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This chapter describes the fundamental components of the Software
Development Kit architecture developed in Daedalus and its integration in
IEC-61499 paradigm, presenting the methodologies selected to face the
issues related to the control of aggregated Cyber Physical System (CPS).
The aim of the Software Development Kit is to help automation system
engineers to synthesize Hybrid Model Predictive Control for aggregated CPS
environment.

The guidelines of future development steps of the tool are described. The
SDK is composed of three main parts: On-line System Identification (OIS),
Online Control Modeller (OCM) and Online Control Solver (OCS). The first
one is dedicated to automatically infer the system’s model of aggregated
CPS from input and output measurements. OIS absolves two functions: in
a preliminary design phase, it is used in order to estimate a first model of
the system; successively during execution, it works in real time for tuning
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the parameter of the system in relation to input and output measurements.
The OCM is the main component of SDK and it contains direct interface
to modify and customize the parameters of controller to be designed, like
observer tuning, prediction horizon and so on. Moreover, the OCM is the
synergic element that orchestrate the work flow of OCS, which performs the
calculations during execution. The main computational aspects are related to
the requirements of the solution of an optimization problem in the reced-
ing horizon fashion: in each step, an MIQP problem must be solved in
the cycle time: an adequate solver is fundamental to realize Hybrid Model
Predictive Control.

7.1 Introduction

Part of the Daedalus project is dedicated to the design and implemen-
tation of the Software Development Kit (SDK) that provides helpful
tools to develop, implement and deploy advanced control system within
a distributed IEC-61499-based control framework, dedicated to automation
system engineers.

To such an aim, optimal orchestration of distributed IEC-61499
application is investigated and advanced control techniques as optimal control
and model predictive control are considered.

The main features of aggregated Cyber Physical System (CPS) are
evaluated to realize an advanced optimal control system: it exhibits, in
particular, both continuous and discrete variables to represent the aggregated
CPS. Straightforwardly, Hybrid system will be considered, and the various
modelling techniques are investigated in Section 7.2.

Another important feature of optimal orchestration of aggregated CPS is
the compliance with system constrains on both output variables, i.e. physical
limits, and manipulated variables, e.g. actuators saturation and limits. The
optimization of a measure of the performance of the system, i.e. the min-
imization of the cost function, is now a well-established approach in the
academia and in certain industries like the chemical and aerospace indus-
tries, which have to be widespread in every industrial sector. Therefore,
optimization-based control algorithms are investigated for the SDK. Among
these, Model Predictive Control stands out as the most promising, considering
that Receding Horizon approach offers a way to compensate for disturbances
on the system and model mismatch.
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Following the last decades of development of control theory, the most
suitable solution for above requirements and objectives is Hybrid Model
Predictive Control (Section 7.3.1). Indeed, this family of control method
guarantees in an implicit manner the respect of constrains and manages multi-
objectives control in an optimal way, thanks to Quadratic Programming solver
(details will be reported in further sections).

The aim of this chapter is to introduce and carry out an in-depth analysis
of the main components of the SDK of Daedalus. Figure 7.1 shows the idea of
optimal hybrid orchestrator for aggregated CPS. It is divided into three main
subcomponents: Online System Identification tool, Online Control Modeller
and Online Control Solver, which are discussed in the following sections.

Figure 7.1 Schematic representation of Hybrid Model Predictive Control Toolbox.
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7.1.1 Hybrid Model Predictive Control SDK

The proposed reference framework is composed of three main parts (shown
in Figure 7.1). The first one is the On-line System Identification (OIS) tool,
which is able to deduce the model of complex Multi-Input Multi-Output
(MIMO) hybrid system. This data-driven tool uses input/output variables to
extrapolate mathematical model of the system and it is based on iterative
real-time procedure, and more details are reported in Section 7.4. The second
block is the Online Control Modeller (OCM), where, given a model from
the OIS, an optimal predictive controller able to orchestrate the aggregated
Cyber-Physical Systems is synthesized. The OCM is developed based on
latest paradigm of HMPC, explained in depth in Section 7.3. The last one
is Online Control Solver (OCS) that is strictly related to OCM. This solver
must be able to deal with Mixed-Integer Quadratic Problem (MIQP), to solve
optimal predictive control problem for hierarchically aggregated CPS with
quadratic function cost.

To such an aim, the proposed framework is developed to help control
engineer to easily create an optimal controller for complex distributed CPS
architecture. Each component will be developed with platform-independent
software (see Section 7.1.2), which must be flexible and easy to use in order
to create a standard procedure that deals with hybrid complex systems. More-
over, the resulting SDK will be integrated in a distributed IEC-61499-based
control architecture (see Figure 7.2).

As analysed in Section 7.3.3, the computational aspect cannot be
negligible; indeed, Mixed Integer Programming problem requires high
computational power to be solved in runtime. This is more critical when com-
plex systems require large controller bandwidth (Hz order): at 1 Hz, the OCS
has to solve a Mixed Integer Problem in less than a second. An additional
problem is the non-deterministic solving time of MIP. For the robustness of
the modelled controller, it is important to evaluate in simulation the worst
case of execution time and use a safety factor to evaluate a realistic and safety
bandwidth of the controller. To face this problem, virtual commissioning is
helpful: it is indeed possible to test control performance and its feasibility in
a virtual environment and tune all control parameters.

7.1.2 Requirements

The investigation on orchestration of hierarchically aggregated CPS
controller problems had led different needs. The basic development tools,
to be compliant with IEC-61499 [1] and to have a platform-independent
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Figure 7.2 Conceptual map of used software. In the centre, there is object-oriented pro-
gramming language that better supports an easy development and management between
different application’s needs.

toolbox, seem to be an object-oriented programming language used in cooper-
ation with nxtControl. The nxtControl respects each paradigm of IEC-61499
and allows to build easily distributed control system using function blocks
(for more details, see Section 7.5). The possible choice of object-oriented
programming language allows to have a wide range of tool easily integrated
in a single development environment. Object-oriented programming is easy
to use for the purpose of this SDK, and this programming paradigm allows
to develop effortlessly scalable and flexible software, independently from
the application.

The investigated programming languages are Python, C++ and JavaScript.
Even if the natural choice for a direct integration with nxtControl is C++,
Python environment allows a better abstraction layer and enables easily the
integration of a wide range of tools and libraries developed for optimization
solver and control system. Moreover, nxtControl is able to compile Python
with a wrapping toolkit, the computational time waste with the wrapper is
negligible with respect to the computational time due to Quadratic Problem
solver. This aspect conveys that choice of programming languages is not to
be restricted to a specified one.
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Another important benefit of possible Python’s choice is availability of
modelling and development environment of MIP solvers, both commercial
and free-licence for it. Gurobi [2] and CPLEX [3] are the most powerful and
optimized MIP commercial solvers [4], which have dedicated development
and modelling environments for Python, also in C++. These environments are
easy to configure and more important; they are easily integrable with hierar-
chically aggregated CPS controller. One limitation of industrial application is
the license cost, but the difference of solving time and robustness respect free-
ware is not negligible. Regarding this, further investigation and benchmark
will be done.

First release of the SDK will consider a centralized control scheme,
where the on-line system identification tool returns the system’s model.
Straightforward Online control modeller builds up, based on identified model,
a hybrid model predictive controller for the system with desired config-
uration. Finally, the proceeds controller sets up the online control solver
and performs the desired performances respecting the tuning parameters
chosen by the user, and moreover managing little modelling mismatching
and disturbance on input and measurements.

Figure 7.2 shows the framework of the proposed toolbox. It is possible
to see the different MIP solver and the Online Identification toolbox of the
SDK; on the right, the different objective platforms where proposed Hybrid
Model Predictive Controller will work are shown.

