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Abstract

In the context of the currently developed networks for the realization of
future communications, the concept of Cognitive Radio (CR) has a significant
place. Its implementation in modern ultra-dense networks (UDN) requires
the development of novel and improved adaptive solutions for the main func-
tionalities of a CR system. This technology has a great potential for solving
the significant spectrum underutilization issue which has been established
as characteristic for the traditional communication networks and hence, the
continual and substantive research efforts in the recent years. The principal
challenge for CRs is the optimization of spectrum utilization without creating
unwanted interference for the incumbent (primary) users. Thus, a signifi-
cant portion of the research is directed towards the vital spectrum sensing
functionality. This paper reviews the potential uses of CR in UDN as well
as the main approaches for modeling of spectrum sensing with respect to
signal detection. The review focuses on local spectrum sensing techniques
and presents the strengths and weaknesses of their mathematical definition.
Specific attention is given to the channel models which are considered in the
literature and to what kinds of features are extracted from the received signal
to achieve accurate detection.
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1 Introduction

The application of wireless communications in many of man’s everyday
activities has been established through the astonishing progress of com-
putation technologies in the recent decades. Their further consolidation is
only a matter of time due to the various intelligent devices and applications
for the current and future uses of the consumer. The wireless technologies
themselves and the freedom and flexibility of use that they offer determine the
dynamic formation of new applications, such as virtual reality, holoportation,
much more reliable mobile communications in the presence of high volume
of traffic and crowds, Internet of Things (IoT), Internet of Vehicles (IoV),
Device to Device (D2D) communication, eHealth, Machine to Machine
(M2M) communication [1–3]. All of these technologies are changing the way
humans interact with each other and their environment, providing ongoing
connectivity and communication with any system, device or person from
any location, anytime, using apparent infinite capacity, realized through the
efficient use of the telecommunications infrastructure [4]. Recent forecasts
estimate the growth of total mobile traffic as a systematic increase of 40%
per year over the next three years, with the most significant part of it focused
on the consumption generated by the Asian market [5]. At the same time, a
significant increase in IoT and M2M communications is expected. In order
to provide connectivity to such a big number of devices, the 5G standards
are required to achieve speeds of the order of several Gbps, latency of
around 1 ms, tens of thousands of user devices per km2, improved Quality
of Service (QoS) and implementation flexibility [3]. These specifications are
envisioned to be fulfilled by the UDNs. However, there is a need of a new
paradigm in the organization and design of wireless communications, due
to approaching of the Shannon theoretical limit and the saturation of the
frequency channels in the 300 MHz – 6 GHz band [3]. On the other hand,
together with the limitation and high cost of these frequency resources, large-
scale practical studies of the real spectrum utilization in this range, show that
even the most occupied channels (those used for mobile communications)
have an average duty cycle below 50% [6–8]. In his seminal work examining
wireless communications with added intelligence [9], S. Haykin summarizes
that even in an urban environment, there are frequency channels that are either
partially utilized or completely free, most of the time. There are a few studies
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(namely [10–15]) on the application of CR principles in UDNs. The cognitive
functionality of CR devices allows efficient use of the unutilized spec-
trum and collaboration between multiple networks operating in the same or
adjacent wide bandwidths, thus providing high throughput communications
secure from interference between the primary users (PU) and the cognitive,
i.e. secondary users (SU). Thus, implementing functionalities from the CR in
UDNs, allows the system to operate autonomously from traditional commu-
nication networks (e.g. television broadcasting), which are based on macro
and micro cells. Some recent UDN models with their potential for extension
through cognitive functionalities are outlined in Table 1. The prospect of
integrating cognitive concepts into the developing dense 5G networks can
lead to many novel solutions for accommodating them to operate in the

Table 1 A brief review of notable works in the field of UDN with respect to the possibilities
of applying CR concepts

Application/
Purpose of the Study Experimental Setup Possible Extensions

[15] Algorithm for choosing
a BS and avoidance of
inter-cell interference
and throughput increase.

Heterogeneous network
comprised of macro- and
small cells, the resource
allocation and BS choice
is performed in the cloud.

Applying the proposed
strategy in autonomous
CR networks.

[16] User protection from
physical layer attack in
D2D.

D2D network with base
stations (BSs), user
devices and eaesdroppers
with Poisson distribution.

Incorporation of CR
networks into the
scenario.

[17] Resource distribution in
a D2D network.

