII Binary Encoding (ED1)

This technique [7] encodes the covert symbol 0 with a waiting time t0 (authors
suggest 300 ms), whereas the covert symbol 1 triggers the immediate sending
of a packet. Note that t0 is not defining any IDT; therefore, sending 0s does
not imply sending any packet. For example, if ‘A’, which corresponds to the
ASCII encoding ‘01000001’, is to be covertly send, the sender will follow this
sequence: (1) wait 300 ms, (2) send one packet, (3) wait 1.5 s (300 ms×5),
(4) send one packet. Messages are forced to finish transmitting a ‘1’.

2.10 5-Delay Encoding (ED2)

This technique [7] encodes every letter of the English alphabet with a 5-
digit numerical code where each digit corresponds to a different IDT. Authors
propose a waiting time between covert letters, tw.

3 Selected Features

As mentioned in Section 1, a recent classification of covert channels is
presented in [12]. Moreover, DAT is introduced as a general methodology
to identify covert channels in network traffic flows. The DAT approach is
fundamentally based on a set of statistical figures and estimations extracted
from TCP/IP flow header fields as well as IATs. The specific field under
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study—IAT for the case of covert timing channels—is initially tackled from a
time series analysis perspective. Further derived studies that focus on covert
timing channels are developed in [13] and [15]. Here we explore the features
used in these three cited works ([12, 13] and [15]) and add five new features
related to regularity and randomness in time and symbol series.

Before depicting features, it is worth remembering that detectors must
define two time parameters to enable time series analysis:

• Sampling time, which states the desired binning (time resolution, or gran-
ularity) for the time series analysis. DAT detectors and the experiments
conducted here work with a 1-millisecond sampling time by default.

• Observation period, which establishes the maximum time-window for
the observation of a given flow. DAT detectors and the experiments
conducted here work with a 5-minute observation period by default.
The feature vector extracted from IATs of analyzed flows is:

flow vec = {U, Sk, μωS , Ss, p(Mo), ρA, Ha, TR, TS , Hq, K, pkts}
(1)

The meaning of each feature is described below.

3.1 Simple Statistical Figures

• U — number of unique values. U stores the number of non-repeated IAT
values observed in the analyzed flow.

• pkts — total number of packets in the flow. pkts is simply a counter that
contains the total number of packets observed in the analyzed flow.

• p(Mo) — Mode frequency. p(Mo) is a percentage value calculated as the
quotient between the number of IAT Mode value repetitions and the total
observed IATs in the flow (i.e., pkts – 1).

• c — estimation of potential covert byte-equivalent symbol. The calcula-
tion of c is based on empirical tables and tries to estimate the number of
potential covert bytes sent in a flow [12]. It usesSk (defined in Section 3.2)
to guess the number of different symbols that the covert channel might
be applying. For example, if Sk reveals a possible binary channel, c
becomes: c = (pkts –1)/7, assuming that 7 IATs values are necessary to
transmit a covert byte-equivalent symbol1.

1It might be surprising the use of “7” instead of “8” in the quotient for estimating byte-
equivalent symbols. The c index is an inflated estimation of the transmitted covert information
and assumes that it consists of text. In this respect, note that ASCII most relevant/used symbols
are less than 27 = 128.
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An example should help to understand the introduced features. For instance,
given the following sequence of IATs in a flow i:

IATi = {5, 15, 14, 4, 5, 6, 16, 15, 5, 15, 14, 15, 4, 5}ms (2)

Feature values would be: U = 6, i.e., the cardinality of the unique values set:
{4, 5, 6, 14, 15, 16}; p(Mo) = 4/14 = 0.29, given that the Mode (15) occurs 4
times; pkts = 15; and c = 14/7 = 2, since Sk = 2.

3.2 Multimodality Estimation

Multimodality refers to values that either significantly occur more often than
others in the series or appear as attractors in the series distribution. Estimating
multimodality means providing the number of such attractors. The features
related to multimodality are:

• Sk— multimodality based on kernel density estimations. Sk is the
number of peaks of the curve that approximates the empirical distribution
of IATs by using a gaussian kernel. Figure 1 shows two examples
with similar estimated curves and both with Sk = 2. Kernel density
estimation for assessing multimodality is widely described in [29], and
their application for covert channels is discussed in [12].

