
6
A Framework for Flexible

and Programmable Data Analytics
in Industrial Environments

Nikos Kefalakis1, Aikaterini Roukounaki1,
John Soldatos1 and Mauro Isaja2

1Kifisias 44 Ave., Marousi, GR15125, Greece
2Engineering Ingegneria Informatica SpA, Italy
E-mail: jsol@ait.gr; arou@ait.gr; nkef@ait.gr; mauro.isaja@eng.it

This chapter presents a dynamic and programmable distributed data analytics
solution for industrial environments. The solution includes an edge analytics
engine for analytics close to the field and in line with the edge computing
paradigm. Each edge analytics engine instance is flexible and dynamically
configurable based on an Analytics Manifest (AM). It is also based on dis-
tributed ledger technologies for configuring analytics tasks that span multiple
edge nodes and instances of the edge analytics engine. In particular, it lever-
ages ledger services for synchronizing and combining various AMs in factory
wide analytics tasks. Based on these mechanisms, the presented distributed
data analytics infrastructure is therefore flexible, configurable, dynamic and
resilient. Moreover, it is open source and provides Open APIs (Application
Programming Interfaces) that enable access to its functionalities. These fea-
tures make it unique and valuable for vendors and integrators of industrial
automation solutions.

6.1 Introduction

A large number of digital automation applications in modern shopfloors
collect and process large amounts of digital data as a means of identifying the
status of machines and devices (e.g., a machine’s condition or failure mode)

169



170 A Framework for Flexible and Programmable Data Analytics

or the context of industrial processes (e.g., possible defects in an entire
production process), including relevant events [1]. This context is accordingly
used to support decision making, including decisions that drive automation
and control operations on the shopfloor [2] such as the configuration of a pro-
duction line or the operational mode of a machine. Therefore, data analytics
operations are an integral element of most digital automation platforms [3],
which is usually integrated within automation and simulation functionalities.

In this context, the automation platform that has been developed in the
scope of the FAR-EDGE project includes also distributed data analytics
functionalities. In particular, the FAR-EDGE platform offers functionalities
in three distinct, yet complementary domains, namely Automation, Analytics
and Simulation [4]. The Analytics domain provides the means for collecting,
filtering and processing large volumes of data from the manufacturing
shopfloor towards calculating indicators associated with manufacturing per-
formance and automation. Analytics functions are offered by a Distributed
Data Analytics (DDA) infrastructure, which enables the definition, configu-
ration and execution of analytics functions at two different levels, namely:

• Local Level Analytics, i.e. at the edge of a FAR-EDGE deployment.
These comprise typically analytics functions that are executed close to
the field and have local/edge scope, e.g. they collect and process data
streams from a part of a factory such as data streams associated with
a station within the factory. Local Level Analytics in FAR-EDGE are
configured and executed by means of an Edge Analytics Engine (EAE),
which runs within an Edge Gateway (EG) and is a core part of the DDA.

• Global Level Analytics, i.e. concerning the factory as a whole and
spanning instances of local level analytics. In FAR-EDGE, global level
analytics combine information from multiple Edge Gateways (EGs) and
instances of the Edge Analytics Engine. They can be configured and
executed through an Open API. Global Level analytics are supported by
the ledge and the cloud infrastructures of the FAR-EDGE platform.

The distinction between edge/local and global/cloud analytics is very
common in the case of Big Data analytics systems (e.g. [5–7]). Moreover,
there are different frameworks that can handle streaming analytics at the edge
of the network, which is a foundation for edge analytics. The FAR-EDGE
DDA infrastructure goes beyond the state of the art of these Big Data systems
through employing novel techniques for the flexible configuration of edge
analytics and the synchronization of multiple edge analytics deployments.
In particular, the FAR-EDGE DDA includes an infrastructure for registering
data sources from the plantfloor, as well as for dynamically discovering them.



6.1 Introduction 171

Moreover, it includes a modular framework for the deployment of ana-
lytics functionalities based on a set of (reusable) processing libraries. The
latter can be classified in three main types of data processing functions, which
enable the pre-processing of data streams (i.e. pre-processing functions),
their data analysis (i.e. analytics functions) and ultimately the storage of the
analytics results (i.e. storage functions). In FAR-EDGE, edge analytics tasks
are described as combinations of various instances of these three processing
functions in various configurations, which are specified as part of relevant
analytics workflows.

In this context, different edge analytics tasks can be described using well-
defined configuration files (i.e. Analytics Manifests (AMs)), which reflect
analytics workflows and are amenable by visual tools. This facilitates the
specification and configuration of analytics tasks as part of the DDA. In
particular, solution integrators and manufacturers can flexibly configure their
analytics operations through defining proper AMs. Based on the use of
proper visual tools, such definitions can be performed with almost zero
programming, which is an obvious advantage of the FAR-EDGE DDA over
conventional edge analytics frameworks. Furthermore, the DDA leverages
several distributed ledger services for storing and configuring AMs across
different edge nodes, which provides a novel, secure and resilient way for
specifying and executing global analytics tasks.

This chapter is devoted to the presentation of the DDA infrastructure
of the FAR-EDGE project, which has been briefly introduced in [4]. This
chapter extends the work in [4] through providing more details on the design
and implementation details of the DDA platform. Special emphasis is put
in describing and highlighting the unique value propositions of the FAR-
EDGE DDA in terms of configurability, programmability and resilience. The
description includes dedicated parts for the Edge Analytics Engine (EAE) that
enable edge scoped analytics and for the Ledger Services for data analytics
configuration and synchronization that enable configurable global analytics.
Note also that the DDA infrastructure complies with the overall FAR-EDGE
reference architecture, which has been introduced in an earlier chapter, while
leveraging digital models that are presented in a subsequent chapter. Hence,
the present chapter does not detail the overall architecture of the FAR-EDGE
platform and the digital models that are used as part of it, since they are both
described in other parts of the book.

The structure of this chapter is as follows:

• Section 6.2 following the chapter’s introduction presents the main
drivers behind the development of a framework for DDA in industrial



172 A Framework for Flexible and Programmable Data Analytics

environments, through enhancing conventional and popular frameworks
for Big Data analytics and streaming analytics.