7.1.3 Hybrid System

The behaviour of physical phenomena can be represented by mathematical
models. When these models exhibit continuous variable (like differential
equation) and discrete/logical variables (like state machine), they are called
Hybrid System Models. Every physical phenomenon can be described at
different levels of detail; in applied science, it is possible to find various
models of the same process, in relation of what the model had to describe.
These models should not be too simple or too complicated. To formulate
these models, we describe with sufficient level of details the behaviour
of the physical phenomena efficiently by computational analysis point of
view. In the following sections, the report analyzes the trade-off between
simple and computational-light model with respect to more complex and
computational-heavy model.

In the last three decades, several computer scientists and control the-
orists have explored models describing the interaction between continu-
ous dynamics and logical components [5]. Such heterogeneous models
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Figure 7.3 Subsequence approximation of a non-linear system.

are denoted as hybrid models; they switch among many operating modes
described by differential equation, and mode transitions are triggered by
events like states crossing pre-specified thresholds.

Another kind of system that is agreeably represented by hybrid model is
non-linear system. Indeed, it is possible to represent non-linear system by a
piece-wise linearized model, which consists in a sequence linearization of
the system’s model around consecutive operating points (see Figure 7.3).
This kind of model representation is presented in Section 7.2.1, where its
behaviour is also shown. Indeed, the relationship between every working
mode is linear, whose slope changes in each region; this is called linearized
model of non-linear system and can be represented like a Hybrid system that
switches its operating mode.

7.1.4 Model Predictive Control

Model Predictive Control (MPC) arose in the late 1970s and has developed
continuously since then. The term MPC does not correspond to specific
control strategy, but fairly a wide range of control methods, which use
mathematical model of the process to obtain control signal by minimizing
an objective function.

Model Predictive Control is an advanced control technique that deter-
minates the control action by solving on-line, at every sampling time k,
an open-loop optimal control problem over a p-horizon (Equation (7.2)),
based on the current state of the system at k-sample. The optimization
generates an input sequence for the specified time horizon p. However, only
the first calculated input is applied to the system (Figure 7.4).
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Figure 7.4 Model Predictive Control scheme.

Figure 7.5 Receding horizon scheme.

The ideas at the basis of predictive control methods are:

• Explicit use of model to predict the process output evolution at future
time instants (horizon).
• Calculation of control sequence minimizing an objective function.
• Receding strategy. As shown in Figure 7.5, at each sample time, the

control computes the optimal sequence of control signal that minimizes
the objective function along the horizon, but only the first control signal
is applied to the system. This routine is called receding horizon strategy.

There are many successful applications of predictive control in use nowadays
from process industry [6] to robots [7] through cement industry, chemical
industry [8] or steam generation [9]. The good performance of these applica-
tions shows the capacity of the MPC to achieve highly durable and efficient
control systems.
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Moreover, MPC allows to adjust simultaneously all inputs to control
all outputs, while accounting for all process interactions. As a result, MPC
can take actions that improve plant performance that a more skilled and
experienced operator can achieve.

Moreover, Model Predictive Control is able to consider limitations or
constraints of the system, like saturation of actuators and/or physical con-
straints on output or state variables, directly in the problem formulation.
This behaviour is a fundamental improvement that respects classical optimal
control (like Linear Quadratic Regulator); in this way, the controller is able to
calculate the optimal sequence of control actions that minimize a given cost
function, respecting each specified constraint.

The most useful model formulation is the state-space form. This for-
mulation is very helpful in both identification problem and optimal control
problem. This modelling environment allows to easily relate inputs, outputs
and states variable. In discrete time space for continuous variables, the
formulation is (Equation (7.1)):{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(7.1)

where x (k) in Rn is a vector of the state variables, u(k) in Rm are
the input variables and y(k) in Rq are the output variables. The matrices
A, B, C and D have proper dimensions. In MPC framework, the control
goals, such as the tracking of a reference or the satisfaction of constraints,
are formulated as a numerical optimization problem. In most cases, this
problem is represented as a Quadratic programming (QP) problem. For such
an optimization problem, the cost function is the sum of individual terms
that express various control requirements. The objective function is generally
composed as follows (Equation (7.2)):

J ,
P∑
i=1

‖(y(k+i)−yr)‖NQy
+

P∑
i=1

‖(u(k+i)−ur)‖NQu

+

P∑
i=1

‖(4u(k+i))‖NQ4u
(7.2)

where N={1, 2,∞} represents norm-type that defines the type of minimiza-
tion problem. A linear problem is defined if N={1,∞} and quadratic if
N= 2. P is the prediction horizon that will be considered. Qy,u,4u are
positive defined matrices, also called weight matrices of different objectives
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Figure 7.6 Flow of MPC calculation at each control execution.

of the controller: thanks to these parameters we can tune the controller. For
example, if it is not important to control the first output y1 , it is possible to
easily set Qy1= 0, and the same action will be applied for other weights.

Overall, the flow of computation for a typical MPC problem is repre-
sented in Figure 7.6.

7.2 Hybrid System Representation

During the last decades, Hybrid system arose naturally its interest in the
scientific and research community. Many applications of hybrid system mod-
elling in key areas were presented, such as automotive system [10] or power
system [11].

A demonstration of considerable interest in hybrid system is the number
of periodic conferences and entire session in major conferences completely
devoted to them.

Moreover, this research field is relatively open to new advances. New
approaches to mathematical representation of hybrid system have just
appeared and a growing interest in applications is straightforward.

Hybrid systems are dynamic systems with both continuous states,
discrete-states and event-variables. Consequently, a hybrid system provides
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a perfect structure to represent large plant of industrial process, which can
be seen globally like an agglomeration of subsystems working in different
modes, switching along the plant operation points. For example, the mathe-
matical car’s model with gear shift has different traction force curves related
to selected gear [12]. To consider these different dynamics behaviour in a
unique model, hybrid system modelling is mandatory. Moreover, hierarchical
systems can be modelled as hybrid, in which lower components are described
by continuous variables and higher-level blocks are governed by logic or
decision modules.

Different kinds of models can be used to describe hybrid system. For
control purpose, hybrid modelling techniques have to be descriptive enough
to capture the behaviour of the interconnections between logic components
(automata, switches, software code) and continuous dynamics (physical
laws). Simultaneously, the model must to be simple enough to solve analysis
and synthesis problems.

The state of the art of hybrid system modelling can be summarized
in two main groups (Figure 7.7): the more used piecewise affine (PWA)
system [13], mixed logical and dynamical (MLD) models [14] and hybrid
automata (HA) [15]; and less used linear complementarity (LC), extended

Figure 7.7 Schematic representation of hybrid system.
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linear complementary (ELC) system and max-min-plus-scaling (MMPS)
systems [16].

In detail, as proved in [16], all those modelling frameworks are equivalent
and it is possible to describe the same system with models of each class.
This characteristic is useful, for example, as each formulation offers some
advantages in one particular situation: MLD framework is the best for the
optimization of the system, while stability and robustness are more easily
proved in a PWA formulation.

Hybrid system modelling allows to describe a variety of different kinds
of systems, for example, it is possible to deal with complex system like
switched dynamics system. Moreover, a hybrid model can describe the com-
plete dynamics of the system and consider different aspects of the same
system that works in different ways. For example, when a robot works in a
cooperative environment, this type of modelling technique is able to consider
each different dynamic, like free motion, contact with operator, different
payloads applied at end-effector, etc.

Another kind of system that can be modelled as hybrid system is non-
linear system. A common method to face non-linear system consists of piece-
wise linearization around consecutive operating points. The output of this
procedure is a PWA model (see Equation (7.3)).

The main advantage of using this kind of modelling system to syn-
thesise a Model Predictive Control (MPC) is that the controller, when is
calculating predicted outputs, is able to consider each different dynamics
included in the model and optimize the control action in order to minimize the
functional cost (i.e. minimize energy consumption, control action magnitude
or tracking error).