• Ss — multimodality based on pareto analysis. Ss is the number of
outstanding values that appear in the IAT histogram. It follows the
principles of Pareto analysis [24] and the specific calculation is depicted
in [12]. In short, it is the number of values that show a considerable
high frequency compared to the rest of the histogram. Figure 1 shows
two examples: in the left one Ss = 2, whereas in the right plot Ss = 6.
Ss is expected to be irrelevant for the case of IATs as—considering
a millisecond resolution—IAT series distributions tend to look like
distributions of continuous variables.

• μωS — average distribution width. μωS is the mean of the character-
istic standard deviations of the gaussians drawn by the kernel density
estimations. More intuitively: it captures the average peak width of the
mountains that appear in the empirical distribution.

3.3 Regularity/predictability Estimators

The coefficients described in this section try to provide an estimation of the
randomness, the unpredictability or the regularity of a time series. ρA was
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Figure 1 Histograms (bars) and kernel density estimations (curves) of two different numerical
series. Left plot: Sk = 2, Ss = 2. Right plot: Sk = 2, Ss = 6. Density magnitudes are omitted as
only the number of peaks is relevant for the purpose of the estimation. Figure taken from [12].

initially proposed in [12], whereas the other five measurements are added
here to test if their inclusion enhances detector performances. In addition to
the associated computational costs, the main drawback of all these coefficients
is that they require time series be long enough (the minimum threshold is
approximately placed between 10 and 100 elements). For short time series,
coefficient values are either meaningless or not computable. This fact does not
imply a serious problem for covert timing channel detection as, by default,
short flows—specially in binary covert channels—cannot contain significant
amounts of information and can be directly discarded by the detector. For
instance, a binary channel that hides the sentence “hello world!” as 7-bit
ASCII characters requires 1 + 12 × 7 = 85 packets (84 IATs).

• ρA— sum of autocorrelation coefficients. ρA is the sum of autocorrela-
tion coefficients, i.e., the IAT time series is paired with delayed versions
of itself and correlation coefficients are extracted. Later, such coefficients
are summed and a final value is obtained. In short, ρA tries to unmask
repetition patterns that fit the studied delays. Values close to 1 disclose
the existence of patterns and regularity.

• TR — runs test. The runs test [2] checks if it is reasonable to consider that
each element in the studied time series is independent and originates from
the same distribution. For a non-binary time series A, an intermediate step
is required:

B = A − μA (3)
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where μA is the statistical mean of A. R is the runs of B, i.e., the number
of sub-series of negative or positive values within B. Finally,

Z =
R − E[R]

S[R]
(4)

where E[R] is the expected number of runs, and S[R] stands for the
expected standard deviation of R. Finally,

TR = |Z| − Z1−α/2 (5)

For time series with more than 20 elements, they are considered non-
random if TR is positive.2 This test is widely explained in [2].

• TS — sign test. The sign test [21] is similar to the run test. Given the time
series A, instead of counting runs, it takes consecutive pairs of values and
constructs a new time series as follows:

B = A2 − A1, A3 − A2, . . . , An − An−1 (6)

being n the total number of elements in A. P is the signs of B, i.e., the
number of positive elements in B. Therefore,

Z =
P − E[P ]

S[P ]
(7)

where E[P] is the expected number of signs, and S[R] stands for the
expected standard deviation of R. TS is defined similarly to TR:

TS = [Z] − Z1−α/2 (8)

where time series with more than 20 elements are considered non-random
if TS is positive.

• K — Kolmogorov complexity or compressibility. Given a string, the
Kolmogorov complexity is defined as the length of the shortest com-
puter program that generates such string [18]. The calculation of the
Kolmogorov complexity, as originally defined, presents problems related
to computability. Nevertherless, considering long-enough strings, using
lossless compression for approximating Kolmogorov complexity has
proven to satisfactorily estimate upper bounds in different domains [19].
In our experiments, we approximate K as:

K = len(B)/len(A) (9)

2For a 5% significance level, Z1−α/2 = 1.96.
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with len(A) being the length of the time series A and len(B) the length of
the compressed version of A by zlib3, i.e., B = zlib(A).