• Section 6.3 presents the overall architecture of the DDA, including its
main modules.

• Section 6.4 illustrates the edge analytics engine of the DDA, including
the anatomy of the analytics workflows.

• Section 6.5 presents the ledger services that enable the synchronization
of different manifests across edge nodes.

• Section 6.6 presents information about the open source implementation
of the DDA, including information about the underlying technologies
that have been (re)used.

• Section 6.7 is the final and concluding section of the chapter.

6.2 Requirements for Industrial-scale Data Analytics

As already outlined, most digital automation platforms need to process large
volumes of data (including streaming data) as part of wider simulation,
decision making and control tasks. Instead of implementing a data analytics
function for every new use case, digital automation platforms can offer entire
middleware frameworks that facilitate the distributed data analytics tasks
(e.g., [8–10]). These frameworks offer facilities for dynamically discovering
data sources and executing data processing algorithms over them. In princi-
ple, they are Big Data frameworks that should be able to handle large data
volumes that features the 4Vs (volume, variety, velocity and veracity) of
Big Data. Beyond these general and high-level requirements, the FAR-EDGE
DDA infrastructure has been driven by the following principles:

• High-Performance and Low-Latency: The FAR-EDGE DDA enables
the execution of data analytics logic with high performance, i.e. in a way
that ensures low-overhead and low-latency processing of data streams.
This is especially important towards handling high-velocity data streams
i.e. data with very high ingestion rates such as data streams stemming
from sensors attached to a machine.

• Configurable: The DDA is configurable in order to be flexibly adapt-
able to different business and factory automation requirements, such
as the calculation of various KPIs (Key Performance Indicators) for
production processes. Configurability should be reflected in the ability
to dynamically select the data sources that should be used as part of a
data analytics task.



6.2 Requirements for Industrial-scale Data Analytics 173

• Extensible: The DDA provides extensibility in terms of the supported
processing functions, i.e. to provide the ability to implement additional
data processing schemes based on fair programming effort. In the case
of FAR-EDGE, extensibility concerns the implementation of advanced
processing capabilities in terms of pre-processing, analyzing and storing
data streams.

• Dynamic: The DDA is able to dynamically update the results of the
analytics functions, upon changes in its configuration. This is essen-
tial towards having a versatile analytics engine that can flexibly adapt
to changing business requirements and production contexts in volatile
industrial environments where data sources join or leave dynamically.

• Ledger Integration: One of the innovative characteristics of the DDA
lies in the use of a distributed ledger infrastructure (i.e. blockchain-based
services) [11] towards enabling analytics across multiple EGs, as well as
towards facilitating the dynamic configuration of the data analytics rules
that comprise these analytics tasks.

• Stream Handling Capabilities: The DDA can handle streaming data
in addition to transactional static or semi-static data. This requirement
has been considered in the design and the prototype implementation
of the DDA infrastructure, which is based on middleware for handling
data streams.

Table 6.1 associates these design principles with some concrete imple-
mentation examples and use cases.

Table 6.1 Requirements and design principles for the FAR-EDGE DDA
Design
Principles
and Goals

Examples and use Cases DDA Implementation
Guidelines

High
performance
and
Lowlatency

Complex data analyses over real-time
streams should be performed within
timescales of a few seconds. As an
example, consider the provision of
quality control feedback about an
automation process in a station, based
on the processing of data from the
station. The DDA support the collection
and analysis of data streams within a
few seconds.

Leverage high-performance
data streaming technology as
background for the EAE
implementation (e.g. ECI’s
streaming technology)

(Continued)



174 A Framework for Flexible and Programmable Data Analytics

Table 6.1 (Continued)
Design
Principles
and Goals

Examples and use Cases DDA Implementation
Guidelines

Configurable A manufacturer needs to calculate
multiple Key Performance Indicators
(KPIs) such as indicators relating to
quality control and performance of the
automation processes. The DDA should
flexibly support the on-line calculation
of the different KPIs within the same
instance of the EAE. To this end, the
EAE should be easily configurable to
support the calculation of all desired
KPIs, ideally with minimal or even zero
programming.
Configurability can be gauged based on
the time needed to set up and deploy a
data analytics workflow comprising
several processing functions. The use of
EAE is destined to reduce this time,
when compared to cases where data
analytics are programmed from scratch
(i.e. without support from the EAE
middleware).

• Specify and implement
DDA as a programmable
& configurable engine,
which executes analytics
configurations specified in
appropriate files
(“manifests”).

• Parse and execute the
analytics rules of the
configuration files,
without a need for
explicitly programming
these rules

Extensible The EAE should be extensible in terms
of data processing, data mining and
machine learning techniques. For
example, in cases where deep learning
needs to be employed (e.g., estimation
of a failure mode in predictive
maintenance), the EAE must support
the execution of machine learning
functions, including AI-based
algorithms such as deep neural network.
The latter can, for example, support the
detection of complex patterns such as
production quality degradation patterns.

• Provide a library of
analytics
functions/capabilities and
integrate it within a
directory.

• Provide the means for
discovering and using
analytics functions from
the library analytics
configurations.

Dynamic The EAE should be able to deploy on
the fly (i.e. hot deploy) different data
analysis instances. For example, when
new KPIs should be calculated,
calculation shall be done of the fly,
without affecting the rest of deployed
KPIs.

Leverage multi-threading
and hot deployment
capabilities of the selected
implementation
technologies.



6.3 Distributed Data Analytics Architecture 175

Table 6.1 (Continued)
Design
Principles
and Goals

Examples and use Cases DDA Implementation
Guidelines

Ledger
integration

The EAE must integrate functions from
the Ledger Services in order to: (i)
access configurations of analytics tasks
through ledger smart contracts, such as
a large scale distributed analytics tasks;
(ii) collecting and analyzing data from
multiple edge nodes/gateway through
access to the publishing services. This
can be, for example, the case there data
analytics for calculating a product
schedule must be computed, as this is
likely to span multiple EGs.