D2D network with BSs,
mobile users and D2D
nodes with Poisson
distribution. Every
channel can be allocated
to a specific user alone.

Incorporation of CR
networks into the
scenario.

[18] Adaptive organization of
femto-BSs inside the
region of service of a
macro-BS, to avoid
interference.

The femto-BSs are
Poisson-distributed and
share common frequency
channels with the
macro-BS. They all
belong to the same
network.

The scenario can be
adapted to incorporate the
CR concept by
introducing secondary
femto-cells which are not
incumbent to the
macro-BS’s spectrum.

(Continued)
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Table 1 Continued
Application/

Purpose of the Study Experimental Setup Possible Extensions
[19] Cooperative resource

allocation between a
macro-cell and small cells
of a UDN through
cognitive capabilities. The
allocation is done in time
and in spatial domains.

Determination of the
maximal number of
cognitive small cells
which can be deployed in
the coverage region of the
macro-cell without
intolerable interference
levels.

Incorporation of dynamic
access of the CR users to
the spectrum, to provide
autonomy between the
UDN and the macro-cell’s
network.

[20] Resource allocation in
UDN with added
cognition through
hyper-graph theory.
Network optimization to
achieve user association.

Distributed network for
which the Access Points
(APs) of the UDN operate
within the range of one
macro-cell and share
resources in cooperation
with it.

Extending the problem to
autonomous spectrum
sharing between the UDN
and the network of the
macro-cell.

[21] Resource distribution
among a macro-cell and
APs operating in the
millimeter wave-range.

Distributed network for
which the APs of the
UDN operate within the
range of one macro-cell
and share resources in
cooperation with it.

Extending the problem to
autonomous spectrum
sharing between the UDN
and the network of the
macro-cell in the
millimeter wave-range.

[22] Resource distribution
between different mobile
operators in unlicensed
spectrum.

Spectrum sharing among
the network nodes through
game theory and
availability of full channel
state information (CSI).

Incorporation of dynamic
spectrum access and
autonomous spectrum
sharing between the
different networks.

[23] Topology design for
UDNs.

Determination of the APs’
range and the optimal
number of users with
consideration of the
propagation conditions.

Topology design for dense
CR networks.

congested traditional bands. This will also make the transition to 5G and
beyond, smoother because the current telecommunications standards will be
able to seamlessly coexist with the new ones. It is through the spectrum
sensing functionality that this can be achieved. Thus, it is the purpose of this
article to present the main types of sensing methods with their characteristics
and design challenges. They can be used as a blueprint for the development
of novel CR-based UDN architectures. This work reviews a variety of notable
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algorithms for local spectrum sensing (single device is considered) from
the point of view that in order for the CR network to utilize the spectrum
efficiently, it requires rigorous sensing to be performed in every individual
SU. The rest of the paper is organized in the following manner. Section II
briefly describes the general way of operation of a CR device with respect
to the dynamic access of the PU’s spectrum. Then, the general structure of
a signal detector and the fundamental concepts of its operation are briefly
described in Section III. The review of the spectrum sensing methods is given
in Section IV. Finally, Section V contains a summary and future research
challenges based on the observed tendencies.

2 Cognitive Radio Networks in the Context of 5G

The introduction of the software-defined radio (SDR) facilitates the provi-
sion of additional services when unutilized PU channels are available. The
well-established definition of the CR is as follows [9]: “Cognitive radio
is an intelligent wireless communication system that is aware of its sur-
rounding environment (i.e., outside world), and uses the methodology of
understanding-by-building to learn from the environment and adapt its inter-
nal states to statistical variations in the incoming radio frequency (RF) stimuli
by making corresponding changes in certain operating parameters (e.g.,
transmit power, carrier frequency, and modulation strategy) in real-time”.
According to this formulation, a CR device learns from the characteristics
of the RF environment (noise level, traffic statistics, unused portions of the
spectrum), predicts the status of these characteristics and adjusts its trans-
mission parameters to achieve efficient use of spectrum (correct detection of
spectrum holes and their utilization) and reliable communications for both
PUs and SUs. In other words, the CR devices are required to detect spectrum
holes (unutilized frequency bands) with reliability of 90% at signal-to-noise
ratio of −20 dB [24], and utilize the spectrum for as long as it is vacant from
the point of view of the PU.