• Hq — Hurst exponent. The Hurst exponent is strongly linked to the
fractal properties of a sequence of values or series, therefore it also
provides a measure of autocorrelation and self-similarity. In the case of
time series, it gives a quantitative estimation of the trend to regress to the
mean value or to be inclined to move in a certain direction [17]. Values
between 0.0 < Hq < 0.5 and 0.5 < Hq < 1.0 stand respectively for
negative and positive autocorrelations, while Hq = 0.5 corresponds to
uncorrelated Brownian processes [6].4

• Ha — Approximate Entropy.Approximate entropy is a statistical method
devised to measure complexity and regularity of a system, which has
proven to be suitable for short (but more than 100 data points) and noisy
time-series [27].5 Ha reflects the existence of patterns in a series that
makes future values more predictable. Small Ha values tending to 0 are
expected for time series that contain repetitive patterns, whereas high
values are expected for chaotic behaviours.

As an example, Figure 2 shows two time series: T1, generated at random, and
T2, exhibiting a clear pattern. Regularity/predictability coefficients are shown
below the figure.

Figure 2 Regularity/predictability coefficients for two example time series.
T1: ρA1.5 = 0.73, TR = −1.76, TS = −1.61, K = 1.00, Hq = 0.68, Ha = 2.32.
T2: ρA1.5 = 0.09, TR = 7.49, TS = 14.66, K = 0.31, Hq = 0.71, Ha = 0.08.

3https://zlib.net/
4For the experiments we have used the hurst implementation from Python library nolds

0.3.4: https://pypi.python.org/pypi/nolds
5For the experiments we have used the approximate entropy implementation from Python

library nolds 0.3.4: https://pypi.python.org/pypi/nolds
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4 Design of Experiments

The experiments conducted in this research use real data flows for the traffic
free of covert channels (henceforth called overt datasets) and flows with covert
channels created by an ad-hoc traffic generation framework (henceforth called
overt datasets). We describe them in this section.

As introduced in Section 3, flows are tracked 5 minutes as longest
(observation period ), and the sampling time for the IAT data is fixed
to 1 millisecond. Final preprocessed datasets for experiment replication
and further algorithm testing are publicly available to download from our
webpage in [31].

4.1 Overt Datasets

Real traffic—in principle assumed free of covert channels—has been obtained
from the MAWI Working Group Traffic Archive6. The MAWI project pro-
motes network traffic research by daily publishing 15 minutes of TCP/IP
backbone traces, from 2:00 pm to 2:15 pm GMT. MAWI datasets are
anonymized and do not contain payload. We used captures from three days in
2017: a) January 31, b) February 28, and c) March 31, randomly selecting flows
to create three overt datasets, namely: nocc training, nocc testing and nocc
validation.

Since, for the case of covert timing channels, DAT detectors automatically
consider flows with less than 10 packets as overt flows (i.e., they are too short
to contain a covert timing channel), all flows with less than 10 packets were
removed from the overt dataset. In [13] and [15] flows with less than two
packets were removed instead. This difference makes current experiments
more demanding and challenging as covert flows are only compared with
overt flows that potentially look like covert flows. Performance indices are
expected to be worse due to this reason. It is important to remark here that
datasets used in the experiments do not try to be representative of real traffic
conditions (were the rate of covert channels is absolute negligible), but submit
the analysis to problem spaces that are suitable for the knowledge extraction
and feature testing.

After preprocessing steps, overt datasets contain 30000 flows in
nocc training, 30000 flows in nocc testing and 46193 in nocc validation.

6http://mawi.wide.ad.jp/mawi/
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4.2 Covert Datasets

Covert datasets were also generated in three groups, namely:

• cc training (1022 flows), including flows generated by using CAB, BER,
SHA, JIN, GAS, LUO, ZAN and GIF techniques.

• cc testing (1036 flows), including flows generated by using CAB, BER,
SHA, JIN, GAS, LUO, ZAN and GIF techniques.

• cc validation (1232 flows), including flows generated by using CAB,
BER, SHA, JIN, GAS, LUO, ZAN, GIF, ED1 and ED2 techniques.

Each covert dataset was generated with a different set of files to be secretly sent.
Each set of files consisted of various types of data, including plain-text (text
files, list of passwords, technical reports and programming scripts), images
(PNG and JPEG), compressed files (in ZIP and GZ formats), and encrypted
files (in 3DES and GnuPG formats). Each singular channel was generated
with a different parameterization, random seed and data to be covertly sent.
Parameter value ranges were defined according to the original publications
(whenever provided); otherwise, they were tuned based on traffic measurement
expert knowledge. We also increased some parameter values whenever the
source publication did not properly consider transmission delays for large
networks. Table 1 shows the value ranges used for the random generation of
parameters.