• Represent analytics
configurations as smart
contracts.

• Implement publishing
services driven by the
smart contracts and
leveraging information
from multiple edge nodes.

Stream
handling
capabilities

The EAE must be able to handle
data-intensive data streams such as
sensor data for predictive maintenance
and data from other field devices for
quality control in automation.

Leveraging streaming
handling and management
middleware of the ECI.

6.3 Distributed Data Analytics Architecture

A high-level overview of the DDA Infrastructure is provided in Figure 6.1.
The DDA consists of wide range of components, which are described in the
following subsections.

6.3.1 Data Routing and Preprocessing

The Data Routing and Pre-processing (DR&P) component is in charge of
routing data from the data sources (i.e. notably industrial devices) to the Edge
Analytics Engine (EA-Engine). The component includes a Device Registry,
where the various device and data sources announce (i.e. “register”) them-
selves, as well as the means to access their data (i.e. based on connectivity
details such as protocol, IP address and port). The registry makes the system
dynamic, as it ensures handling of all data sources that register with it.
Moreover, the component provides pre-processing capabilities, which allow
for transformations to data streams prior to their delivery to the EA-Engine.
Note that the DR&P component is edge-scoped i.e. it is deployed at an Edge
Gateway (EG). Likewise, the data sources that are registered and managed in
the registry concern the devices that are attached to the specific edge gateway
as well.



176 A Framework for Flexible and Programmable Data Analytics

Along with the Device Registry, the DR&P provides a Data Bus, which
is used to route streams from the various devices to appropriate consumers,
i.e. processors of the EA-Engine. Moreover, the Data Bus is not restricted to
routing data streams stemming directly from the industrial devices and other
shopfloor data sources. Rather it can also support the routing of additional
data streams and events that are produced by the EA-Engine.

6.3.2 Edge Analytics Engine

The EA-Engine is a runtime environment hosted in an EG, i.e. at the edge
of an industrial FAR-EDGE deployment. It is the programmable and config-
urable environment that executes data analytics logic locally to meet stringent
performance requirements, mainly in terms of latency. The EA-Engine is also
configurable and comprises multiple analytics instances that correspond to
multiple edge scoped analytics workflows.

As shown in Figure 6.1, the EA-Engine comprises several processors,
which implement processing functions over the data streams of the Data Bus.
As illustrated in a following paragraph, these processors are of three main

Figure 6.1 DDA Architecture and main components.



6.3 Distributed Data Analytics Architecture 177

types, including processors that store/persist data streams, processors devoted
to pre-processing functions, as well as processors in charge of data analytics.
Furthermore, the outcomes of the EA-Engine can be written to the Data Bus
in order to be consumed by other components and processing functions or
even written at local/edge data storage.

6.3.3 Distributed Ledger

The Distributed Ledger is used to orchestrate analytics functionalities across
multiple Edge Gateways. It is in charge of maintaining the configuration of
different analytics tasks across multiple EGs, which at the same time keep
track of their composition in factory-wide analytics tasks. Moreover, the
distributed ledger is used to compute the outcomes of factory-wide analytics.
Overall, the distributed ledger offers two kinds of services to the DDA,
namely Data Publishing Services that synchronize the analytics computations
and Configuration Services that synchronize the configuration of the analytics
services.

6.3.4 Distributed Analytics Engine (DA-Engine)

While the EA-Engine is in charge of data analytics at edge scope, the DA-
Engine is in charge of executing global analytics functions based on the
analytics configurations that reside in the distributed ledger. The DA-Engine
is configurable thanks to its interfacing with a set of data models that describe
the configuration of the DDA infrastructure in terms of edge nodes, edge
gateways, data sources and the processing functions that are applied over
them as part of the DA-Engine. To this end, the DA-Engine interfaces to a
models’ repository, which comprises the digital representation of the devices,
data sources and edge gateways that are part of the DDA. The Digital Models
are kept up to date and synchronized with the status of the DDA’s elements.
As such, they are accessible from the DR&P and EA-Engine components,
which make changes in the physical and logical configuration of the analytics
tasks. Note also that the DA-Engine stores data within a cloud-based data
storage repository, which is destined to persist and comprise the results of
global analytics tasks.

6.3.5 Open API for Analytics

The Open API for Analytics enables external systems to take advantage of
the DDA infrastructure functionalities, including both the configuration and



178 A Framework for Flexible and Programmable Data Analytics

execution of factory-wide analytics tasks, which span multiple edge gateways
and take advantage of the relevant EA-Engine instances. Using the Open API
any integrator of industrial solutions can specify and execute data processing
functions over data streams stemming from the full range of devices that
are registered in the device registries of the DR&P components of the DDA
infrastructure. As illustrated in the figure, this gives rise to the use of the DDA
infrastructure by third-party applications.

The following sections provide insights into the operation and novel
features of the EA-Engine and the Distributed Ledger, which endows the
DDA with modularity, extensibility and configurability.

6.4 Edge Analytics Engine

6.4.1 EA-Engine Processors and Programmability

One of the unique value propositions of the EA-Engine is that it is con-
figurable and programmable. These properties stem from the fact that it is
designed to handle analytics tasks that are expressed based on the combi-
nation of three types of processing functions, which are conveniently called
“processors”. The three types of processors are as follows:

• Pre-processors, which perform pre-processing (e.g. filtering) over data
streams. In principle, pre-processors prepare data streams for analysis.
A pre-processor interacts with a Data Bus in order to acquire streaming
data from the field through the DR&P component. At the same time, it
also produces and registers new streams in the same Data Bus, notably
streams containing the results of the pre-processing.

• Storage processors, which store streams to some repository such as a
data bus, a data store or a database.

• Analytics processors, which execute analytics processing functions
over data streams ranging from simple statistical computations (e.g.,
calculation of an average or a standard deviation) to more complex
machine learning tasks (e.g., execution of a classification function).
Similar to pre-processors, analytics processors consume and produce
data through interaction with the Data Bus.