The SU must immediately release the spectrum if the PU initiates
transmission in it, to avoid interfering with the primary communications.
SU should also be highly effective in carrying out the assessment process,
because a wrong conclusion on the channel occupancy can either lead to
interference for the incumbent users of the spectrum or a missed opportunity
to utilize the available resource. For these reasons, the ability of the CR to
evaluate (or monitor the spectrum) is a major component of the device in the
context of 5G and UDN. It is also essential for the implementation of the four
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Figure 1 Operating model of a half-duplex CR device.

structural operational features of the 5G systems – cognition, cooperation,
network virtualization and redistribution of network traffic [25].

An overview of the operation of an individual CR device is presented
in Figure 1. It can be divided into frames (slots, cycles), during which the
SU performs its cognitive functions (monitoring the spectrum and utilizing
the available bands). Each frame begins with spectrum evaluation (sensing,
assessment) to allow the device to determine which frequency channels are
free of PU transmissions, if any. In case that an unoccupied spectrum chunk
is identified, the SU may use it for its transmission within a specified interval,
which may be accepted as the remainder of the frame. If all frequency chan-
nels are occupied by the PU, then the CR will have no access to the spectrum
and goes into inactive state. Alternatively, it may continue to monitor the
frequency resource because it may be vacated before the end of the current
frame.

It should be noted that this review deals with only half-duplex transceiver
cases, i.e. those which operate with only one transceiver module and must
alternate between transmission and reception (respectively, spectral monitor-
ing), according to the classical operating model of the CR devices described
in Figure 1. In recent years, a certain amount of interest among the scientific
community has been given to full-duplex transceivers for CR applications.
In these cases, the availability of two transceivers in one device allows
simultaneous monitoring and utilization of the spectrum [26]. This provides
the CR drive with much more flexibility due to the avoidance of prob-
lems related to spectrum underutilization and the risk of interference to
the PU. The addition of a second transceiver module, working in parallel
with the first, however, significantly changes the cognitive user equipment’s
features and increases its cost. For this reason, full-duplex transceivers
and the specifics of their implementation are beyond the scope of this
paper.
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3 Signal Detectors in Cognitive Radio Networks

The spectrum sensing function generally aims to differentiate the PU signal
from the noise with sufficient accuracy, i.e. it is a detection task. A summary
diagram of the signal detector is shown in Figure 2. A CR device performs
a measurement in a bandwidth of W Hz over a sensing period of tS seconds
in which N = 2tSW samples are obtained at the output of the analog-to-
digital converter (ADC). The received signal y is subjected to processing
tied to the specific sensing method in order to extract the necessary features
(for example, signal level, noise level, eigenvalues, etc.) that will allow the
detector to correctly evaluate with certain probability, the presence of the PU
signal in the band. Finally, the detector makes a decision.

Traditionally, the signal detector’s task is described through the differen-
tiation between two hypotheses – nullH0 (the band contains only noise, i.e. it
is free from PU transmissions) and alternative H1 (the PU signal is present).
Equation (1) expresses these relations:

H0 : y = n
H1 : y = x+ n.

(1)

The sensing function must choose one of the two hypotheses based on the test
statistic Λ resulting from the processing of y, which is compared to the
value of the decision threshold λ previously calculated. It characterizes the
noise level and, accordingly, if Λ has a higher value than the threshold,
the alternative hypothesis H1 is validated:

Λ(y) T λ (2)

The detector’s efficiency is determined by the adequate choice of the thresh-
old. It has to be chosen such that the detector will be able to discriminate
between the two hypotheses with sufficient accuracy [27]. The difficulty in
making this decision increases substantially as the noise power becomes
comparable or higher than that of the signal. Such case is illustrated in
Figure 3. The probability distribution of H0 is illustrated by the area marked
by the blue line, whereas that of the alternative – by the red one. The signal

Figure 2 Generalized scheme of the spectrum sensing operations in CR.
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Figure 3 Generalized scheme of the spectrum sensing operations in CR.

power is only 1.5 times higher than that of the noise. Thus, the decision
threshold’s setting becomes a trade-off between a certain probability of miss-
detection PMD = p(H0|H1) (the area colored in blue) and a probability
of false alarm PFA = p(H1|H0) (in orange). This figure illustrates the
distribution ratio of the two probabilities of error when the threshold (the bold
black vertical line) is set such that they are both around 50%. The detector’s
purpose is to find the optimal balance for the choice of threshold with one of
these probabilities set as an initial condition so as to maximize the probability
of detection PD = p(H1|H1). Analytically, this process is most often derived
by using the Neyman-Pearson criterion even though the Bayesian method is
used for that purpose if the assumed channel models are more complex [27].