Table 1 Parameters used for the generation of covert channels. Parameters randomly fell
within the shown intervals (uniform random distribution)

Technique Parameters
tx delay By default, transmissions delays are modeled with a Lomax (Pareto

Type II) distribution with α = 3 ms and λ = 10 ms.
CAB tint ∈ [60,140] ms, being tint the base time window in which the

presence or absence of a packet sets the covert symbol.
BER t0 ∈ [10, 50] ms, t1 ∈ [80, 220] ms. t0 stands for the IDT of covert 0s and

t1 for covert 1s.
SHA The ground transmission was modeled by using a Gamma distribution with

k ∈ [40, 760] ms and φ ∈ [40, 360] ms. The SHA technique uses ω ∈ [10,
90] ms as sampling interval to manipulate the sending with little delays.

GAS IDT distribution for 0-packets: t0 = th − ts

IDT distribution for 1-packets:: t1 = th − ts + ta, th ∈ [100, 300] ms,
ts ∈ [60,140]ms, ta ∈ [20, 80] ms. th > ta + ta

JIN We used the codification proposed in [32].
LUO tw ∈ [50, 250] ms. tw is the waiting time between bursts. Packets in a

burst are sent every ms.
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ZAN tb ∈ [30, 70] ms, tinc ∈ [20, 40] ms. tb is the base IDT between packets.
tinc is added, subtracted or nor applied based on the covert symbol and the
previous IDT.

GIF The minimum time between packets is tb ∈ [10, 30] ms. The time to
recheck TCP timestamps is tw ∈ [4,12] ms.

ED1 Waiting time for zeros is t0 ∈ [200, 400] ms.
ED2 Waiting time between covert symbols is tw ∈ [130,170] ms. The 5-code is

built by translating ASCII decimal values into 5-base equivalent numbers.
5-code IDTs: t0 ∈ [11,19] ms, t1 = t0 + tinc ms, t2 = t1 + tinc ms,
t3 = t2 + tinc ms, t4 = t3 + tinc ms, with tinc ∈ [11,19] ms. The
specific numbers have been chosen to deal with path delay variation such
that the probability for decoding errors is reduced.

4.3 Analysis Methods

Covert and overt datasets were explored in sequential steps:

1. Univariate analysis and feature correlation
As a first step, features were studied separately for the cc training
and nocc training datasets by univariate analysis, aiming to detect
noticeable differences in simple statistical figures. Later on, Pearson
correlation between features were checked in order to detect distinct
feature dependencies in overt and covert traffic.

2. Feature selection
cc training and nocc training were joined in a single training dataset to
study feature dependencies with regard to the binary class labels. Features
were weighted by feature selection filters and hybrid schemes with
different criteria. i.e., decision trees, maximum relevance, information
gain, correlation and the gini index—the theoretical background of such
indices can be consulted in [26] and [23]. Additionally, feature weighting
methods were embedded in a subsampling structure to reinforce result
robustness by means of stability selection [22]. Obtained ranks were
compared and a final feature set is proposed.

3. Binary classification and validation
In this phase, training datasets are presented to learners. Obtained models
are tested with testing datasets and validated with validation datasets,
which explore the effect of including non-trained covert timing channels
in the analysis. The training is performed with 10-fold cross-validation,
with stratified sampling to keep label proportions in each validation fold.
Experiments are repeated with different feature sets to evaluate the results
of the feature selection phase. Used learning schemes are: decision trees,
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random forests, SVMs, neural networks, Bayes-based ensembles and
k-Nearest neighbors classifiers.

4. Unsupervised analysis
Training data is also analyzed by unsupervised outlier detection algo-
rithms in order to see if the new proposed features make covert flows
be outliers. Experiments slightly differ from the ones conducted in
[15], where overt and covert datasets where presented together to the
algorithms. Such experimental scheme might break the normal environ-
ment where covert channels appear by overpopulating the space with
covert samples (in [15] they consisted on about 5% of the total flows).
Covert channels are expected to be much more infrequent among overt
data. Therefore, here, outlier detection models are calculated without
covert channels, and covert flows are later contrasted with the model and
ranked one by one, i.e., every covert flow is isolated and independently
compared with the whole overt dataset. Used algorithms are: LOF [3],
COF [30], INFLO [16] and HBOS [11]. Used performance indices
are: P@n, precision at the top n ranks; Adj.P@n, adjusted P@n; AP,
average precision; Adj.AP, adjusted AP; MaxF1, Maximum F1 score;
Adj.MaxF1, adjusted MaxF1 score; ROC/AUC, area under the ROC
curve. Explanations of such indices can be consulted in [5].