Given these three types of “processors”, analytics tasks are represented
and described as combinations of multiple instances of such processing
functions in the form of workflow or a pipeline. Such workflows are described
through an Analytics Manifest (AM), which specifies a combination of the
above processors. Hence, an AM follows a well-defined schema (as shown



6.4 Edge Analytics Engine 179

Figure 6.2 Representation of an Analytics Manifest in XML format (XML Schema).

in Figure 6.2), which specifies the processors that comprise the AM. In
particular, an AM defines a set of analytics functionalities as a graph of
processing functions that comprises the above three types of processors and
which can be executed by the EA-Engine.

Note also that an AM instance is built based on the available devices, data
sources, edge gateways and analytics processors, which are part of the data
models of the DDA. The latter reflect the status of the factory in terms of
available data sources and processing functions, which can be used to specify
more sophisticated analytics workflows.

6.4.2 EA-Engine Operation

The EA-Engine provides the run-time environment that controls and executes
edge analytics instances, which are specified in AMs. In particular, the EA-
Engine is able to parse and execute analytics functions specified in an AM,
based on the following processes:



180 A Framework for Flexible and Programmable Data Analytics

• Parsing: The EA-Engine parses AMs and identifies the analytics
pipeline that has to be executed.

• Execution: The EA-Engine executes (applied) the analytic functions
that are identified following the parsing. Note that the EA-Engine
is multi-threaded and enables the concurrent (parallel) execution of
multiple analytics pipelines, which can correspond to different AMs.

Figure 6.3 illustrates an example topology and runtime operations for EA-
Engine. In this example, two streams (CPS1 and CPS2) are pre-processed
from Analytics Processor 1 (i.e. Pre-Processor) and Analytics Processor 2
(i.e. Pre-Processor) equivalently in order to enable the execution of an analyt-
ics algorithm that is in Analytics Processor 3, which is an Analytics Processor.
Finally, the pipelines ends-up storing the result to a Data Store based on
Analytics Processor 4, which is a Storage Processor. In this example, the
EA-Engine is set up and runs based on the following steps:

• Step 1 (Set-up): Based on the description of the topology and required
processors in the AM, the engine instantiates and configures the required
Analytics Processors. Note that the AM is built based on real informa-
tion about the factory, which is reflected in the digital models of the
DDA infrastructure.

• Step 2 (Runtime): Analytics Processor 1 consumes and pre-processes
streams coming from CPS1. Likewise, Analytics Processor 2 consumes

Figure 6.3 EA-Engine operation example.



6.4 Edge Analytics Engine 181

and pre-processes streams coming from CPS2. In both cases, the streams
are accessed through the Data Bus.

• Step 3 (Runtime): Analytics Processor 3 consumes the produced
streams from Analytics Processor 1 and 2 towards applying the analytics
algorithm. In this case, the analytics processor cannot execute without
input for the earlier Analytics Processors.

• Step 4 (Runtime): Store Analytics Processor 4 consumes the data
stream produced from Analytics Processor 3 and forwards it to the Data
Store, which persists and data coming from Analytics Processor 4.

This is a simple example of the EA-Engine operation, which illustrates the
use of all three types of processors in a single pipeline. However, much more
complex analytics workflows and pipelines can be implemented based on
the combination of the three different types of processors. The only limiting
factor is the expressiveness of the AM, which requires that instances of the
three processors are organized in a graph fashion, with one or more processors
providing input to others.

Vendors and integrators of industrial automation solutions can take
advantage of the versatility of the EA-Engine in two ways:

• First, they can leverage existing processors of the EA-Engine towards
configuring and formulating analytics workflows in line with the needs
of their application or solution.

• Second, they can extend the EA-Engine with additional processing
capabilities, in the form of new reusable processors.

In practice, industrial automation solution integrators will use the EA-
Engine in both the above ways, which are illustrated in the following
paragraphs.

6.4.3 Configuring Analytics Workflows

Integrators can configure and execute edge-scoped analytics pipelines. The
configuration of a new pipeline involves the following steps:

• Discovery of Devices and other data sources registered in the device
registry. Analytics workflows can only take advantage of devices and
data sources that are registered with the DR&P component.

• Discovery of available processors, a list of which is maintained in the
EA-Engine. The rationale behind this discovery is to reuse existing pro-
cessors instead of programming new ones. Nevertheless, in cases where
the analytics workflow involves a processor that is not yet available,



182 A Framework for Flexible and Programmable Data Analytics

this processor should be implemented from scratch. However, every new
processor will become available for reuse in future analytics workflows.

• Definition and creation of the Analytics Manifest, based on the avail-
able (i.e. discovered) devices, data sources and processors. As already
outlined, an AM comprises a graph of processors of the three specified
types, defines the analytics results to be produced and specified where
they are to be stored. The specification of the AM can take place
based on the use of the Open API of the DDA. However, as part of
our DDA development roadmap, we will also provide a visual tool for
defining AMs, which facilitate zero-programming specification of the
edge analytics tasks.

• Runtime execution of the AM, based on the invocation of appropriate
functions of the EA-Engine’s runtime. This step can be implemented
based on the Open API of the DDA, yet it is also possible to execute it
through a visual tool.

6.4.4 Extending the Processing Capabilities of the EA-Engine

Integrators can specify additional processing functions and make them avail-
able for use as part of the EA-Engine. The extension process involves the
following steps:

• Implementation of a Processor Interface: In order to extend the EA-
Engine with a new processor, an integrator has to provide an implemen-
tation of a specific interface i.e. the interface of the processor. In practice,
each of the three processor types comes with its own interface.

• Registration of the Processor to a Registry: Once a new processor is
implemented, it has to become registered to a registry. This will make
it discoverable by solution developers and manufacturers that develop
AMs for their needs, based on available devices and processors.

• Using the processor: Once a processor becomes available, it can be used
for constructing AMs and executing analytics tasks that make use of the
new processor.

6.4.5 EA-Engine Configuration and Runtime Example

In this section, we use the topology illustrated in Figure 6.3 above in order
to provide a more detailed insight into the steps needed to configure the EA-
Engine, but also in order to illustrate the interactions between the various
components both at configuration time and at run time. As already outlined,



6.4 Edge Analytics Engine 183

the example involves two devices (CPS1, CPS2), which generate two data
streams under a topic each one named after their ID. We therefore need to:

• Apply some pre-processing to each one of the two streams (by Processor
1 and Processor 2).