4 Detection of Features in Spectrum Sensing

Spectrum sensing is a core element of a CR device, as it enables the user
equipment to operate in shared spectrum conditions with the PU. The time
during which a particular spectrum chunk is not used can be very short, and
therefore the SU must be able to quickly determine whether that chunk is
free or not. SU needs to be highly effective in performing this evaluation
process, as the wrong conclusion can either lead to interference for users
incumbent to the spectrum or lose the ability to utilize the available band.
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The primary purpose of the signal detector to monitor is the precision of
decision making according to the theoretical principles set out in Section
II. There are several main types of sensing methodologies depending on the
character of processing that is required for obtaining the test statistic and/or
decision threshold, which are reviewed in this Section.

4.1 Energy Detectors

This sensing approach is the easiest to define mathematically and in many
cases, the most efficient in terms of computational complexity. For these
reasons it is also the most commonly used. In a general sense, this detector
finds the overall received samples’ power (the sum of their squares) and
compares it to a pre-calculated threshold, which represents the maximum
noise power in a given bandwidth:

ΛED =
N−1∑
i=0

|y[i]2| T λ. (3)

A general schematic of the operation of this detector is given in Figure 4.
The main disadvantages of this detector are the difficulty in determining

the decision threshold, and the inability of the PU signal to be differentiated
from other signals, due to the fact that the only feature taken into account
in the test statistics is the power of the received signal. The threshold
value is determined provided that the noise power in the desired frequency
range is known a priori. This drawback can be overcome by introducing an
adaptive threshold selection depending on other parameters, such as SNR.
Subsequently, from the second major weakness of the ED, the potential for
recognition of the PU signal is significantly aggravated at a noise level which
is close to or greater than that of the signal. As it was mentioned in Section
II, achieving a trade-off between the contradicting PD and PFA involves
setting one of them as a parameter, so that the other can be derived from
it. Usually this is the probability of false alarm (constant false alarm rate
method, CFAR). The general form of the expressions for the threshold and

Figure 4 Generalized scheme of the operations in energy detection-based spectrum sensing.
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probability of detection, derived using this approach, is [28]:

λ = σ2n

(
Q−1(P̄FA)√

N
+ 1

)
,

PD = Q

(
1√

2γ + 1

(
Q−1(P̄FA)−

√
Nγ
))

, (4)

where σ2n is the noise variance1 γ = h2σ2s/σ
2
n is the signal-to-noise ratio,

σ2s is the signal variance, h is the channel attenuation, N is the number of
samples, P̄FA is the set value of the probability of false alarm, and Q(.) is

complimentary distribution function: Q(x) = 1
2π

∫∞
x exp

(
− t2

2

)
dt. Several

studies have built on top of the traditional ED by applying a threshold which
varies with the SNR [29] or differentiation between various received signal
levels through multiple thresholds [30, 31]. This way the detector’s reliability
is improved in the areas of intersection between the distributions of the two
hypotheses (see Figure 3). The issue of noise uncertainty which indicates the
fluctuations in the noise variance that leads to a deterioration of the detector’s
performance is also considered.

An important concept in the theory of energy detectors is the so called
“SNR wall” introduced in [32]. It is defined as such a value of the received
signal power that is lower than the noise uncertainty, so that reliable signal
detection cannot be achieved even if the sensing time is increased. This phe-
nomenon is addressed in some studies that simulate a low SNR environment
([33, 34]) by utilizing a more rigorous sensing algorithm in case the noise
uncertainty is too significant. A more comprehensive solution is proposed in
[35]. It is based on the estimated noise power method which readjusts the
amount of noise-only (the PU is absent from the spectrum) samples such that
the estimator’s variance declines. Thus, the SNR wall is alleviated for any
particular sensing period (and consequently, number of samples).