7.2.1 Piece-Wise Affine (PWA) System

PWA systems representation is the most studied form of hybrid systems.
A PWA system is defined as (Equation (7.3)):{

x(t+ 1)=Aix(t)+Biu(t)+f i

y(t)=Cix(t)+gi
for [x(t), u(t)] ∈ χi (7.3)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rr denote the state and the input
and output vectors. {χi}si=1 is a convex polyhedral partition of the states and
input space (i.e. see Figure 7.8). Each χi is given by a finite number of linear
inequalities.
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Figure 7.8 Polyhedral partition representation of a hybrid model. It is possible to see 13
partitions that divide the input state space into 13 pieces-wise sub-systems (using MatLab
2017b).

7.2.2 Mixed Logical Dynamical (MLD) System

In ref. [14], a new type of hybrid systems representation has been defined,
in which logic, dynamics and constraints are integrated.

The MLD description is (Equation (7.4)):
x(k+1)=Ax(k)+B1u(k)+B2δ(k)+B3z(k)

y(k)=Cx(k)+D1u(k)+D2δ(k)+D3z(k)

E5 ≥ E1x(k)+E2u(k)+E3δ(k)+E4z(k)

(7.4)

where x(k) = [xTr (k), xTb (k)] with xr(k) ∈ Rnr and xb(k) ∈ {0, 1}nb ;
y(k) = [yTr (k), yTb (k)] with yr(k) ∈ Rmr and yb(k) ∈ {0, 1}mb ; u(k) =
[uTr (k), uTb (k)] with ur(k) ∈ Rqr and ub(k) ∈ {0, 1}qb . z(k) ∈ Rrr and
δ(k) ∈ {0, 1}rbare auxiliary variables that are used to represent the switching
between different operating modes.

The inequalities have to be interpreted component-wise, and they define
the switching conditions of different operating modes. The construction
of this inequality is based on tools able to convert logical facts involving
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continuous variables into linear inequalities (for more details, see [17]). This
tool will be used to express relations describing the evolution of systems
where physical laws, logic rules and operating constrains are interdependent.

Equation (7.4) commits linear discrete-time dynamics for the first two
equations. It is possible to build up another formulation describing continuous
time version by substituting x(k + 1) by x(t) or a non-linear version by
changing the linear equation and inequalities in (7.4) to more non-linear
functions. However, in this way, the problem becomes hard tractable by a
computational point of view, and more in general, the MLD representation
allows to describe a wide range class of systems.

MLD models are successful thanks to good performance in computation
aspect. The main claim of their introduction was the easy handling of non-
trivial problems, for the formulation of Model Predictive Control for hybrid
and non-linear system. This formulation performs well when it is used
together with modern Mixed-Integer Programming (MIP) solver for synthe-
sizing predictive controller for hybrid systems, as described in Section 7.4.1.

Note that the class of Mixed Logical Dynamical systems includes the
following important system classes:

• Linear systems;
• Finite state machines;
• Automata;
• Constrained linear systems;
• Non-linear dynamic systems.

In fact, the next section introduces the equivalence between different hybrid
system representations and it underlines the potential of MLD models (in
Figure 7.9, it is possible to see the interconnection between MLD and other
system representation models).

Figure 7.9 Graphic scheme of the links between the different classes of hybrid. The arrow
from A to B classes shows that A is a subset of B.
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7.2.3 Equivalence of Hybrid Dynamical Models

In ref. [16], there are different demonstrations of equivalence between each
hybrid system model, summarized in Figure 7.9. For some transformations,
additional conditions like boundedness of the state and input variables or
well-posedness have to be made. Typically, the more frequent condition
is that the polyhedral partition of input-state space must be univocally
defined, i.e. with no overlapping between different χi. These requirements are
fundamental in that case where, for example, in PWA or MLD, the modelling
framework does not allow overlapping of sub-set of state-input space.

These equivalences are fundamental to demonstrate the properties of
different hybrid models and commonly use stability analysis on a single
representation, translating its effects on another modelling system.

7.3 Hybrid Model Predictive Control

Dealing with control of hybrid systems is an open field of research in both
academia and industrial world. Model predictive control based its main
advantage on the prediction of future outputs, which requires a model that
considers the evolution of the system. In case of hybrid systems, discrete
variables must be included. For this aim, the modelling frameworks described
in Section 7.2 have to be considered.

7.3.1 State of the Art

Model predictive control was proposed for the first time in the late 1970s by
Richalet et al. [9], who predicted future outputs in a heuristic manner. During
that time, the application field of MPC was process industry, from chemical
to oil and gas extraction through pharmaceutical industries.

Since then, model predictive control has been extended to a wide range of
control problems. During the 1990s [18], the academics world was interested
on stability analysis, because it is a very challenging problem not only for
control engineers but also for mathematicians. Control engineers moved their
focus to large systems, where both continuous and discrete variables describe
the model of the system, therefore requiring a hybrid model predictive control
solution [14]. HMPC consists in a repetitive solution of a Mixed-Integer
Programming (MIP) problems, where variables could be both continuous and
discrete. If the objective function is quadratic, these problems are classified
as Mixed Integer Quadratic programming (MIQP) or Mixed Integer Linear
programming (MILP), if a linear objective function is used.



214 Model Predictive Control in Discrete Manufacturing Shopfloors

MILP and MIQP problems are much more difficult to solve than a linear
or quadratic programming problem (LP or QP), and some properties like
convexity are lost (see ref. [19] for a more detailed description).

The computational load for solving an MIP problem is a key issue, as a
brutal force approach consists of the evaluation of every possible combina-
tion. The optimal solution would be to solve every QP or LP related to all
the feasible combinations of discrete decision variables. The solution is the
minimum of all the computed solution of QP/LP problems. For example, if
all the discrete decision variables are Boolean, then the number of possible
LP/QP problems is 2ˆ(n b). Fortunately, there exists an entire research field
on this topic and nowadays, there is a wide range of commercial solvers able
to deal with MIP problem in a very fast way. These software are mainly based
on branch and bound methods [20]; the most known and used are CPLEX
(ILOG Inc. [3]), GLPK (Makhorin [21]) or GUROBI [2] for which APIs for
many programming languages are available.

The application of the Model Predictive Control arose in the early 1990s.
One of the first fundamental studies was made by Bemporad and Morari [14]:
they proposed a rigorous approach to mathematical modelling of hybrid sys-
tem where it is possible to obtain a compact representation of system called
Mixed Logical Dynamical (MLD, see Section 7.3.2). Then, following the
optimization step, it is possible to synthesize an optimal constrained receding
horizon control. This methodology is helpful to optimize and orchestrate both
large systems with mixed-variables and non-linear systems linearized around
sequential operating points.

As in birth of MPC, the first implementation was in the field of refinery
and chemical process. In these fields, Model Predictive Control was already
a standard, and the possibility to build up a unique mathematical model
that represents the whole system, like plant with all its components, and
synthesize a unique controller able to find the optimal solution that respects
every specified constrain was a revolution. In the next section, we deeply
explore the issues and limits of Hybrid Model Predictive Control, which
are roughly synthesizable in computational time and computational power.
In that period, the solution of this problem was overcome by using off-
line optimization, also called Explicit MPC. This control method is able to
properly work only in a predetermined range of variable states: in fact, the
on-line optimization was replaced by an off-line optimization, summarized
in a lookup table. Using this methodology, the application of Hybrid MPC
could be extended to mechanical and mechatronics system, where the cycle
time can be very small. Some applications are summarized in refs. [10–12].
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Indeed, in refinery and chemical process or more generally in process
industry, the sampling time of the controller is in minutes-order. Since the
solution of Mixed-Integer Programming problem is feasible, in these fields, it
is used as industrial standard. However, in the last two decades, from ref. [14],
the computational power of embedded micro-processor or Industrial PC has
grown exponentially, as Moore’s law said, and the commercial MIP solvers
increase their “power” dramatically. These evolutions allow to rethink to
Hybrid MPC with on-line optimization applied to fast system, with sampling
time in the range of a few seconds. The aim of this study is to build a standard
method to synthesize Model Predictive Control for hybrid system (aggregated
CPS too) and have the opportunity to test a possible on-line execution of
the controller, in order to understand the minimum sampling time of the
controller. This possibility is a killer-feature in refinery and chemical process
where Hybrid MPC already is in use, but there is not a powerful and standard
tool able to help control’s engineers to design HMPC for process industry.
Otherwise, in the mechanical and mechatronics system control field, this tool
can be revolutionary because it simplifies the design of the controller and
standardizes it: in this way, the focus to realize a feasible controller is moved
on MIP solving time. In addition, the designer can check in a meticulous,
but fast, way the feasibility of the Hybrid Model Predictive Control and
its performance.