• Apply an Analytics algorithm (Processor 3) to the pre-processed
streams.

• Persist the result to a Data storage (i.e. the Data Storage).

Figure 6.4 illustrates the steps required to register a new processor, build
the Edge Analytics configuration (AM), register it to the EA-Engine and
instantiate the appropriate Analytics Processors. In particular:

• The user of the EA-Engine (e.g. a solution integrator) registers new
Processors required to the Model Repository. To this end, it can use an
API or a visual tool.

• In order to set up an AM, all the available processors are discovered
from the Model Repository and all the available Data Sources (DSMs)
are discovered from the Distributed Ledger.

• The user has all the required information and with the help of the
Configuration Dashboards can now set up a valid AM flow for the four
Analytic Processors.

• The AM is set up based on a proper combination of devices data
streams and processors. In this example, the AM includes the required
configurations for Processor 1 (APM1), Processor 2 (APM2), Processor
3 (APM3) and Processor 4 (APM4).

Figure 6.4 EA-Engine configuration example (Sequence Diagram).



184 A Framework for Flexible and Programmable Data Analytics

• The AM is accordingly sent to the EA-Engine, which instantiates the
four Analytic Processors.

• The output of the AM is automatically described in a new DSM, which is
registered to the Device Registry as a new Data Source and synchronized
with the Distributed Ledger through the Device Registry mechanisms.

• The capabilities of the new processor are also registered to the Dis-
tributed Ledger to enable the discoverability of the new processor for
future use.

Figure 6.5 illustrates the interactions between the EA-Engine compo-
nents, when the execution of the AM starts. These include:

• Instructing the EA-Engine to start the execution of the analytics task, as
specified in the analytics manifest (AM1). To this end, the EA-Engine
retrieves AM1 from the Distributed Ledger in order to instantiate the
processors that AM1 comprises.

• The EA-Engine instantiates each of the four EA-Processors described in
the AM1. Specifically:

◦ As part of the instantiation of Processor 1 (pre-processor), its
specification (APM1) contains the configurations of Processor 1,

Figure 6.5 EA-Engine initialization example (Sequence Diagram).



6.4 Edge Analytics Engine 185

which includes data inputs, data outputs and processor attributes
required for the instantiation. The data type and data model of
CPS1 are retrieved from the Ledger Service in order to apply
the pre-processing properly. The processor data output description
is provided within a new DSM that is registered to the Device
Registry. Then, the EA-Processor (Processor 1) subscribes for
the “CPS1” data stream of the Data Bus to apply the required
pre-processing.

◦ As part of the instantiation of Processor 2 (pre-processor), its
specification (i.e. APM2) contains the configurations of Proces-
sor 2, which includes data inputs, data outputs and processor
attributes required for the instantiation. The data type and data
model of CPS2 are retrieved from the Ledger Service. Also, the
EA-Processor (Processor 2) subscribes for the “CPS2” data stream
of the Data Bus in order to apply the required pre-processing.

◦ As part of the instantiation of Processor 3 (analytics processor), its
specification (APM3) contains the configurations of Processor 3.
Processor 3 subscribes to the topics named after the IDs of Proces-
sor 1 and Processor 2 (“CPS1-Processed 1” and “CPS2-Proceesed
2”, respectively) in order to apply the required analytics.

◦ Finally, as part of the instantiation of Processor 4 (store processor),
its specification (APM4) is retrieved from the EA-Storage. Proces-
sor 4 subscribes to the topics named after the ID of Processor 3
(“CPS1-CPS2-Processed 3”) in order to store it to the data storage.

The runtime operation of the EA-Engine is further presented in
Figure 6.6, which illustrates the sequence of runtime interactions of the
components of the engine, following the conclusion of the above-listed
configurations. At runtime, all the different processors run continuously in
parallel until they are stopped from the end-user through a proper API
command or based on the use of the visual tool. In particular:

• Processor 1 gets notified every time new CPS1 data is published and
collects it. It applies the required pre-processing and pushes the pre-
processed data stream back to the data bus under the topic named after
its own ID (“CPS1-Processed 1”).

• Processor 2 gets notified every time new CPS2 data is published and
collects it. It applies the required pre-processing and pushes the pre-
processed data stream back to the data bus under the topic named after
its own ID (“CPS2-Processed 2”).



186 A Framework for Flexible and Programmable Data Analytics

Figure 6.6 EA-Engine runtime operation example (Sequence Diagram).

• Processor 3 gets notified every time new Processor 1 and Processor 2
data is published and collects it. It applies the required analytic and
pushes the processed data stream back to the data bus under the topic
named after its own ID (“CPS1-CPS2-Processed 3”).

• Processor 4 gets notified every time new Processor 3 data is published
and collects it. It pushes the collected data to the EA-Storage to be
persisted.

6.5 Distributed Ledger and Data Analytics Engine

6.5.1 Global Factory-wide Analytics and the DA-Engine

Given the presented functionalities of the EA-Engine, the DA-Engine enables
the combination and synchronization of data from multiple edge analytics



6.5 Distributed Ledger and Data Analytics Engine 187

pipelines towards implementing factory-wide analytics. At a high level, the
concept of global analytics workflows is similar to the one of edge analytics
ones. In particular, an Analytics Manifest (AM) is used to express an analytics
workflow based on the combination of analytics tasks that are configured
and executed at edge gateways based on properly configured instances of the
EA-Engine. To this end, a mechanism for constructing AMs that comprise
global analytics tasks is provided through the Open API of the DDA. In
particular, the Open API provides the means for creating, updating, deleting,
managing and configuring global analytics tasks based on the combination
and orchestration of edge analytics workflows.

At a lower level, the implementation of the AM configuration and
execution mechanism is offered in two flavours:

• A conventional edge computing implementation, which is subject to
conventional central control. It involves an analytics engine that com-
bines edge analytics workflows to global ones for a central orchestration
point. That is in line with the classical edge/cloud computing paradigm.