A significant portion of the research ([29, 36–38]) related to ED is devoted
to the traditional detector model’s extension to develop its adaptability. In
real-time experiments-based studies such as [36, 39, 40] it is common that the
decision threshold is derived from empirical measurements of the spectrum
when the PU transmitter is not active. Proposed modifications are related to
the dynamic readjustment of the decision threshold, the comparison of its
performance with other sensing methods, the received signal’s decomposition
into its frequency components, finding the optimal sensing time against the

1The signal and the noise are both generally assumed to be Gaussian-distributed.
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a priori probability of the spectrum being available p(H0). Studies such as
those presented in [33, 41–46] introduce an important dimension to the design
of ED, namely, they add more realistic propagation conditions to the detec-
tor’s analytical model. The method proposed in [33] identifies the PU signal
under Rayleigh fading and unknown variance of the Gaussian-distributed
noise, and in addition to the probability of detection, the spectrum utilization
coefficient2 is evaluated. A comprehensive analysis of low SNR ED (<0 dB)
for Rayleigh and Nakagami fading is presented in [41]. In addition to design-
ing the detector itself for efficient operation under these conditions, analysis
has allowed the definition of optimal threshold such that PD and PFA are
guaranteed within certain limits. The authors of [42] consider the case of
signal detection with unknown distribution, Gaussian noise and three fading
models – Nakagami, Rice and Rayleigh. The decision threshold is determined
by the CFAR method. A Gamma fading model (also known as α−µ fading),
along with Gaussian noise, is discussed in [47]. The detector is defined using
the Bayesian approach [27, 48], which combines the probabilities of the
two wrong decisions PFA and PMD through using the a priori probability
p(H0) of having a spectrum free from PU transmissions and the threshold
value. This work is further extended in [43] which considers a generalized
fading model termed α − κ − µ, which fits experimental measurements
well. The study in [44] allows for Nakagami fading, Gaussian noise and
shadowing, while the received signal follows a Gamma distribution because
the detector works for very few signal samples (such that cannot be assumed
to have Gaussian distribution). An analysis of the detector’s performance in
deriving the test statistic was performed using different values of the power
on which the samples are raised as they are summed (a p-norm detector).
A generalized ED has been proposed in [45, 46] for different types of
fading – mixed distribution of Gamma-distributed variables, Nakagami and
Rice distributions. Again the test statistic is compiled from a very small
number of samples.

4.2 Cyclostationary Detectors

The algorithms of this type are an object of widespread popularity in the
context of spectrum sensing in cases where a high detection probability is
required at low SNR (<0 dB). In addition, the number of samples required to
achieve reliability, is much smaller than that of the ED. These advantages are

2It characterizes the extent to which a CR device contributes to the utilization of the unused
frequency resource.
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Figure 5 Generalized scheme of the operations in cyclostationary detection-based spectrum
sensing.

inherent for this detection technique, which takes advantage of the presence
of characteristic cyclostationary features in communication signals. Noise
differs from the PU signal in the sense that it does not contain these features
due to its non-harmonic structure. Most often, these cyclostationary features
are the time delay τ and the cyclic frequency α, which are determined by
the structure of the carrier signal, i.e. their values through standards. These
features are maintained even if the noise level is much higher than that of
the signal. Thus, the decision will be made on the basis of their presence or
absence. In general, the test statistic Λτ (y) of the cyclostationary detector
(CD) is defined as the autocorrelation function (ACF) of the received signal
samples:

Λτ (y) = |Ry(τ)|2 =

∣∣∣∣∣
N−τ−1∑
i=0

y[i]y∗[i+ τ ]

∣∣∣∣∣
2

(5)

The structure comprised of the general building blocks of this detector are
given in Figure 5.

Theoretically, the ACF of the noise will be 0, but in real cases and
simulation studies, its value is likely to be close to 0, but still higher. For this
reason, as with the other detectors, a decision threshold is introduced, most
commonly defined by the CFAR method. Different ACF variants are applied
to CDs to achieve the right trade-off between computational complexity and
efficiency. One such test statistic variant is the absolute value of the sum of
the covariance matrix of the received signal [49]. The threshold used for the
decision on spectrum occupancy is derived through the proposed Covariance
Absolute Value model.

The spectral correlation function (SCF) is the most commonly applied
([50–52]) test statistic for one (single cycle, SC) or multiple cyclic frequen-
cies (multi-cycle, MC) of the PU signal. SCF is composed of the signal power
for one or more cyclic frequencies αk, i.e. the cyclic autocorrelation function
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(CAF) at τ = 0, which is a variant of the ACF [53]:

ΛSC(y) =
∣∣Rαy (τ = 0)

∣∣2 =

∣∣∣∣∣
N−1∑
i=0

y[i]2e−j2παn

∣∣∣∣∣
2

,

ΛMC(y) =

∣∣∣∣∣
Nα∑
k=1

Rαky (τ = 0)

∣∣∣∣∣
2

, (6)