7.3.2 Key Factors

In the last decades, since the introduction of MPC in control theory, a wide
variety of application has been presented. All these applications are related
to notable capabilities of fitting the control goals. Indeed, this methodology
is able to realize very smooth and precise control. Moreover, MPC is capable
of being tuned in a straightforward way in relation to desired performance
of the system. As described in Section 7.2, a typical function cost contains
different weights, which offer the possibility to tune the performance of
the controller, easily to tune also for non-technical people. Moreover, the
definition of constrains is direct in the optimization problem and it is simple
to impose constraints on Manipulated Variables (MVs) and Output Variables
(OVs), which means limits on actuator saturation, dynamical constrain on
actuators and physic limits of the controlled system.

Summarizing the benefit of Model Predictive Control:

• Most widely used control algorithm in material and chemical processing
industries [22];
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• Increased consistency of discharge quality. Reduced off-specs prod-
ucts during grade changeover. Increased throughput. Minimizing the
operating cost while meeting constrains (optimization, economic) [23];
• Superior for process with a large number of manipulated and controlled

variables (multivariable, strong coupling) [24];
• Allows constraints to be imposed on both MVs and CVs. The ability to

operate closer to constraints and over those (soft constraints);
• Allow time delays, inverse response, inherent non-linearities (difficult

dynamics), changing control objectives and sensor failure (predictive);
• Optimal rejection to modelling error and disturbances;
• Multi-objectives control technique [25].

7.3.3 Key Issues

The basic issue of Hybrid MPC, and MPC in general, is related to the
computational time needed to solve in real time the optimization problem.
Indeed, when dealing with a large and fast system, the model of the system
becomes really complex and the required closed loop time very precise and
the online optimization is not achievable. In order to minimize the problem
caused by large system, a pre-stored control allocation law can be used to
avoid increased number of decision variables and increased solving time.
This technique is known as Explicit Model Predictive Control [26], where
the controller creates a look-up table during off-line simulation and uses it
during the execution time. This method is able to avoid the main drawback of
MPC removing the optimization procedure that is very time-consuming. This
benefit enables the use of MPC, and mainly Hybrid MPC, inside application
with very high sampling rates.

Another important issue is the difficulty to demonstrate the robustness of
the control respect to the classical robust control technique like H ∞ [27].
A possible solution of this issue is to couple with the MPC controller an
Online system identification tool, as it is shown in Errore. L’origine riferi-
mento non è stata trovata., that is able to realize a more robust control. This is
because the online system identification checks and tunes the system model
recursively, compensating modellation errors.

7.4 Identification of Hybrid Systems

The design of a hybrid model predictive controller needs to describe the plant
dynamics in terms of a hybrid linear model, which is used to simulate the
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plant behaviour within the prediction horizon. As known, there are basically
two ways to construct a mathematical model of the plant:

• Analytic approach, where models are derived from first-principle
physics laws (like Newton’s laws, Kirchhoff’s laws, balance equations).
This approach requires an in-depth knowledge and physical insight into
the plant, and in the case of complex plants, it may lead to non-linear
mathematical models, which cannot be easily expressed, converted or
approximated in terms of hybrid linear models;
• System identification approach, where models are derived and validated

based on a set of data gathered from experiments. Unlike the analytic
approach, the model constructed through system identification has a
limited validity (e.g., it is valid only at certain operating conditions
and for certain types of inputs) and it does not give physical insights
into the system (i.e., the estimated model parameters may have no
physical meaning). Nevertheless, system identification does not need,
in principle, in-depth physical knowledge of the process, thus reducing
the modelling efforts.

In this project, hybrid linear models of the process of interested will be
derived via system identification, and physical insights into and knowledge
of the plant will be used, if needed, to assist the whole identification phase,
such as choosing the appropriate inputs to perform experiments, choosing the
structure of the hybrid model (defined, for instance, in terms of number of
discrete states and dynamical order of the linear subsystems), debugging the
identification algorithms and assessing quality of the estimated model.

The following two classes of hybrid linear models will be considered,
which mainly differ in the assumption behind the switches among the
(linear/affine) time-invariant sub-models:

• Jump Affine (JA) models, where the discrete-state switches depend on
an external signal, which does not necessarily depend on the value of
the continuous state. The switches among the discrete states can be
governed, for instance, by a Markov chain, and thus described in terms
of state transition probabilities. Alternatively, in deterministic jump
models, the mode switches are not described by a stochastic process,
but they are triggered by or associated to determinist events (e.g. gear
or speed selectors, evolutions dependent on if-then-else rules, on/off
switches and valves). In this chapter, we will focus on the identification
of deterministic jump models. Stochastic models might be considered at
a later stage, only if necessary.
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Figure 7.10 Example of a three-dimensional PWA function y = f(x1, x2).

• Piece-Wise Affine (PWA) models, where the active dynamic affine
sub-model at each time instant only depends on the value of the
continuous state. More specifically, in PWA models, the (continuous)
state space is partitioned into a finite number of polyhedral regions
with non-overlapping interiors, and only one dynamical affine model
is associated to each polyhedron. PWA models can be used to accurately
describe dynamical systems that evolve according to different dynamics
depending on the specific point in the state-input space (e.g. a bouncing
ball or switching feedback control laws where the switches between the
controllers depend on the state of the system). Furthermore, thanks to
the universal approximation property of PWA maps, PWA models can
be also used to approximate non-linear/non-smooth phenomena with
an arbitrary degree of precision [28]. For the sake of visualization,
an example of a three-dimensional PWA function, defined over four
polyhedral regions of the state space, is plotted in Figure 7.10.

Note that Jump models and PWA models can be also combined to describe,
for instance, finite state machines (with linear dynamics at each mode), where
the mode transition depends on both an external event and the current value
of the continuous state, input and output.

In the following, we formalize the hybrid system identification problem
and discuss its main challenges. Finally, we provide an overview of the
algorithm that will be used and implemented in the DAEDALUS platform,
for the identification of both Jump Affine and PWA models.
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7.4.1 Problem Setting

Let us consider a training dataset of input/output pairs D = {u(t), y(t)}Nt=1

(generated by the plant we would like to model), where t denotes the time
index, u(t) ∈ Rnu and y(t) ∈ Rny are the input and output of the system
at time t, respectively, and N is the length of the training set. Our goal is
to estimate, from the considered training set D, a hybrid linear dynamical
model approximating the input/output relation of the system and described
in the input/output Auto-Regressive with Exogenous input (ARX) form
(Equation (7.5)):

ŷ(t)= Θs(t)x(t) (7.5)

where ŷ(t) ∈ Rny is the output of the estimated model, s(t) ∈ {1, . . . , s}
is the active mode at time t (i.e. the value of the discrete state at time t) and
x(t) ∈ X ⊂ Rnx is the regressor vector containing past values of the input
and of the output (Equation (7.6)), i.e.

x(t) = [1 y(t− 1)′ . . . y(t− na)′u(t)′u(t− 1)′u(t− nb)′]′ (7.6)

for some fixed values of na and nb, and Θs ∈ Rny, nx (with s = 1, . . . , s)
is the parameter matrix describing the linear sub-model associated to the
discrete state s.

The identification of a hybrid linear dynamical model (Equation (7.5))
thus requires: (i) choosing the number s of modes (i.e. size of the discrete
state); (ii) computing the parameter matrices Θs (with s = 1, . . . , s) charac-
terizing the affine sub-models; (iii) finding the hidden sequence of discrete
states {s(t)Nt=1} and (iv) in the case of PWA model identification, finding the
polyhedral partition of the regressor spaceX where the affine sub-models are
defined.