5 Results

The results of the experiments described in Section 4.3 are shown and
discussed in this section.

5.1 Univariate Analysis and Feature Correlation

Correlation analysis shows some linear dependencies among the studied
features in overt traffic (Figure 3, left plot). Even thought it obviously depends
on the features under observation, the characteristics of network traffic make
finding high-related features a common situation, as observed in [14]. The
positive correlation between the number of U (i.e., unique IATs values)
and Sk (i.e., distribution-based multimodes) is not surprising, as well as the
correlation between pkts and c, TR or TS , which are expected to be higher as
the number of packets increase. A special attention deserves indices among
the regularity estimators. Entropy measures Ha show inverse correlation with
U, which makes sense according to the definition of entropy. The Kolmogorov
coefficient K shows inverse correlation with p(Mo) and TS , which also makes
sense because K inversely defines chaos or irregularity if compared to p(Mo)
or TS .
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Figure 3 Results of the correlation analysis. Left matrix (A): correlations in the overt dataset.
Middle matrix (B): correlations in the covert dataset. Right matrix (C): absolute differences
between the correlations in the overt and the covert data set, i.e., ci,j = |ai,j − bi,j |∀i, j being
i and j indices for rows and columns, and ai,j , bi,j , ci,j elements of A, B, C respectively.

The plot in the middle of Figure 3 shows the case of the covert dataset.
Covert traffic shows more extreme correlation indices. This fact suggests
that covert flows follow more strict and regular structures with respect
to the selected features. Another way to look at this picture is acknowl-
edging that overt traffic is richer in shapes and possibilities. Such results
foresee a classification scenario where covert flows can be discriminated,
but false positives might be also likely. The right plot in Figure 3 shows
which features—high values, light backgrounds—might be potentially deter-
minant to establish classification boundaries to separate overt and covert
traffic.

The comparison between univariate analysis of features for overt and
covert datasets reveal significant differences in the central tendency measures
(Table 2). However, values that significantly differ from overt to covert
traffic also show high dynamic ranges (represented by the standard deviation).

Table 2 Univariate statistics for overt and covert traffic. Since feature distributions are not
Gaussians, we use nonparametric Confidence Intervals (approximately 95%) over the median

Overt Traffic Covert Traffic
mean stdev median CI low CI high mean stdev median CI low CI high

u 28.75 38.73 15.00 15.00 15.00 196.10 96.17 159.00 155.00 165.00
Sk 18.83 28.88 11.00 11.00 11.00 168.38 114.49 139.00 132.00 146.00
Ss 2.33 6.61 2.00 2.00 2.00 2.62 2.16 2.00 2.00 2.00
μωS 0.01 0.05 0.00 0.00 0.00 0.02 0.04 0.01 0.01 0.01
ρA 0.11 0.08 0.10 0.10 0.10 0.04 0.03 0.04 0.03 0.04
c 88.53 1462.21 3.29 3.29 3.29 781.63 2139.75 289.36 246.71 351.00
p(Mo) 0.27 0.22 0.20 0.20 0.20 0.07 0.07 0.05 0.05 0.05
TR –0.17 3.57 –1.05 –1.07 –1.02 1.36 4.57 –0.39 –0.50 –0.22
TS 3.21 18.86 0.00 0.00 0.00 1.87 4.71 0.29 0.10 0.50
Ha 6.95 4.43 10.00 10.00 10.00 0.57 0.06 0.58 0.58 0.58
Hq 129.77 335.41 0.41 0.41 0.41 1.20 0.44 1.29 1.26 1.31
K 0.97 0.12 1.00 1.00 1.00 1.00 0.02 1.00 1.00 1.00
pkts 414.49 4014.59 23.00 22.00 23.00 3647.22 4465.61 1774.00 1615.00 2062.00
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This fact anticipates overlapping areas in the problem space that can hinder
accurate classification.