Usually, the Gaussian noise assumption for expressing PD and the threshold
value, holds. The [50] method offers a cooperative spectrum sensing scenario
in which each SU in a CR network calculates the SCF at one of the PU’s
cyclic signal frequencies, with the decision center combining their results to
assess spectrum availability. In this way, the computational complexity of
the SCF is reduced in proportion to the number of devices on the network.
This study, in addition, considers the effect of log-normal shadowing. As an
alternative, to achieve lower computational complexity, instead of SCF, the
CAF can be used for a standard signal cyclic frequency and time delay [53]:

Λτ,α(y) = |Rαy (τ)|2 =

∣∣∣∣∣
N−τ−1∑
i=0

y[i]y∗[i+ τ ]e−j2παn

∣∣∣∣∣
2

(7)

Aside from the Gaussian distribution of the noise, [53] considers Rayleigh
fading. The study in [54] examines, in addition to the noise, the influence of
flat fading and defines test statistics through the coherent spectrum function,
which is a normalized form of the SCF. The method proposed in [55]
examines the CD influenced by log-normal shadowing. In [56], the signal is
pre-processed through compressed sensing in order to detect the broadband
signal more effectively. Instead of an explicitly defined threshold, this study
utilizes the extraction of CAF at specific cyclic frequencies. If the highest
values of the CAF are the same or close, the PU is present.

4.3 Eigenvalue-based Detectors

In essence, such approaches are based on various kinds of matrix decom-
position of the received samples. Its advantage is that it does not need a
priori information on signal and noise distribution, while at the same time
the mathematical description of the detector is simpler than that of the
CD. The disadvantage of the eigenvalue-based detectors (EBD) is the need
for performing matrix operations which have considerable computational
complexity.
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Figure 6 Generalized scheme of the operations in eigenvalue-based spectrum sensing.

The test statistic’s derivation for this type of detector is based on the
following operations.3 The vector of received N samples is divided into L
equal parts that form the Y matrix of dimensions L × NL, where NL = N

L
[39]:

Y =


y1[0] y1[1] y1[2] · · · y1[NL]
y2[0] y2[1] y2[2] · · · y2[NL]

...
...

...
...

...
yL[0] yL[1] yL[2] · · · yL[NL]

 (8)

The covariance matrix of Y is defined as follows [39, 57]:

Rr =
1

NL
YY∗ (9)

The test statistic of the EBD is formed by the eigenvalues of Rr. Generally, it
is defined as the ratio between the largest δmax and smallest δmin eigenvalues
(also known as Maximum to Minimum Eigenvalue method or MME):

Λδ(y) =
δmax
δmin

(10)

If this ratio is equal to 1, then that is because both eigenvalues contain just
the noise variance σ2n. In the alternative case, it will be higher than 1 and the
presence of the PU signal will be detected. The scheme of operation of the
EBD is illustrated in Figure 6.

The EBD approach is applied in [39, 58] but instead of the standard
assumption for the threshold equal to one, it is derived by the CFAR method.
In addition, a variant of the test statistics is introduced in which the average
signal power is divided by δmin (Energy to Minimum Eignevalue, EME).
Authors in [58] develop an optimal threshold for guaranteed values of both
PD and PFA and specific N (which is a function of the SNR). Gaussian
noise is assumed. In [59] a generalized detector model derived from the
Neyman-Pearson criterion for unknown values of the noise variance and the

3It is assumed that a CR device has only one receiving antenna, since the analysis of
multiple received signals is beyond the scope of this work.
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PU signal’s variance is investigated. The test statistic is composed of the ratio
between the arithmetic and geometric mean of the eigenvalues. The Gaussian
distribution and the presence of noise uncertainty are assumed in [60], where
the ratio between δmax and δmin is used to form Λδ(y). The study in [61]
examines the conditions of a correlated noise channel and a Rayleigh fading
using the EME and MME methods. Spectrum sensing is performed by using
the SNR adaptive approximation method. An algorithm based on finding the
sum of the principal components of Rr of real-time recorded signals, shows
better performance than the MME [62].

4.4 Matched Filter-based Detectors

This detector achieves optimal signal detection results, but the probability
density function (PDF) of the PU signal must be known a priori or the
receiver provided with a coherent demodulator. Despite this limiting factor,
the sensing process itself is considerably simplified in terms of computational
complexity compared to CD and EBD methods. In general, the a priori
information required for detection is the pilot signal xP . The Test statistic
and decision threshold are defined as follows [27, 63]:

ΛP (y) =

N−1∑
i=0

|y[k]x∗P [i]|,

λ = Q−1(P̄FA)
√
Pσ2n, (11)

where P is the average power of the PU signal, while Q−1(.) is
the inverse complimentary distribution function defined as Q−1(x) =
2
√
2

π

∫∞
2x exp(−t2)dt. The general structure of the MF-based detector is

described in Figure 7.

