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ABSTRACT 

Research and development have increasingly focused on automating mobile machines to reduce the 
negative influence of labor shortages and high labor costs. Object detection is a key requirement for 
the automation of mobile machines. The transfer of the developed methods to the environment of 
mobile machines, e.g. a forest, a building site, or in mining, is challenging. Objects of the same class 
can have significantly different phenotypes and the surroundings cannot be controlled, weather as 
well as lighting conditions can change. Neural networks are the state-of-the-art method for detecting 
and classifying objects for image sensors. The required datasets as well as network architectures 
mastering object detection across different forest areas have not yet been presented. We collected two 
datasets, MobimaWoodlands and MobimaSkidRoads, one with a handheld camera and one captured 
while driving on skid roads in different areas and in different seasons. Three network architectures 
for the instance segmentation with two different backbones were trained on the two datasets to 
segment stems, trees, and stumps. In a subsequent step, the trained networks were evaluated on two 
public datasets which have not been used in the training process. With an adapted training pipeline, 
we achieved a similar accuracy with a slight decrease in the AP of 0.1 on one of the unknown datasets 
with similar tree specimens. On the second unknown dataset, the AP decreased more significantly by 
0.3. The findings highlight that generalization over various forest areas is possible, even in demanding 
outdoor settings. However, the portability to unknown domains cannot be guaranteed especially if 
different tree species are present, which continues to be an issue in many applications.  
Keywords: Object Detection, Forest, Neural Networks, Instance Segmentation

1. INTRODUCTION 

Object detection is one of the key requirements for the automation of mobile working machines [1]. 
In recent years, neuronal networks have become the state-of-the-art approach [2]. Object detection 
tasks are generally divided into three subdomains: object classification, semantic segmentation, and 
instance segmentation. Object classification generally provides knowledge of whether an object of a 
specific class is present in the picture; semantic segmentation provides the class for every object; and 
instance segmentation separates each instance of the same object class [3].  

Various works have already evaluated partial aspects of instance segmentation with neural networks 
in forest environments, such as object detection or instance segmentation of individual object 
categories. Two main challenges remain regarding instance segmentation in forest environments. The 
distinction between individual instances and the background (stuff, [4]) is often ambiguous. In many 
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cases no distinct differentiation between individual trees (foreground) and trees in the background 
(stuff) is possible. Additionally, most research in the computer vision area is focused on the COCO 
Dataset ([5]) and only a handful of public datasets for forestry environments are available [6], [7]. 
Datasets are key aspects of object detection, especially in environments with many varying objects. 
An optimal algorithm can recognize all possible variations of the specific objects (perfect 
generalization). When the evaluation dataset deviates from the training dataset, e.g., if a tree species 
is not included in the training dataset, the algorithm needs to be able to extrapolate the features of the 
object class (e.g. trees) to recognize other possible variations. Encountering data outside the training 
dataset's scope (out-of-distribution data) is inevitable in forest environments. A dataset featuring four 
seasons, sunny and cloudy days, coniferous, deciduous, and mixed forests for three different age 
classes already has at least 4 ⋅ 2 ⋅ 3 ⋅ 3 = 72 different parameter combinations. In integrating different 
tree species and additional objects, the number of parameter combinations increases rapidly, and a 
huge number of images are already required to cover the parameter space, even without considering 
the different phenotypes of the same tree species. The same issue comes up regarding the bias of 
different object classes. Generating a forest dataset with an equal number of human instances and tree 
instances is unfeasible. In consequence, object recognition for autonomous mobile working machines 
requires robustness regarding biased and incomplete training datasets. 

In recent years, many new architectures have been presented. Mostly the improved accuracy comes 
with increased complexity demanding higher computational power. In the environment of mobile 
machines, transferability to unknown areas is often more important than accuracy on one collected 
training dataset. Computational power is costly, and it is in dispute whether increasing the complexity 
is worthwhile for the application in mobile machines. In this paper, we compared three state-of-the-
art instance segmentation architectures on two new datasets, MobimaWoodlands, and 
MobimaSkidRoads, as well as their performance when applied to a completely unknown dataset from 
a different area. The validation dataset consisted of images that had been separated from the dataset 
and had not been used in the training of the network. However, they share the same tree variations as 
already encountered in the training data set. In contrast to the validation data, we focused on the 
transferability of the trained networks to an unknown forest area with different tree variations and a 
different environment. For this purpose, we used the public FinnWoodlands and CanaTree100 
datasets [6], [7]. The implemented training pipeline focus on transferability of the trained models 
instead on maximizing the mean average precision (mAP) over a single dataset.  

The paper is structured as follows: First, the state if the art is reviewed in Section 2. Section 3 presents 
the dataset and the object classes. In Section 4 the setup and the training pipeline are described. 
Section 5 evaluates the training results and transferability to other datasets before Section 6 concludes 
the paper and gives an outlook on further approaches. 

2. STATE OF THE ART 

2.1. Evaluation Metrics 

Several evaluation metrics are known to evaluate the quality of the predictions generated by the 
instance segmentation algorithms [8]. We focus on the Intersection over Union (IoU) and the Average 
Precision (AP). 