When choosing the dimension s of the discrete state, one must take into
account the trade-off between data fitting and model complexity. For small
values of s, the hybrid model cannot accurately capture the non-linear and
time-varying dynamics of the system. On the other hand, increasing the
number of modes also increases the degrees of freedom in the description of
model, which may cause overfitting and poor generalization to unseen data
(i.e., the final estimate is sensitive to the noise corrupting the observations),
besides increasing the complexity of the estimation procedure and of the
resulting model. In the identification algorithms, which will be developed
during the project, we will assume that s is fixed by the user. The value of
s (as well as the values of the parameters na and nb defining the dynamical
order of the affine sub-models) will be chosen through cross-validation, with
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a possible upper-bound dictated by the maximum tolerable complexity of the
estimated model or by some physical insight into the system.

Fitting-Error Minimization
The hybrid linear model structure in Equation (7.5) suggests to formulate the
identification of the hybrid models as the following fitting-error minimization
problem

min
{Θs}ss=1

{s(t)}Nt=1

1

N

N∑
t=1

‖y(t)−Θs(t)x(t)‖22 (7.7)

which aims at minimizing, over the parameter matrices Θs (with s =
1, . . . , s) and the discrete state sequence {s(t)}Nt=1, the power of the error
between the measured output y(t) and the model output ŷ(t)= Θs(t)x(t).

In the cases where the discrete state sequence {s(t)}Nt=1 is exactly known
(e.g. when s(t) is associated to the gear number in a car or to an external
switching signal controlled by the user, or, for PWA models, the partition
of the regressor space X is fixed a priori), the fitting-error minimization
problem (7.7) becomes a simple linear regression problem, and the parameter
matrices Θs (with s = 1, . . . , s) defining the affine sub-models can be easily
estimated through standard least squares, i.e.

Θ̂s = argmin
Θs

1

N

N∑
t=1

I{s = s(t)}‖y(t)−Θs(t)x(t)‖22 (7.8)

with I{s=s(t)} denoting the indicator function, i.e.

I{s=s(t)}=
{

1 if s=s(t)

0 otherwise
(7.9)

Namely, in computing an estimate of Θs through Equation (7.8), only the
regressor/output pairs (x(t), y(t)) such that s=s(t) are considered.

In the more general case, where the discrete state sequence {s(t)}Nt=1 is
not available, the identification of hybrid models becomes NP hard (strictly
speaking, Equation (7.8) is a mixed-integer quadratic programming prob-
lem, which might be computationally intractable, except for small-scale
problems). Furthermore, besides reconstructing the discrete1 state sequence
{s(t)}Nt=1 and estimating the parameter matrices Θs (with s = 1, . . . , s), the
identification of PWA models also requires to compute a polyhedral partition
of the regressor space X .
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7.4.2 State-of-the-Art Analysis

Several heuristics have been proposed in the literature to overcome the
challenges encountered in hybrid system identification (see [29, 30] for an
exhaustive overview of algorithms for identification of Jump Affine and PWA
models). Among the proposed algorithms, we have analyzed:

• the bounded-error approach [31], which addresses the identification of
Jump Affine models under the assumption that the noise corrupting
the output observations y(t) is norm-bounded (with known bound).
The goal is to estimate the set of all model parameters Θs, which
are compatible with the a-priori assumptions on the noise bound, the
chosen model structure and the observations. A polynomial optimization
problem is formulated, whose solution is approximated through convex-
relation techniques based on the theory of moments [32]. This approach
turns out to be very sensitive to outliers (i.e. noise outside the supposed
bounds) and conservative if a large bound on the noise is assumed.
Furthermore, it suffers from high computational complexity because
of the high computational burden of the employed theory-of-moment-
based relaxation;
• the sparse optimization-based approaches [33] and [34], which address

the segmentation of linear models by formulating an optimization
problem penalizing the fitting error and the number of switches among
the affine sub-models. Therefore, these methods are suited only for Jump
Affine systems with infrequent switches;
• the mixed-integer quadratic programming approach [35], which

addresses the identification of PWA systems using hinging-hyperplane
ARX models and piecewise affine Wiener models. A mixed-integer
quadratic programming problem is formulated (similar, but not exactly
equal to (6.3)) and solved through brunch-and-bound. Unfortunately,
the number of integer variables increases with the number of training
samples, limiting the applicability of the method to small-/medium-scale
problems;
• the two-stage clustering based approach [36], which can be used for

both Jump Affine and PWA model identification. At the first stage, the
regressor observations are clustered by assigning each data-point to a
sub-model through a k-means-like algorithm, and the affine sub-model
parameters Θs are estimated at the same time. In the case of PWA
identification, a second stage is performed to compute a partition of the
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regressor space X . Although ref. [36] is able to handle large training
sets, poor results might be obtained when the affine local sub-models
are over-parameterized (i.e. large values of the parameters na and nb in
the definition of the regressor (6.2) are used), since the distances in the
regressor space (namely, the only criterion used for clustering) turns out
to be corrupted by redundant, thus irrelevant, information;
• the recursive two-stage clustering-based approach [37], which is based

on the same two-stage clustering philosophy of [36], is suited for both
Jump Affine and PWA model identification. The proposed approach con-
sists of two stages: (S1) simultaneous clustering of the regressor vector
and estimation of the model parameters Θs (s = 1, . . . , s). This step is
performed recursively by processing the training regressor/output pairs
sequentially; (S2) computation of a polyhedral partition of the regressor
space through efficient multi-class linear separation methods. This step
is performed either in a batch way (i.e. offline) or recursively (i.e. on-
line). Note that stage S2 is required only for PWA system identification.
Because of its computational efficiency and the possibility to be used
both for batch and recursive identification, we have decided to use and
implement this algorithm in the DAEDALUS project. Further details on
this algorithm are discussed below.

7.4.3 Recursive Two-Stage Clustering Approach

The main ideas behind the recursive two-stage clustering approach pro-
posed in ref. [37] are presented in this section. As mentioned in the
previous paragraph, the hybrid system identification problem is tackled in two
stages: S1 (iterative clustering and parameter estimation) and S2 (polyhedral
partition of the regressor space, necessary only for PWA model estimate).

Stage S1 is carried out as described in Algorithm 1, where clusters and
sub-model parameters are updated iteratively, making the algorithm suitable
for online applications, when data are acquired in real time.

Algorithm 1 Recursive clustering and parameter estimation

Input: Observations {x(t), y(t)}Nt=1, desired number s of affine submodels,
initial condition for model parameter matrices Θ1, . . . ,Θs.

1. let Cs ← ∅, s = 1, . . . , s;
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2. for t = 1, . . . , N do
2.1. let es(t)← y(t)−Θsx(t),
2.2. let s(t)← arg mins=1,...,s ‖es(t)‖22;
2.3. let Cs(t) ← Cs(t) ∪ x(t);
2.4. update Θs(t) using recursive least-squares;

3. end for;
4. end.

Output: Estimated matrices Θ1, . . . ,Θs, clusters C1, . . . , Cs, sequence of
active modes {s(t)}Nt=1.

The main idea of Algorithm 1 is to compute, at each time instant t, the
fitting error es(t) = y(t)−Θsx(t)(s ∈ {1, . . . , s}) achieved by all the s local
affine sub-models, and select the local model that “best fits” the current output
observation y(t) (Steps 2.1 and 2.2). The regressor x(t) is then assigned to
the cluster Cs(t) (Step 2.3) and the parameter matrix Θs(t) associated to the
selected submodel is updated using recursive least squares (Step 2.4).

Due to the greedy nature of Algorithm 1, the estimates of the model
parameters Θs and the clusters Cs are influenced by the initial choice of the
parameters Θs. A possible initialization for the parameter matrices is to take
Θ1, . . . ,Θs all equal to the best linear model, i.e.

Θs = arg minΘ
1

N

N∑
t=1

‖y(t)−Θx(t)‖22, s = 1, . . . , s.