Figure 7 Generalized scheme of the operations in MF-based spectrum sensing.
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Figure 8 Generalized scheme of the operations in BD-based spectrum sensing.

The effectiveness of MF is shown in the study in [64], where apart
from detecting the presence of a signal, a distinction is made between the
power levels of the received signals. In addition, the matched filter shows its
superiority over ED in processing real recorded signals for a relatively small
number of samples in [36]. MF achieves a 90% detection probability even at
very low SNR levels (<–20 dB) for Gaussian noise assumption.

4.5 Blind Detectors

These detectors are not characterized by the need for specific a priori infor-
mation in order to perform their function. This makes them widely applicable
in scenarios where the receiver is not designed to operate in a predetermined
frequency range but must dynamically calculate the parameters of signals
with unknown distributions. These algorithms have a higher computational
complexity than most of the others due to the pre-processing required before
the test statistics are generated. The general operation scheme of the blind
detector (BD) is shown in Figure 8.

The approach in [65] applies an inverse Fourier transform and obtains
the cyclic spectral density of the CAF (which includes another Fourier
transform) to estimate the occupancy of the signal spectrum. The authors
in [66] propose a BD based on Fast Fourier Transform Accumulation for
orthogonal frequency division multiplexed (OFDM) signals. It involves the
decimation and separation of the signal into fragments on which a Fourier
transform is performed to estimate the SCF so that the CD-based sensing
can be applied. High-probability detection at low SNR is achieved in [67],
where the signal is pre-processed by the compressed sensing method. The test
statistic is formed by the symmetry index, which is defined as the average of
all cyclic frequencies. The threshold value is determined empirically. All of
these BD-based studies consider Gaussian noise.

4.6 Others

This category includes algorithms that apply test statistic determination
techniques which differ significantly from the other five types, often based
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on or combining two or more of them. The mathematical derivation of
these approaches differs significantly from the rest and reducing the feature
extraction tasks they solve to any of the more traditional categories would be
difficult. In view of this, their computational complexity also varies greatly.

A substantial portion ([34, 40, 52, 68–70]) of the algorithms in this
group, introduce a hybrid sequence of different spectrum sensing methods
and logical decision making operations. In [40], a hybrid method is proposed
that combines ED and CD. If the signal level is below a certain value, which
will result in a lower PD, then the CD is enabled to evaluate the spectrum
occupancy. Otherwise, the decision is made by the faster ED. Variants of this
approach are explored in [52, 70]. Similarly, [34] combines ED and EBD-
based methods whose test statistics are composed of the highest eigenvalue,
covariance, or MME. In relation to noise uncertainty, [68] proposes combin-
ing standard ED with a method which uses the Akaike information criterion
based on singular matrix decomposition. It will be utilized if the decision
made by the ED does not reach the desired reliability. The method proposed
in [69] combines ED, CD, and MF solutions with fuzzy logic (FL) to achieve
a higher detection probability. The result is converted to a numerical value to
be compared with the decision threshold.

Detection in Cauchy noise is examined in [71]. A constant threshold value
is determined by which to compare the differential entropy of the signal
samples (method for estimating the PDF). The detector is effective for low
number of samples (<100) and low value of the guaranteed PFA (<10%).
Wideband sensing is achieved for low SNR (<0 dB) through a multi-stage
Wiener filter in [72]. The test statistic is formed by the method of minimizing
the root mean square error. An alternative approach for wideband sensing is
presented in [73]. Compressed sensing based on wavelet transformation is
applied on the broadband signal, after which the compressed signal’s power
for 10 000 samples is compared to the threshold value. [74], a detector is
proposed that makes a decision on the basis excess and asymmetry of signal
samples (Jarque-Bera test statistic), achieving effective detection for very low
SNR levels (<−15 dB) and the presence of Rayleigh fading.