• A novel distributed ledger implementation, which is based on a dis-
ruptive cooperative approach without central control. This cooperative
approach is based on the deployment and use of ledger services in each
one of the edge nodes that participate in the DDA infrastructure. In
particular, ledger services are deployed in each of the edge gateways in
order to enable a consensus-based approach regarding the configuration
of the global analytics task, as well as its execution based on publishing
and combination of data from the edge gateways. Such a collaborative
approach is fully decentralized and hence does not provide a single point
of failure. Moreover, it can be generalized beyond edge gateways in
order to enable data analytics workflows that comprise data from field
objects (i.e. smart objects) and cloud nodes as well.

The next sub-section illustrates the scope and operation of these ledger
services, which enable a novel and more interesting approach to supporting
the functionalities of the DA-Engine.

6.5.2 Distributed Ledger Services in the FAR-EDGE Platform

For the implementation of the DA-Engine, we leverage the services of a
permissioned blockchain, rather than of one of the popular public blockchains
such as Bitcoin and Ethereum. The rationale behind this decision is that
permissioned blockchains provide the means for controlling participation and



188 A Framework for Flexible and Programmable Data Analytics

authenticating participants to the blockchain network, while offering superior
performance over public blockchains [12]. The latter performance is largely
due to the fact that peer nodes (i.e. participants) in these blockchains need not
employ complex Proof-of-Work (PoW) mechanisms. For these reasons, a per-
missioned blockchain is more appropriate for coordinating and synchronizing
distributed processes in an industrial context.

In this context, a Ledger Service is a Chaincode program for IBM’s
Hyperledger Fabric, which uses some of the utility services that are provided
by the FAR-EDGE platform. Chaincode is always designed to support a well-
defined, application-specific process. Hence, the DDA implementation is not
based on a generic Ledger Service implementation, but rather on application-
specific Ledger Service. Nevertheless, four categories of abstract services
are defined as part of the Ledger Tier of the FAR-EDGE Architecture,
namely Orchestration, Configuration, Data Publishing and Synchronization.
These categories are used to classify the application-specific implementations
of Ledger Services rather than to denote some general-purpose framework
services. In particular:

• Orchestration Services are related to edge automation workflows,
aiming at synchronizing distributed edge automation tasks in factory-
wide automation workflows.

• Data Publishing Services support edge analytics algorithms, through
the combination of multiple edge analytics pipelines in factory-wide
workflows.

• Synchronization Services enable the reconciliation of several indepen-
dent views of the same dataset across the factory.

• Configuration Services support the decentralized system administration.

Overall, these four categories of Ledger Services cover all the mandatory
platform-level functionality that is required for Edge Computing to deliver its
promises in a manufacturing context. The Distributed Ledger of the FAR-
EDGE platform can then be used to deploy any kind of custom Ledger
Service that meets the secure state sharing and/or decentralized coordination
requirements of user applications.

Any concrete Ledger Service implementation is responsible for
three things:

• Defining and managing a data model. While the global state of
the Ledger Service is automatically maintained in the background by
the DL-Engine – which logs every state change in the Ledger that is



6.5 Distributed Ledger and Data Analytics Engine 189

replicated across all the peer nodes of the system – the data model of
such state is shaped in code by the Ledger Service implementation itself.
Practically speaking, the data store of a Ledger Service is initialized
according to a specific data model by a special code section when the
instance is first deployed. Once initialized, no structural changes in the
data model occur.

• Defining and executing business logic. Application logic is coded in
software and exposed on the network as a number of application-specific
service endpoints, which can be called by clients. These service calls
represent the API of the Ledger Service. Through them, callers can
query and change the global state of the Ledger Service. The API can be
invoked by any authorized client on the network following some well-
documented calling conventions of the DL-Engine. Moreover, we have
implemented an additional layer of software in order to simplify the
development of client applications: each Ledger Service implemented
in the project comes with its own client software library – called Ledger
Client – which an application can embed and use as a local proxy of
the actual Ledge Service API. The Ledger Client provides an in-process
API, which has simple call semantics.

• Enforcing (and possibly also defining) fine-grained access and/or
usage policies. This is optional one, as a basic level of access control
is already provided by the DL-Engine, which requires all clients to
have a strong digital identity and be approved by a central authority.
When a more fine-grained control is required – e.g. an Access Control
List (ACL) applied to individual service endpoints – the Ledger Service
implementation is required to manage it as part of its code.

In the specific context of the FAR-EDGE Platform, peer nodes are
usually – but not mandatorily – installed on Edge Gateway servers, together
with Edge Tier components. This setup allows for DL clients that run on Edge
Gateways, like the EA-Engine, to refer to a localhost address by default when
resolving Ledger Service endpoints. However, this is not the only possible
way to deploy the Ledger Tier in FAR-EDGE-enabled system: peer nodes
can easily be deployed on the Cloud Tier to make them addressable from
anywhere or even embedded in Smart Objects on the Field Tier to make them
fully autonomous systems. In complex scenarios, peer nodes can actually be
spread across all the three physical layers of the FAR-EDGE architecture
(Field, Edge and Cloud), exploiting the flexibility of the DL enabler to its
full extent.



190 A Framework for Flexible and Programmable Data Analytics

Figure 6.7 DL deployment choices (right) and EG deployment detail (left).

6.5.3 Distributed Ledger Services and DA-Engine

The DA-Engine takes advance of two of the above-listed types of Ledger
Services, namely the Data Publishing and Configuration services. In partic-
ular, the DDA infrastructure implements Data Publishing and Configuration
services at the Ledger Tier, in order to configure factory-wide AMs and to
implement the respective analytics. In particular:

• Configuration Services: DDA configurations (i.e. AMs) are repre-
sented as smart contracts. Each smart contract is executed by the peers
(notably edge gateway) that participate in the configuration and execu-
tion of the factory-wide AM. A set of Configuration services (Ledger
Services) are used to ensure the configuration of the global analytics
manifest based on consensus across the participating nodes. In this case,
the distributed ledger is used as a distributed database that holds all the
analytics configurations (in terms of manifests and their component).
This allows the resilient configuration of global analytics without a need
for centralized coordination and control from a single point of (potential)
failure.