Moreover, the estimation quality can be improved by reiterating Algorithm 1
multiple times, using its output as an initial condition for the following
iteration. This can be performed only if the algorithm is executed in a batch
mode (offline). Alternatively, a subset of data can be processed in a batch
mode to find proper initial conditions. Then, Algorithm 1 is executed in real
time to iteratively process data streaming.

7.4.4 Computation of the State Partition

If a PWA identification problem is addressed, besides estimating the model
parameters {Θs}ss=1 and the sequence of active modes {s(t)}Nt=1, also a
polyhedral partition of the regressor space X should be found. More specif-
ically, let Xs (with s = 1, . . . , s) be a collection of polyhedra which form
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a complete polyhedral partition1 of the regressor space X . Each polyhedron
Xs is defined as:

Xs = {x ∈ Rnx : Hsx ≤ Bs}, (7.10)

for some matrix Hs and vector Bs of proper dimensions. The goal is thus to
estimate Hs and Bs (with s = 1, . . . , s) defining the polyhedron Xs, where
the s-th local affine submodel is active. Two approaches can be followed:

• according to the idea discussed in [11], the Voronoi diagram generated
by the clusters’ centroids can be used as a polyhedral partition of the
regressor space X . Specifically, let cs be the centroid of cluster Cs.
Then, the polyhedron Xs associated to cluster Cs (Equation (7.11)) is
the set of all the values of the continuous state x such that cs is the
closest centroid to x among all the other centroids cj (with j 6= s), i.e.,

Xs = {x ∈ Rnx : ‖x− cs‖2 ≤ ‖x− cj‖2, j = 1, . . . , s, j 6= s},
(7.11)

Through simple algebraic manipulations, Xs can be expressed in a form like
Equation (7.10), i.e.

Xs = {x ∈ Rnx : −2(c′s − c′j)x ≤ c′jcj − c′scs, j = 1, . . . , s, j 6= s}.
(7.12)

Note that the definition of the polyhedron Xs (Equation (7.12)) only
depends on the clusters’ centroids, which can be easily updated recursively
once the clusterCs is updated (Step (2.3) of Algorithm 1). This makes the use
of the Voronoi diagram particularly suited for real-time applications, where
data are processed iteratively. However, a limitation of the Voronoi diagram is
that it does not take into account how much the points are spread around the
clusters’ centres, making the state-space partition less flexible than general
linear separation maps. In order to overcome this limitation, the approach
described below can be followed.

• separate the clusters {Cs}si=1 provided by Algorithm 1 via linear multi-
category discrimination (see, e.g. [37–39]). In the following, we briefly
describe the algorithm used in [37], which is suited for both offline and
online computations of the state partition.
The linear multi-category discrimination problem is tackled by
searching for a convex piecewise affine separator function ϕ: Rnx →

1A collection {Xs}ss=1 is a complete partition of the regressor domain X if
⋃s

s=1 Xs = X
and X ◦s ∩ X ◦j = ∅, ∀s 6= j, with X ◦s denoting the interior of Xs.
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R discriminating between the clusters C1, . . . , Cs. The separator ϕ
(Equation (7.13)) is defined as the maximum of s̄ affine functions
{φi(x)}si=1, i.e.

φ(x) = max
s=1,...,s

φs(x) (7.13)

with ϕs(x) described as (Equation (7.14))

ϕs(x) = x′ωs (7.14)

where ωs ∈ Rnx (s = 1, . . . , s) are the parameters to be computed.
For s = 1, . . . , s, let Ms be an ms × nx dimensional matrix (with ms

denoting the cardinality of cluster Cs) obtained by stacking the regressors
x(t)′ belonging to Cs in its rows. If the clusters {Cs}ss=1 are linearly
separable, the piecewise-affine separator ϕ satisfies the conditions:

Msss ≥Msωj + 1ms, s, j = 1, . . . , s, s 6= j (7.15)

where 1ms is an ms-dimensional vector of ones.
The piecewise-affine separator ϕ thus satisfies the conditions

(Equation (7.16)):{
ϕ (x) =x′ωs ∀x ∈ Cs, s = 1, . . . , s

ϕ (x) ≥ x′ωj + 1 ∀x ∈ Cs, s 6= j
(7.16)

From (7.16), the polyhedra {Xs}ss=1 are defined as

Xs = {x ∈ Rnx : (ωs − ωj)′x ≤ −1, j = 1, . . . , s, j 6= s}.

The condition (7.15) thus suggests computing the parameters {ωs}ss=1 by
minimizing the convex cost

min
ω1,...,ωs

s∑
s=1

s∑
j=1
j 6=s

1

ms
‖([Ms − 1ms ](ω

j − ωs) + 1ms)+‖22, (7.17)

with (·)+ defined as f+ = max{0, f}. Problem (7.17) minimizes the aver-
aged squared 2-norm of the violation of the inequalities in Equation (7.15).
The solution of the convex problem (7.17) can be then computed numerically
in two ways: (i) offline through a Regularized Piecewise-Smooth Newton
method or (ii) online through a Stochastic Gradient Descent method, as
explained in [10].
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7.5 Integration of Additional Functionalities to the
IEC 61499 Platform

The DAEDALUS automation platform is built on top of the IEC-61499
standard and makes it the main core technology to enable the implementation
of industrial grade applications in distributed control scenarios. The function
block (FB) is one of the base elements of this standard. Function blocks
are a concept to define solid, reusable software components in industrial
automation systems. They allow the encapsulation of algorithms in an easy,
understandable, even for newcomer, and usable form. Each function block
has defined inputs, which are read and processed from an internal algorithm.
The result will be outputted at defined outputs. Whole applications can be
created out of various function blocks by connecting their inputs and outputs.
Concretely, each function block consists of a head, a body, input/output events
and input/output data.

The IEC 61499 standard defines various kinds of function blocks:

• Basic Function Blocks. Basic function blocks are used to implement
basic functionalities of applications. Basic function blocks include
internal variables, one or more algorithms and an “Execution Control
Chart”, to define the processing of the algorithms;
• Service Function Blocks. Service function blocks represent the

interfaces to the hardware;
• Composite Function Blocks. Several basic, service or composite func-

tion blocks as well can be grouped to form a composite function block.
The composite FB presents itself as a closed function block with a
clearly defined interface.

7.5.1 A Brief Introduction to the Basic Function Block

Basic function blocks are the atomic units of execution in IEC 61499. A basic
FB consists of two parts, i.e. a function block interface and an execution
control chart (ECC) that operates over a set of events and variables. The
execution of a basic FB entails accepting inputs from its interface, processing
the inputs using the ECC and emitting outputs.

A basic FB is encapsulated by a function block interface, which exposes
the respective inputs and outputs using ports. These input and output ports
may be classified as either event or data ports.

Figure 7.11 shows the interface of the function block that implements
a valve control logic. This interface exposes input events (INIT,
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Figure 7.11 Valve: an example of basic function block.

MODE CHANGED, SP CHANGED), output events (INITO, CNF), as well
as input variables (AutoSP, ManSP, mode) and output variables (cp, isMan).

Event ports are specialized to accept or emit events, which are pure
signals that represent status only, i.e. they are either absent or present. On
the other hand, data ports can accept or emit valued signals that consist of
a typed value, such as integer, string or Boolean. Variable ports of a special
type Any can accept data from a range of typed values. In addition, a concept
of multiplicity is also applicable to data ports, which allows accepting or
emitting arrays of values. A data port can be associated with one or more
event ports.

As shown in Figure 7.11, for example, Mode is associated with
MODE CHANGED.

However, this association can only be defined for ports of the matching
flow direction, e.g. input data ports can only be associated with input event
ports. This event–data association regulates the data flow in and out of a basic
FB, i.e. new values are loaded or emitted from the data ports on the interface
when an associated event is present.

The behaviour of a basic FB is expressed as a Moore-type state machine,
known as an ECC. An ECC reacts to input events and performs actions to
generate the appropriate outputs.