5 Summary and Challenges for Future Research

The hereby presented review outlines several tendencies in recent local
spectrum sensing research. They are as follows:

• Prevalent standard assumptions for the channel model – the vast majority
of published works on spectrum sensing do not consider complex fading
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channels with non-Gaussian assumption for the signal and noise due
to the increased difficulty in the test statistic’s derivation. There is
some evidence [75–80] that empirically-collected measurements are not
always described properly by Nakagami/Rayleigh fading and Gaussian
noise. In addition, any of the examined detector types is best suited for
a particular application due to complexity in mathematical definition,
computational requirements, need of a priori information and implemen-
tation considerations. However, most of the studies are based on the ED
due to its speed which is essential in CR development.
• Explicit definition of a numerical threshold as a decision-making logic –

it is the almost universally used metric for spectrum occupancy deter-
mination. The main difficulty in practice, is defining its value which
is based on the noise power. In addition, depending on the spe-
cific use-case, it may be necessary for the threshold to be adaptively
changed to accommodate for interfering signals from the PU’s point
of view.
• The execution speed of the sensing algorithm and the factors that deter-

mine it, are very rarely discussed. A typical aspect of every detection
approach is the optimization of its two conflicting main parameters –
PFA and PD. This is a central problem in designing the sensing algo-
rithm because its solution is usually dependent on the choice of decision
threshold and tS which also need to be optimized for efficiency.

Based on this outline, the following research directions can be defined:

• Inclusion of more general channel models in the development of signal
detectors is necessitated by the realistic propagation environment which
is characterized by spatial correlation of the surfaces and non-Gaussian
interference created by unwanted transmissions of electronic equip-
ment. This is specifically important for ED-based algorithms because
they rely on noise estimation to form their test statistic. Additionally,
recent findings demonstrate that the wireless channel in UDNs differs
much from the traditional cellular one. It is characterized by significant
increase in interference power from neighboring access points as their
densification increases, and non-linear dependency of the path loss from
the distance [81].
• Further study is needed to determine the choice of efficient detector in

dense 5G systems such as UDN and D2D. Thus is the analysis expanded
from sensing in the time and frequency to include the spatial domain
[82]. It plays a role in dense CR networks because identifying spectrum
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holes at a certain location leads to a greater protection of the PU against
unwanted interference.
• The recently developed non-orthogonal multiple access (NOMA) has

been recognized as a very promising solution for spectrum sensing in
future CRs. It allows both overlay and underlay deployments of a CR
network due to multiplexing the user traffic in the power domain in
addition to time and frequency [83]. The problems related to finding
an optimal balance between the conflicting detection parameters (PFA,
PD and tS) are still relevant for NOMA-based CR systems [84]. This
naturally leads to the efficiency-accuracy trade-off problem [85, 86]
which has been an object of intensive research effort in the recent years.
It expands the optimization task to include the transmission period of
the SU if the spectrum is unoccupied.
• Identification of the signal’s source – it can extend the sensing function

to allow for classification of the signal’s modulation through machine
learning-based algorithms. Thus, the transmitter’s type or location can
be identified. While reliable detection is required at very low SNR,
classification may only be necessary for SNR levels over 0 dB to detect
interferers from the point of view of the PU, or other CR users. This
clarification is motivated by the significant decline in accuracy of the
available classifiers when the noise levels are close to or higher than that
of the signal [87, 88].
• The CR system’s reliance on spectrum occupancy estimation makes it

vulnerable to attacks at the physical level. If an attacker device with cog-
nitive capabilities is not properly identified, it may attempt to eavesdrop
the SU’s communications or disrupt them by exploiting the spectrum.
Physical layer security can be complemented by the signal sensing and
classification functionality, or during transmission [89].
• Efficient spectrum regulation through long-term monitoring – in addi-

tion to the usual operation of CR devices, spectrum sensing is also
important for analysis of large volumes of recorded signal data (Big
Data RF analytics) for the purpose of obtaining a better depiction of
the spectrum usage in a certain area [90, 91]. Thus, poor utilization,
unwanted transmissions and the reasons for their occurrence can be
identified much more accurately. The cognition-enabled equipment with
its capability to estimate the location and type (from which other param-
eters of the signal’s source can be inferred because they will likely
be standardized) of the transmitter can greatly benefit the long-term
spectrum monitoring service.
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This review discusses the potential scenarios in which CR functionalities
can be integrated into the future 5G networks. Through such technological
convergence, these systems can be properly deployed alongside the legacy
communication standards which occupy the bands under 6 GHz. As an
enabler for this integration, the major types of spectrum sensing methods
as well as the characteristics of their system models are also specified. As a
consequence of the observed trends, the areas for future advancement of local
spectrum sensing are outlined.
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