Intersection over Union  

The intersection over union (IoU) is a metric of the accuracy of individual bounding boxes and masks. 
This metric, also known as the Jaccard index, is calculated from the predicted label 𝐵𝐵𝑝𝑝𝑝𝑝 and the ground 
truth 𝐵𝐵𝑔𝑔𝑔𝑔 according to the following equation [9]: 
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𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐵𝐵𝑝𝑝𝑝𝑝 ∩ 𝐵𝐵𝑔𝑔𝑔𝑔
𝐵𝐵𝑝𝑝𝑝𝑝 ∪ 𝐵𝐵𝑔𝑔𝑔𝑔

 (1) 

A predicted mask/bounding box was a correct detection, if its IoU with the ground truth was higher 
than a specified threshold. The IoU threshold is given as percent, e.g. 𝐴𝐴𝑃𝑃50 for an 𝐼𝐼𝐼𝐼𝐼𝐼 > 0.5  

Average Precision and Recall  

Based on the IoU with regard to the ground truth, the following cases were separated: 

• True positive (TP): Correct detection of an object. 

• False negative (FN): Not detected existing (labeled) object. 

• False positive (FP): Incorrect detection of an object that does not exist or a misaligned 
detection of an existing object. 

The true-negative case of a correctly undetected annotation is omitted in the context of object 
detection due to the large number of theoretically possible bounding boxes that should not be 
detected.  

Based on these cases, the precision and the recall are defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
, 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

 (2) 

The precision is a metric for the performance of the network with regard to the detected objects. The 
recall is, on the other side, a metric for the performance with regard to all existing objects. Both the 
precision and the recall depend on the IoU threshold for true positives. If the IoU threshold is small, 
the recall is typically larger while the precision decreases. The precision-recall curve is constructed 
from all recall and precision values for an IoU threshold from zero to one. The interpolated area under 
the precision-recall curve for a given IoU threshold is denoted by Average Precision (AP) [8]. The 
𝐴𝐴𝑃𝑃0.5:0.95 is the average of the AP for the IoU thresholds from 0.5 to 0.95,  
𝐼𝐼𝐼𝐼𝐼𝐼 ∈  {0.50, 0.55, . . . ,0.95} [9]. The mean Average-Precision (mAP) is the arithmetic mean of all 
AP values of each class. 

2.2. Network Architectures 

Three different network architectures, Mask R-CNN, Cascade Mask-RCNN, and Mask2Former were 
regarded in the following work and explained in detail. The Mask R-CNN architectures are two-stage 
architectures with a region proposal network and a region of interest head. The Mask2Former 
architecture on the other hand is a single-stage transformer-based architecture. All architectures 
require a backbone network for feature recognition. In the state of the art, further architectures were 
used in forest environments, e.g., Rotated Mask R-CNN, Yolact++ and EfficientPS which will not be 
discussed in detail. 

Mask R-CNN 

Mask R-CNN ([10]) is a two-stage detector architecture developed as an extension of the original 
Faster R-CNN architecture [11]. The first stage consists of the backbone (e.g. a fully convolutional 
network) and a region proposal network, which determines the regions of interest. In the second stage, 
the algorithm predicts the class, a bounding box, and a binary mask for each region of interest. In 
addition to the Faster R-CNN architecture, Mask R-CNN has additional convolutional layers for mask 
generation. Figure 1 depicts an overview of the Mask-RCNN architecture. In the second stage, all 
regions of interest can be evaluated in parallel.   
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Figure 1: The Mask R-CNN framework for instance segmentation [10]. 

Cascade Mask-RCNN 

Cascade Mask R-CNN is an extension to the original Mask R-CNN framework to improve high 
Intersection over Union (IoU) threshold detections [12]. Cascade Mask R-CNN is a two-stage 
architecture composed of a series of detectors in the second stage. The detectors are trained in parallel, 
each with the detector output of the previous. Each subsequent detector has a higher IoU threshold 
than the previous. This adapted architecture should improve the hypotheses' quality and guarantee a 
positive training set for each detector. Additionally, it aims to minimize overfitting. The first stage is 
identical to the Mask R-CNN architectures, using identical backbones. 

Mask2Former 

Mask2Former is a transformer-based universal algorithm for image segmentation [13]. In contrast to 
the other two architectures presented, it utilizes transformers for the segmentation tasks and can be 
theoretically used to perform panoptic, instance, and semantic segmentation without retraining. The 
algorithm consists of three modules: the backbone, the pixel decoder, and the transformer decoder. 
The backbone architecture (e.g. Swin or Resnet) extracts low-resolution feature maps from the input 
image. These are then upscaled to high-resolution feature masks by a pixel decoder. The transformer 
decoder uses the features of the pixel decoder to generate object queries. The output masks are a 
combination of the feature maps from the pixel decoder and the object queries from the transformer 
decoder. 