Figure 7.12 shows the ECC of the valve basic function block, which
consists of four states: START, INIT, exec SPChange and exec ModeChange.

States in ECCs have provision to execute algorithms and emit output
events upon ingress, which are represented as ordered elements in their
respective action sets.

As an example, in Figure 7.12, the algorithm exec SPChange is executed
(represented as a gray label), and the CNF event is emitted upon entering the
exec SPChange state (represented as a blue oval).

The execution of an ECC starts from its initial state (START in
Figure 7.12) and progresses by taking transitions, which are guarded by an
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Figure 7.12 Example of execution control chart (ECC).

Figure 7.13 exec SPChange algorithm from the valve basic FB.

input event and an optional Boolean expression over input and/or internal
variables. Upon evaluation, a transition is considered to be enabled if the
respective guard condition evaluates to true. The ECC will then transition to
the next state by taking the enabled egress transition from the source state to
the corresponding target state.

An algorithm is a finite set of ordered statements that operate over the
ECC variables. Typically, an algorithm consists of loops, branching and
update statements, which are used to consume inputs and generate outputs.
The IEC 61499 standard allows algorithms to be specified in a variety of
implementation-dependent languages. As an example, the implementation
from nxtControl allows the development of custom algorithms in Structured
Text (ST).

The exec SPChange algorithm from the valve basic FB is presented in
Figure 7.13 that uses the ST language as defined in IEC-61131-3. Here, the
IF–THEN–ELSE construct is used to update the output value of cp based on
the value of the input isMan.
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7.5.2 A Brief Introduction to the Composite Function Block

Composite function blocks facilitate the representation of structural
hierarchy. Composite FBs are similar to basic FBs in the sense that they too
are encapsulated by function block interfaces. However, unlike a basic FB,
the behaviour of a composite FB is implemented by a network of function
blocks.

Basic and composite function blocks characterize different types of
specifications, which are referred to as function block types (FBTypes).
A function block network may consist of instances of various FBTypes, where
any given FBType may be instantiated multiple times. This concept is very
similar to the object-oriented programming paradigm, which contains classes
(analogous to FBTypes) and their instances, namely objects (analogous to
FB instances). These FB instances connect and communicate with each
other using wire connections, and with external signals via the encapsulating
function block interface. This facilitates the structural hierarchy, i.e. a given
function block network may contain instances of other composite FBs that
encapsulate sub-FBNs.

Figure 7.14 shows a function block network with three function block
instances that communicate with each other using wire connections, e.g. a
Real output value SetPoint of the AutoCommand instance can be read as
AutoSP by the valve instance.

Furthermore, some signals directly flow from the interface of the top-
level composite FB into the encapsulated function block network, e.g. the
event MODE UPDATED is read from an external source and made available
to the MODE CHANGED input event of both the AutoCommand and valve
instances. However, only compatible signals flow in this manner, meaning
that an input event on a composite FB interface can only flow into an input
event of nested FB interfaces. Similarly, data flow in this manner must also
conform to data-type compatibility, e.g. a Boolean input on the composite
FB interface cannot flow into a string type input of the nested FB interface.
One exception to this rule is the Any type, which, as the name suggests, can
accept any data type. This mode of signal flow is thus directly responsible
for effecting the interface definition of a composite FB, i.e. if a nested FB
needs an input from an external source, there must be an input defined
on the composite FB interface, which flows into the said nested FB. This
encapsulation of nested FBs from external sources simplifies the reuse of
FBTypes.
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Figure 7.14 A composite function block with an encapsulated function block network.

7.5.3 A Brief Introduction to the Service Interface Function Block

Service interface function blocks (SIFB) can be considered as device drivers
that connect the external environment with function block applications. These
blocks are used to provide services to a function block application, such as
the mapping of I/O pin interactions to event and data ports and the sending of
data over a network.

There are two categories of SIFBs described in the standard, namely
communication function blocks and management function blocks. While
composite FBs capture centralized entities, resources are reminiscent of
tasks and devices represent PLCs. Hence, both resources and devices need
specific entities that facilitate either task-level (inter-resource) or distributed
(inter-device) communication.

Communication function blocks are SIFBs providing interfaces that
enable communication between IEC 61499 resources. Within the context
of IEC 61499, a resource is a functional unit contained in a device that
has independent control of its operations, so it may be created, configured,
parameterized, started up, deleted, etc., without affecting other resources.
The goal of a resource is to accept data and/or events from one or more
interfaces, elaborate them and return data and/or events to some interfaces.
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For the sake of completeness, it is worth mentioning that an IEC 61499
device contains one or more interfaces and those interfaces can be of two
different types: communication and process. While communication interfaces
provide a mapping between resources and the information exchanged via a
communication network, a process interface provides a mapping between
the physical process (e.g. analog measurements, discrete I/O, etc.) and the
resources. Different types of communication function blocks may be used to
describe a variety of communication channels and protocols.

On the other hand, management function blocks are SIFBs that are
used to coordinate and manage application-level functionalities by providing
services, such as starting, stopping, creating and deleting function block
instances or declarations. They are somewhat analogous to a task manager
in a traditional operating system. Unlike basic FBs, where the behaviour is
specified using an ECC, SIFBs are specified using time-sequence diagrams.

7.5.4 The Generic DLL Function Block of nxtControl

The IEC 61499 software tool engineered by nxtControl provides a mecha-
nism to integrate custom code in an IEC 61499 application. The mechanism
is called Generic DLL function block and enables the exploitation of custom
IEC 61499 function blocks interfaced by means of an abstract interface layer.

It provides the possibility to implement basic or service IEC 61499
function blocks in a custom programming language that are compiled in a
dynamical loadable library (DLL) and then loaded and bound to the IEC
61499 runtime at the execution phase.

The Generic DLL function block mechanism builds on top of two
components:

• a DLL that exposes a C interface where a predefined number of functions
and data structures (embedded in a prototype which follows a well-
defined template) implement the custom functionalities to be integrated
in the distributed control application;
• a graphical representation of the custom function block, whose FBType

is FB DLL, and which is used in the nxtControl’s engineering software
environment to instantiate as many FBs as needed.

Such a mechanism enables the development of customized FB, providing:

• a representation of the IEC 61499 simple data types (as well as one-
dimensional arrays of them) and plain C types;
• an input/output interface for passing these data between the IEC 61499

runtime software and the DLL implementation;
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Figure 7.15 Example of FB DLL function block.

• an interface for a custom function block where one initialization event
and an arbitrary number of input events can be fed;
• the possibility to generate output events asynchronously;
• an interface to register and unregister a function block with the custom

DLL;
• a way to query the provided data interface, so it is possible to implement

consistency checks or to implement operations on different data types
by one implementation;
• the possibility to implement several function blocks through a single

DLL.

More than one instance of the Generic DLL function block (FB DLL,
Figure 7.15) can be instantiated in an IEC 61499 application, and the
parameters provided as input to those FBs are exploited to select the appro-
priate DLL. All the FB DLL instances are characterized by an INIT input
event that is used to load the DLL: in particular, when the INIT event of
any FB DLL is received for the first time, the associated DLL is loaded and
the IEC 61499 runtime registers the function block with that DLL. Further-
more, if the constructor is implemented in the custom code, then it is run
afterward.

To leverage this flexible customization mechanism for implementing
distributed automation applications, the custom code has to expose a data
structure whose specification is detailed in the nxtControl’s documenta-
tion material. That interfacing structure defines different elements that
characterize the generic DLL function block, like:

• the number of input and output events;
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• the number of data values that are associated to the input and output
events;
• the data type associated to data values.

In addition to the description of the input/output events and data, the custom
code used in a generic DLL function block has to define a precise set of
functions that the IEC 61499 runtime uses to interact with the DLL when the
distributed control application needs to execute the custom code. The most
relevant of such functions are those used to register/unregister an FB DLL
with the appropriate DLL, the one used to execute the code associated to a
specific input event, as well as the one dedicated to signal the triggering of
an output event. In addition to those, there is also a function dedicated to the
log information that can be used by the code in the DLL to report diagnosis
information to the IEC 61499 runtime.