• Publishing Services: Publishing Services are implemented in order
to compute factory-wide analytics tasks, based on data streams and
analytics (i.e. processors) available across multiple instances of the EA-
Engine, which are deployed in different Edge Gateways (EGs). The EGs
act as peers in this case.



6.6 Practical Validation and Implementation 191

6.6 Practical Validation and Implementation

6.6.1 Open-source Implementation

The DA-Engine is implemented as open-source software/middleware,
which is available at the FAR-EDGE github: https://github.com/far-
edge/distributed-data-analytics. In the absence of general-purpose Ledger
Services, the implementation includes the middleware for edge analytics
framework of Section 6.3, as well as an Open API for creating Analytics
Manifests for global, factory-wide analytics. Hence, a subset of the DDA
architecture has been actually implemented, which is shown in Figure 6.8.
As evident from the figure, the open-source implementation includes the
EA-Engine and the DA-Engine, without however general-purpose ledger ser-
vices, which is the reason why the Distributed Ledger database is not depicted
in the figure. In a nutshell, the implementation includes and integrates the
DR&P, the Data Bus, the Device Registry, the Data Storage (including both
cloud and local data storage) and the Model Repository components.

The structure of the open-source codebase is as follows:

• edge-analytics-engine, which contains the source code of the
EA-Engine component.

Figure 6.8 Elements of the open-source implementation of the DDA.



192 A Framework for Flexible and Programmable Data Analytics

Figure 6.9 DDA Visualization and administration dashboard.

• open-api-for-analytics, which contains the component that implements
and supports the Open API for Analytics.

• mqtt-random-data-publisher, which contains an application that sim-
ulates the functionality of DR&P component in order to facilitate the
easier setup of simple demonstrators.

Furthermore, a set of administration dashboards that visualize the main
entities of the DDA have been implemented. It allows the monitoring and
the configuration of main entities like processors, data sources, devices and
manifests (see Figure 6.9).

6.6.2 Practical Validation

6.6.2.1 Validation environment
The DDA Infrastructure has been also validated in a pilot plant and specif-
ically in the pilot plant of SmartFactoryKL, which is a network with more
than 45 industrial and research organizations that support and use an Industrie
4.0 testbed in Kaiserslautern, Germany. In particular, we set up a relatively
simple analytics scenario over three Infrastructure Boxes (IB) of the pilot
plant. Each Infrastructure Box (IB) provides energy sensors information



6.6 Practical Validation and Implementation 193

through an MQTT interface (Broker), where Data are provided every 60
seconds. The available energy information provided includes data about the
TotalRealPower, the TotalReactivePower, the TotalApparentPower, the Total-
RealEnergy, the TotalReactiveEnergy and the TotalApparentEnergy that are
consumed and used by the machine. The business rationale behind analyzing
this data is to help the plant operator in finding anomalies during production.
Indeed, with the power and energy values, it is possible to understand the
machine behaviour as well as the “response time” of each business process.
Moreover, the use of streaming processing and high-performance analytics
enables the identification and understanding of abnormalities almost in real
time.

The following components were deployed and used in the pilot plant:

• The Data Routing and Pre-processing (DR&PP) Component
(including device registry service), which forwards data generated by
Field sources.

• The Edge Tier Data Storage, which stores data stemming from the
EA-Engine and provides a result storage repository.

• The Model Repository, which supports the sharing of common digital
models, which are used from the various analytics components.

• The EA-Engine, which is the programmable and configurable environ-
ment that executes data analytics logic locally.

• The Analytics Processor, which implements the data processing func-
tionalities for an edge analytics task.

The components are deployed in a Virtual Machine (VM) provided within
the Smart Factory premises, which had access to data from the IB based on
the MQTT protocol. The DDA has been tested and validated in two different
scenarios, involving edge analytics and (global) distributed analytics. Various
test cases have successfully run and analytics results have been correctly
computed. The following subsections illustrate the setup of the EA-Engine
and the DA-Engine in the scope of the two scenarios.

6.6.2.2 Edge analytics validation scenarios
For the Edge Analytics, we provide the hourly daily consumption from
each Infrastructure Box for two parameters, namely TotalRealPower and
TotalRealEnergy. The following steps have been followed for setting up and
modelling the Edge Analytics scenario:

• IB Modelling: One Edge Gateway is built with each IB. The latter is
modelled in line with the FAR-EDGE digital models for data analytics.



194 A Framework for Flexible and Programmable Data Analytics

The respective data model is stored at the Data Model repository in
the cloud.

• IB Instantiation & Registration: The specified Data models are used
to generate the Data Source Manifest (DSM) and register it to each Edge
Gateway.

• Edge Analytics Modelling:The required processor is modelled with
the help of an Analytics Processor Definition (APD). In particular, the
following processors are defined: (i) A processor for hourly average
calculation from a single data stream and (ii) Processor for persisting
results in a MongoDB. The above information is also stored at the Data
Model repository in the cloud.

• Edge Analytics Installation & Registration: The specified Data
models are used to generate the Analytics Processor Manifest (APM)
for each required Processor, which is registered to the Edge Gateway.
The following processors are set up: (i) A Processor for hourly average
calculation from the TotalRealPower data stream; (ii) A Processor for
hourly average calculation from the TotalRealEnergy data stream; (iii)
A Processor for persisting results in the MongoDB of an EG in order to
support edge analytics calculations; and (iv) A Processor for persisting
results in a global (cloud) MongoDB in order to support (global) dis-
tributed analytics. Moreover, an AM is also created in order to combined
values and data from the instantiated processors. The AM is registered
and started through the API of the EG.

Following the setup and configuration of the system, runtime operations
are supported, including the following information flows:

• IBs pushes the data to MQTT broker.
• The DR&P retrieves raw/text data from MQTT broker and pushes them

to an Apache Kafka Data Bus.
• The data are retrieved and processed from the Analytics Engine.
• The data are finally stored to the local Data Storage repository.