In short, univariate analysis and correlation tests reveal:

• Overt and covert traffic show different central tendencies and feature-
correlation profiles. This is an evidence of the existence of patterns that
can be learned by classification schemes.

• Some feature pairs—specially [U, Hα], [U, TR], [Sk, Hq], [c, Ss],
[p(Mo), μωS ]—show opposed correlation relationships when overt and
covert traffic are compared. Such pairs might be keys that facilitate the
binary classification.

• Redundancy is high and common in features, specially for covert traffic.
This fact can imply difficulties for selecting the right features and for
some classification techniques (e.g., naive Bayes).

5.2 Feature Selection

Feature selection experiments expose that features are ranked differently
depending on the used feature selection method, as shown in Figure 4. This
is not surprising due to the redundancy among features observed during
correlation analysis. Nevertheless, all feature selection methods seem to agree
in neglecting ρA and Hq whereas emphasizing K and c.

The preponderance of K can surprise due to the fact that its correlation
relationships among features do not significantly differ when overt and covert
traffic are compared each other. In any case, such peculiarity does not imply
that K cannot be correlated with the class label. But K is indeed not linearly
correlated with the class label (ρ = 0.04), and univariate statistics in Table 2

Figure 4 Comparison of feature selection methods.
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Figure 5 K values throughout covert and overt sample flows.

do not show differences between covert and overt traffic for K. Nevertheless,
K exhibits a noticeable behaviour change when values are visually compared
from an overall perspective (Figure 5).

Summarizing, based on the feature selection analysis we can cluster
features in four groups, which remark their importance for distinguishing
between covert and overt traffic:

• High relevant: K and c.7

• Medium relevant: Sk, Ss, TR, TS

• Low relevant: U, μωS , Ha, p(Mo), pkts.
• Negligible: ρA and Hq.

As observed in [13], where features are selected by decision trees, c is stated
as a decisive feature and ρA is neglected. However, with regard to the previous
work the importance of other features vary due to the inclusion of the new
regularity and randomness features, derived redundancies and the influence
of new feature combinations. Also the selection of overt datasets with longer
flows, whose characteristics are more similar to covert flows, has an effect on
classifiers and feature selection algorithms, which are forced to give solutions
with finer granularity.

5.3 Binary Classification and Validation

Based on the feature selection analysis, classification experiments are run to
verify the suitability of the selected features. Also, covert channels based on
two new techniques are incorporated in a validation step to see if models
drawn in training are able to detect novel covert timing techniques, meaning

7It’s worth remembering that c is a function of Sk and pkts.
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that new covert channels are likely to manipulate traffic capacities in a similar
way (from a statistical perspective). Classification is performed with decision
tree cores over three different feature sets:

• Feature Set A: high, medium, low and negligible features (all).
• Feature Set B: high, medium and low relevant features.
• Feature Set C: high and medium relevant features.

Tables 3, 4 and 5 show performances for every feature set when decision trees
are used to create classification models. The revision of such tables disclose
some findings:

• The performance downgrade when using feature set B (high, medium
and low relevant) if compared with the feature set A (all) is minor, likely
related to specific non-generalizable cases. From a general perspective Hq

and ρA can be considered inefficient for detecting covert timing channels
and, therefore, removed.

Table 3 Experiment performance with Feature Set A (all)
Training Testing Validation

PC PO PC PO PC PO
RC 1001 (TP) 21 (FN) 986 (TP) 50 (FN) 1036 (TP) 196 (FN)
RO 40 (FP) 29960 (TN) 41 (FP) 29959 (TN) 96 (FP) 46097 (TN)
Acc.(C): 99.80% ± 0.12% 99.71% 99.38%
Prec.(C): 96.20% ± 2.24% 96.01% 91.52%
Recall(C): 97.95% ± 1.75% 95.17% 84.09%
AUC(C): 0.962 ± 0.099 0.973 0.903

PC: predicted covert, PO: predicted overt, RC: real covert, RO: real overt,
TP: true positive, TN: true negative, FP: false positive, FN: false negative,
(C): covert as positive class, Acc.: accuracy, Prec.: precision, AUC: area under ROC curve.