7.5.5 Exploiting the FB DLL Function Block as Interfacing
Mechanism between IEC 61499 and External Custom Code

Leveraging the generic DLL function block it is possible to extend func-
tionalities available in the nxtControl automation platform with additional
features that can be integrated in a seamless manner into an IEC 61499 control
application.

That possibility opens the opportunity to integrate in an engineering soft-
ware tool, designed to develop IEC 61499 applications, features that are not
strictly related to the standard itself but that are interesting for implementing
advanced distributed control applications. Actually, this can be leveraged to
integrate the advanced functionalities that characterize a CPS that conforms
to the DAEDALUS’ vision, as for example, the integration of the “simulation
dimension” and advanced MPC algorithms.

The possibility to extend the type of elaborations that can be per-
formed within a function block in a distributed control application based
on IEC 61499 enables the possibility to introduce new functionalities. Fur-
thermore, it enables to test new features while respecting the normative
rules and constraints of the standard and, as a consequence, allows to
keep a high level of portability of the solution developed by means of this
mechanism.

Since the DLL code is developed and compiled outside the classic devel-
opment toolchain that is normally used for a plain IEC 61499 application
(i.e. leveraging the development environment from nxtControl), the DLL has
to be compiled by means of appropriate software tools to address the specific
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platform where the DLL will run. This means that an appropriate software
toolchain is needed to generate a binary code that can run on the controller
platform selected.

The main constraints that characterize this approach are:

• All the algorithms that define the behaviour of the FB DLL have to
be compiled as a dynamic loadable library (DLL) with a binary format
compatible with the architecture of the controller, where the DLL will
have to be installed;
• The DLL has to expose a C interface corresponding to the template

imposed by the generic DLL function block mechanism;
• In the case where the FB DLL is conceived to provide an output event to

confirm the completion of the elaboration performed by the FB before a
new input event can be processed by the FB, the elaboration performed
by the DLL has not to take too much time before generating the output
event. Otherwise that elaboration can affect negatively the controller’s
real-time performance;
• When the elaboration to be performed takes many computational

resources and a lot of time to generate a result from the elaboration,
another approach should be used: for example, the approach to run
elaborations in parallel and generate output events asynchronously is a
valid alternative;
• One of the aspects that needs to be considered at design is that a DLL

can be shared by all the FB DLL instances that make use of that library.
This means, as a consequence, that the current number of function
blocks registered with a DLL have to be managed appropriately, in order
to keep track of the code portions that need to be executed for each
FB DLL instance.

The compact approach

The first approach enabled by the use of the generic DLL function block
consists in exploiting the mechanism to implement a basic function block
fully customized, where the constraint of using an execution control chart
(ECC) is no more effective. In this case, the developer can freely design the
finite state machine for government of the function block’s logic states by
exploitation of any preferred development tool (Figure 7.16).

By means of this approach, the logic algorithms that need to be executed
when the associated input events are received by the FB DLL instance can be
designed and implemented following a customized approach that satisfies the
developer’s preferences and needs. At the same time, this mechanism enables
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Figure 7.16 Illustration of the compact approach based on exploitation of generic DLL FBs.

to leverage other programming languages to implement the algorithms of the
basic function block, in addition to the structured text (ST) language currently
supported by the nxtControl software development tool.

The extended approach

A generalization of the previous approach consists in leveraging one or more
additional DLLs when implementing the code associated to the FB DLL
instance. This basically means that the dynamic loadable library associated
to the generic DLL function block is linked, in turn, to one or more other
DLLs (Figure 7.17).

In such a case, it is possible that the exploitation of third parties’ libraries
implements customized function blocks usable in an IEC 61499 distributed
control application. In this way, it is possible to develop custom service
interface function blocks, making use of operating system function calls
to access low-level hardware features or input/output data via interfacing
devices.
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Figure 7.17 Illustration of the extended approach based on exploitation of generic DLL FBs.

In order to make this approach applicable, all the DLLs that are going
to be exploited within the code of a general DLL function block have to be
compiled for the specific architecture of the controller that will run that code.

That constraint can be limiting in certain scenarios, where the DLLs
referenced by the custom code are not available for the platform selected and
therefore it makes the use of those libraries impossible in such a scenario.
On the other hand, that limitation has not to be ascribed to the generic DLL
function block mechanism but to the lack of a compatible version of third
party’s libraries.

All the considerations that have been done for the basic approach of
exploiting the FB DLL are valid also for this extended case.

The distributed approach

The most general and flexible exploitation approach of the generic DLL
function block mechanism consists not only in leveraging the FB DLL
FBs to integrate custom made and/or third-party software algorithms, but
also in expanding the distributed computational network with additional
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Figure 7.18 Illustration of the distributed approach based on exploitation of generic
DLL FBs.

elaboration devices via interfacing mechanisms that can co-exist in parallel
to the IEC-61499 communication interface (Figure 7.18).

This means that in addition to custom and advance algorithms embedded
in DLLs that run locally in the controller where the FB DLL instance is
mapped, we can leverage the computational resources of other devices,
in which specific data processing is allocated.

In such a scenario, the dynamic loadable library associated to an FB DLL
instance is used to open appropriate communication channels toward other
computational nodes of the network where the data elaboration is actually
performed. The FB DLL has to leverage the asynchronous generation of
events and appropriate mechanism to accept new requests in order to manage
appropriately the elaboration and communication time without affecting neg-
atively on the responsiveness of the IEC 61499 controller where the FB-DLL
instance is running.

7.6 Conclusions

A deeply review of state of the art regarding solutions for controlling aggre-
gated CPS has been carried out: the focus has been pointed on Model Pre-
dictive Control, especially on Hybrid Model Predictive Control. The analysis
delves into Hybrid System representation and modelling, showing different
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techniques, mainly PWA and MLD. The advantages of PWA representation
is related to the presence of numerous tools developed in the control system
and identification fields, which are able to perform stability proof of system,
convergence analysis. Moreover, PWA allows to build up an easier-to-use
interface for SDK Interface in future development step. On the other hand,
the MLD representation allows a deeply computational cost reduction for the
solver as shown in Section 7.2.2. Both PWA and MLD are used in the SDK
of Daedalus and they will work synergistically to improve the performance
and the usability of the toolbox (SDK).

A review of the literature on data-driven modelling of hybrid systems
has been carried out, with emphasis on PieceWise Affine (PWA) models
and Jump Affine models, where the switches among the discrete state are
triggered by deterministic events (e.g. if–then–else rules). These two models
will be combined in the future stages of the project to arrive at Jump Piece-
Wise Affine (JPWA) models, where the PieceWise Affine part will be used
to describe the non-linear dynamics of the continuous (physical) states of the
CPS, while the Jump part will be used to describe the time-evolution of the
discrete (logical) states.

As a next step, a user-friendly software toolbox for identification of hybrid
systems will be developed and the software functions will be integrated in the
Daedalus’ platform. This toolbox for on-line identification will contain the
algorithm in ref. [37]. If necessary, improvements and/or extensions of this
identification algorithm will be proposed and implemented in the toolbox.
Benchmark examples available in the literature and case studies proposed
by the project’s partners will be used to test the implemented identification
algorithms.

The IEC-61499 standard defines a technology for the implementation
of distributed control applications applicable on several industrial scenarios.
Many are the key aspects that make such a technology a valid solution for the
development of the new generation of industrial control systems, leveraging
networks of interacting CPSs.

The modularity that characterizes the control software design approach,
which builds on the concept of function block, and the event-based execution
paradigm are, just as an example, two of the core architectural aspects of the
IEC-61499 standard that provide an effective development tool for complex
control applications.

Advanced control software can be implemented exploiting the
hierarchical development approach based on nesting of different types of
function blocks. Custom algorithms can be implemented both through the
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composition of function blocks and by the development of Basic Function
Blocks, leveraging the programming languages supported by the selected
software development toolkit.
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