6.6.2.3 (Global) distributed analytics validation scenarios
For the Distributed Analytics validation, we provide the hourly daily con-
sumption from all IBs for the TotalRealPower and the TotalRealEnergy
parameters. The following steps are also needed in addition to setting up the
EA-Engine:

• Distributed Analytics Modelling: The required processors will be
modelled with the help of an Analytics Processor Definition (APD)



6.7 Conclusions 195

construct of the FAR-EDGE data models. The processors that are set up
include: (i) A Processor for hourly average calculation for values from
a MongoDB and (ii) A Processor for persisting results in a MongoDB.
The above information is stored at the Data Model repository, which
resides on the cloud.

• Distributed Analytics Installation & Registration: The specified data
models are used to generate the Analytics Processor Manifest (APM) for
each required Processor and are registered to the Cloud. The following
processors are registered: (i) A Processor for hourly average calculation
from the TotalRealPower parameters for all IBs based on information
residing in the (global) MongoDB in the cloud; (ii) A Processor for
hourly average calculation from TotalRealEnergy for all IBs based on
information residing in the (global) MongoDB in the cloud; and (iii) A
Processor for persisting results in the (global) MongoDB in the cloud.
An Analytics Manifest (AM) will be generated for combining data
from the instantiated Processors. The AM will be registered and started
through the Open API of the DA-Engine.

6.7 Conclusions

Distributed data analytics is a key functionality for digital automation in
industrial plants, given that several automation and simulation functions rely
on the collection and analysis of large volumes of data (including streaming
data) from the shopfloor. In this chapter, we have presented a framework
for programmable, configurable, flexible and resilient distributed analytics.
The framework takes advantage of state-of-the-art data streaming frameworks
(such as Apache Kafka) in order to provide high-performance analytics.
At the same time however, it augments these frameworks with the ability
to dynamically register data sources in repository and accordingly to use
registered data sources in order to compute analytics workflows. The latter are
also configurable and composed of three types of data processing functions,
including pre-processing, storage and analytics functions. The whole process
is reflected and configured based on digital models that reflect the status of
the factory in terms of data sources, devices, edge gateways and the analytics
workflows that they instantiate and support.

The analytics framework operates at two levels: (i) An edge analytics
level, where analytics close to the field are defined and performance and
(ii) A global factory-wide level, where data from multiple edge analytics
deployments can be combined in arbitrary workflows. We have also presented



196 A Framework for Flexible and Programmable Data Analytics

two approaches for configuring and executing global level analytics: One
following the conventional edge/cloud computing paradigm and another that
support decentralized analytics configurations and computations based on the
use of distributed ledger technologies. The latter approach holds the promise
to increase the resilience of analytics deployments, while eliminated single
point of failure and is therefore one of our research directions.

One of the merits of our framework is that it is implemented as open-
source software/middleware. Following its more extensive validation and
the improvement of its robustness, this framework could be adopted by
the Industry 4.0 community. It could be really useful for researchers and
academics who experiment with distributed analytics and edge computing, as
well as for solution providers who are seeking to extend open-source libraries
as part of the development of their own solutions.

Acknowlegdements

This work was carried out in the scope of the FAR-EDGE project (H2020-
703094). The authors acknowledge help and contributions from all partners
of the project.

References

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, ‘Industry 4.0’,
Business & Information Systems Engineering, vol. 6, no. 4, pp. 239,
2014.

[2] J. Soldatos (editor) ‘Building Blocks for IoT Analytics’, River
Publishers Series in Signal, Image and Speech Processing, November
2016, ISBN: 9788793519039, doi: 10.13052/rp-9788793519046.

[3] J. Soldatos, S. Gusmeroli, P. Malo, G. Di Orio ‘Internet of Things Appli-
cations in Future Manufacturing’, In: Digitising the Industry Internet of
Things Connecting the Physical, Digital and Virtual Worlds, Editors: Dr.
Ovidiu Vermesan, Dr. Peter Friess. 2016. ISBN: 978-87-93379-81-7.

[4] M. Isaja, J. Soldatos, N. Kefalakis, V. Gezer ‘Edge Computing and
Blockchains for Flexible and Programmable Analytics in Industrial
Automation’, International Journal on Advances in Systems and Mea-
surements, vol. 11 no. 3 and 4, December 2018 (to appear).

[5] T. Yu, X. Wang, A. Shami ‘A Novel Fog Computing Enabled Temporal
Data Reduction Scheme in IoT Systems’, GLOBECOM 2017 - 2017
IEEE Global Communications Conference, pp. 1–5, 2017.



References 197

[6] S. Mahadev et al. ‘Edge analytics in the internet of things’, IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[7] M. Yuan, K. Deng, J. Zeng, Y. Li, B. Ni, X. He, F. Wang,
W. Dai, Q. Yang, “OceanST: A distributed analytic system for large-
scale spatiotemporal mobile broadband data”, PVLDB, vol. 7, no. 13,
pp. 1561–1564, 2014.

[8] A. Jayaram ‘An IIoT quality global enterprise inventory management
model for automation and demand forecasting based on cloud’, Com-
puting Communication and Automation (ICCCA) 2017 International
Conference on, pp. 1258–1263, 2017.

[9] J. Soldatos, N. Kefalakis, M. Serrano, M. Hauswirth, A. Zaslavsky,
P. Jayaraman, and P. Dimitropoulos ‘Practical IoT deployment on
Smart Manufacturing and Smart Agriculture based on an Open Source
Platform’, in Internet of Things Success Stories, 2014.

[10] John Soldatos, Nikos Kefalakis et. al. ‘OpenIoT: Open Source Internet-
of-Things in the Cloud’, OpenIoT@SoftCOM, 2014: 13–25, 2014.

[11] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wan. ‘An Overview of
Blockchain Technology: Architecture, Consensus, and Future Trends’,
Proceedings of IEEE 6th International Congress on Big Data, 2017.

[12] Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains”, Proceedings of the Thirteenth
EuroSys Conference (EuroSys ’18), Article No. 30, Porto, Portugal,
April 23–26, 2018.