Table 4 Experiment performance with Feature Set B (excluded negligible)
Training Testing Validation

PC PO PC PO PC PO
RC 997 (TP) 25 (FN) 946 (TP) 74 (FN) 991 (TP) 241 (FN)
RO 37 (FP) 29963 (TN) 96 (FP) 29961 (TN) 81 (FP) 46112 (TN)
Acc.(C): 99.80% ± 0.08% 99.54% 99.32%
Prec.(C): 96.45% ± 1.65% 96.10% 92.44%
Recall(C): 97.56% ± 1.60% 92.86% 80.44%
AUC(C): 0.959 ± 0.100 0.973 0.924

PC: predicted covert, PO: predicted overt, RC: real covert, RO: real overt,
TP: true positive, TN: true negative, FP: false positive, FN: false negative,
(C): covert as positive class, Acc.: accuracy, Prec.: precision, AUC: area under ROC curve.
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Table 5 Experiment performance with Feature Set C (excluded negligible and low relevant)
Training Testing Validation

PC PO PC PO PC PO
RC 893 (TP) 129 (FN) 915 (TP) 121 (FN) 980 (TP) 252 (FN)
RO 57 (FP) 29943 (TN) 65 (FP) 29935 (TN) 142 (FP) 46051 (TN)
Acc.(C): 99.40% ± 0.21% 99.17% 99.30%
Prec.(C): 94.23% ± 2.74% 93.37% 87.34%
Recall(C): 87.39% ± 8.07% 88.32% 79.55%
AUC(C): 0.931 ± 0.043 0.920 0.824

PC: predicted covert, PO: predicted overt, RC: real covert, RO: real overt,
TP: true positive, TN: true negative, FP: false positive, FN: false negative,
(C): covert as positive class, Acc.: accuracy, Prec.: precision, AUC: area under ROC curve.

• The performance downgrade when using feature set C (high and medium
relevant) if compared with the feature set A or B is considerable. There-
fore, low relevant features—μωS , Ha, p(Mo), pkts—are still determinant
for the classification and should be included regardless of possible
redundancies.

• The downgrade in the validation phase is obvious in spite of the used
feature set. False negatives mainly belong to the novel not-trained
techniques ED1 and ED2 (Table 6), meaning that new techniques have
room to exploit channel capacities in ways that can bypass classifiers
trained with known, old techniques.

Similar test have been carried out with other classifiers, specifically: ran-
dom forests, SVM, neural networks, Bayes-based ensemble and k-Nearest

Table 6 Identification of FN and FP in the validation phase for the relevant feature set
Technique Wrong μconf (0) μconf (1)
CAB (FN) 8 1.00±0.00 0.00±0.00
BER (FN) 18 1.00±0.00 0.00±0.00
SHA (FN) 2 0.75±0.35 0.25±0.35
GAS (FN) 24 1.00±0.00 0.00±0.00
JIN (FN) 12 1.00±0.00 0.00±0.00
LUO (FN) 8 1.00±0.00 0.00±0.00
ZAN (FN) 11 1.00±0.00 0.00±0.00
GIF (FN) 3 0.78±0.19 0.22±0.19
ED1 (FN) 99 1.00±0.00 0.00±0.00
ED2 (FN) 55 0.70±0.10 0.30±0.10
Overt (FP) 81 0.05±0.09 0.05±0.09

FP: false positive, FN: false negative, wrong: total number of wrong classified flows
μconf (0) and μconf (1) stand respectively for the average decision tree confidence to
establish the 0 (overt) or a 1 (covert) label to the misclassified samples.
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neighbors learners. A plain decision tree obtained the best performances8, yet
the previous discussed aspects are common in all tested learning schemes.

5.4 Unsupervised Analysis

Finally, tests by outlier ranking algorithms tried to elucidate if the new
considered features could provide extra information to face the detection of
covert timing channels from an unsupervised manner. Experiments in [15]
revealed that covert timing channels can hardly be seen as outliers. Here,
outlier analysis are performed by considering two different feature sets:

• Feature Set B: high, medium and low relevant features.
• Feature Set D: new high, medium and low relevant features not used in

[15], i.e., TR, TS , Ha and K.

Results are shown in Table 7 and Figure 6. Results confirm that density-based
outlier detection is completely useless for detecting covert timing channels.
Only the HBOS algorithm (histogram-based method) can face the task to
differentiate between overt and covert flows. However, the probabilities to
suspect that a legitimate flow is a covert flow are still too high. For example,
the P@n index gives the proportion of correct results in the top n ranks.

Table 7 Outlier detection performance indices for feature set B and D
Feature set B

P@n Adj. P@n AP Adj. AP MaxF1 Adj.MaxF1 ROC/AUC
LOF 0.02 –0.01 0.01 –0.03 0.08 0.05 0.55
COF 0.01 –0.02 0.00 –0.03 0.07 0.04 0.53
INFLO 0.02 –0.01 0.01 –0.03 0.08 0.05 0.51
HBOS 0.28 0.26 0.27 0.25 0.49 0.47 0.96

Feature set D
P@n Adj. P@n AP Adj. AP MaxF1 Adj.MaxF1 ROC/AUC

LOF 0.04 0.01 0.02 –0.01 0.08 0.05 0.57
COF 0.00 –0.03 0.00 –0.03 0.09 0.06 0.62
INFLO 0.03 0.00 0.02 –0.01 0.07 0.04 0.52
HBOS 0.09 0.06 0.12 0.10 0.36 0.34 0.92

8The decision tree configuration included pre- and postpruning to avoid overfitting and
favor generalization. It used Information Gain (i.e., entropy-based) as splitting criterion; the
minimal size for splitting was four samples; the minimal leaf size was two samples, allowing a
maximal tree depth of 20 levels; the minimal gain for splitting a node was 0.1; the confidence
level used for the pessimistic error calculation of pruning was 0.25, whereas the number of
prepruning alternatives was three. In addition, a 10-fold cross-validation process was performed
to reinforce disclosed models.
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Figure 6 Outlier ranking results. Again, distributions are not normal but strongly skewed.
Plots show medians and Confidence Intervals over the median (approximately 95%). Red
markers correspond to covert datasets, blue for overt datasets. Red lines are indistinguishable
(or almost) in LOF, COF and INFLO due to value overlap.

P@n = 0.28 in Table 7 is the best result for the HBOS case, but still too low
to build a practical detector. AUC rates are nevertheless significantly high
for HBOS. The AUC index can be understood as the probability that the
algorithm ranks a randomly chosen positive example higher than a randomly
chosen negative example. Summarizing, results show that practically all flows
with covert channels obtain high HBOS ranks; overt flows are low-ranked
instead, but still some overt flows—a meaningless proportion but still many
when compared with covert flows rates—score high and even higher than
covert cases.

Already in [15] HBOS was the only method to find a significant difference
between overt and covert flows. The inclusion of the new features (TR, TS , Ha

and K) reinforces the outlier nature of flows with covert channels, as shown
in Figure 6, but is still far from being discriminant.

Therefore, the main findings of the unsupervised experiments are:

• As a general trend, covert channel flows obtain higher outlierness ranks
when analyzed by the HBOS algorithm (histogram, distance-based), but
still a significant proportion of overt flows scores equally high or even
higher.

• The new features TR, TS , Ha and K endorse the outlier nature of covert
channels, but the most revealing outlierness ranks are obtained when they
are combined and used together with Sk, Ss, c, U, μωS , p(Mo) and pkts.

6 Conclusions

In this work we have deeply analyzed the capacity of some network traffic
features to disclose covert timing channels.All analyzed features are measured
or calculated from network traffic flows IATs (Inter Arrival Times).



266 F. Iglesias et al.

From the analyzed features, the most relevant ones for the detection of
covert channels are: c, Sk, pkts and K. c is the estimation of potential covert
byte-equivalent symbols, which depends on the number of packets in the
flow (pkts) and the number of multimodes that appear in the probability
density estimation when using gaussians as kernels (Sk). K is the Kolmogorov
complexity estimation approximated by using zlib compression. On the other
hand, the hurst coefficient (Hq) and autocorrelation-based coeffcients (ρA) are
found inefficient and can be discarded.

Conducted experiments show that the detection of covert timing channels
is a demanding challenge and new covert techniques can easily bypass trained
detection schemes. The high variety of forms that network traffic can take
and the extremely low expected rate of covert channels in real traffic are
the main reasons that make the accurate detection so difficult. Combination
of supervised and unsupervised techniques (i.e., semi-supervise methods)
appears as the right direction to follow in order to develop satisfactory
detectors. However, a considerable rate of false positives is almost unavoidable
unless more complex methods are developed and implemented.
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