2.3. Feature Backbones 

All the presented instance segmentation architectures have in common that they use a backbone for 
feature extraction. There are a vast number of different backbones available, each with advantages 
and drawbacks. In this study, we focus on two backbones, the residual network ResNet presented by 
He et al., with a depth of 101 layers [14] (R101) and the Swin-T backbone [15] of Liu et al. The 
Swin-T backbone is a shifted window transform backbone. The Swin-T backbone addresses the 
challenge of high resolutions and different feature scales by a hierarchical transformer architecture. 
The image is partitioned into regular windows and the self-attention is computed within each window. 
In the next layers, the windows are shifted. This architecture aims to provide flexibility for different 
feature scales while maintaining linear computational complexity with respect to image size. 

2.4. Applications in Forestry 

The first application of instance segmentation for forestry equipment focused on log detection for 
autonomous grasping with a forwarder grapple. For this purpose, Fortin et al. recorded the 
TimberSeg 1.0 dataset, consisting of 220 images [16]. They used Mask R-CNN, Rotated Mask 
R-CNN, and Mask2Former for the segmentation. The lowest accuracy was achieved by Mask R-
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CNN, followed by Rotated Mask R-CNN with a 12 percentage points higher mean Average Precision 
(mAP) of 31.38 %. By far the best results were achieved by Mask2Former with a mAP of 57.53%. 
The algorithms showed good robustness against changing external influences such as snow, glare, 
and darkness. Geiger et al. investigated the partial automation of the loading process [17]. The 
YOLACT++ architecture was used to detect and segment the stems before gripping. The trained 
network reached a mAP over all classes of 56.65. 

Deep learning and image classification with neuronal networks were studied by Liu et. Al in [18]. 
Liu et al. classified tree specimens and stock volume to provide a more efficient and faster alternative 
to conventional ground surveys. Grondin et al. created the synthetic dataset SYNTHTHREE43K 
consisting of 43,000 images, and the CanaTree100 dataset, consisting of 100 RGB and depth images 
of Canadian forests in different weather conditions [7], [19]. The annotated masks and bounding 
boxes include trees and other objects such as stumps and grass. In addition to the masks and bounding 
boxes, the labels also include the position of the cut, the diameter, and the inclination. They used 
Mask R-CNN and Cascade Mask R-CNN with different backbones for the instance segmentation. 
After initial training on synthetic images in [19], the model was adapted to the real images in [7]. The 
Cascade Mask R-CNN algorithm gave better results than Mask R-CNN on all backbones, however, 
both algorithms reached high mean average precision of AP-50 > 85 and AP-50:95 > 60 for both 
bounding boxes and segmentation. In the second step, the trained model was applied to an unknown 
Portuguese dataset. A significant degradation of the results was observed.  

Lagos et al. aimed to create a dataset for data-driven methods in forest environments [6]. Their 
FinnWoodlands dataset contains 300 RGB stereo images, point clouds, and sparse depth maps. They 
provide manual annotations for semantic, instance, and panoptic segmentation. The instance 
categories include three types of trees and the obstacles: “Lake”, “Ground” and “Track”. In addition 
to providing the data, they evaluated the instance segmentation with Mask R-CNN and EfficientPS 
where they achieved an AP-50 of 28% and 50% respectively. 

3. DATASETS 

For this study, two annotated datasets of forest areas have been created. The MobimaWoodlands 
(doi:10.35097/1749) dataset consists of two subsets, MobimaWoodlands/Winter and 
MobimaWoodlands/Summer, with 126 images each. Both subsets are captured manually with 
handheld cameras. This dataset features typically middle-European mixed forests in summer and in 
winter. The summer subset is in 16:9 landscape format, while the winter subset is in 4:3 portrait 
orientation. The second dataset, MobimaSkidroads (doi:10.35097/1750), consists of 293 images 
captured while driving on a skid or forest road with an industrial camera mounted on a vehicle. The 
dataset is completely in 16:9 landscape format and includes mixed and coniferous forests in summer 
and winter. Example images with annotations are displayed in Figure 2. 

https://doi.org/10.35097/1749
https://doi.org/10.35097/1750
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(a) 

 
(b) 

Figure 2: Example images with annotations (blue: stems, purple: trees, green: stumps) of 
MobimaWoodlands (a) and MobimaSkidRoads (b) 

The datasets include mask and bounding box annotations for the five object classes described in 
Table 1. The number of objects per class is given in Table 2. 

Table 1: Object classes 

Class Description 

Stems Trunks and cutted trees with a diameter of approx. ≥ 10 𝑃𝑃𝑐𝑐 
Trees Trees with a diameter of approx. ≥ 10 𝑃𝑃𝑐𝑐 
Stumps Tree stumps 

Obstacles Non-passable objects not being subject to any of the other 
groups (e.g. stones, raised hides, way signs) 

Persons Complete or partially visible humans 

The datasets were randomly divided into a training set and a validation set by a ratio of 0.8/0.2. The 
number of objects per class shows a significant bias. The number of annotated tree instances exceeds 
largely the other classes, while obstacles and persons are almost not present. However, unbiased 
datasets are challenging as the number of trees exceeds the number of stems, stumps, and especially 
humans present in a forest.  

Table 2: Number of objects per class in the training/validation sets 

Class MobimaWoodlands/ 
Winter 

MobimaWoodlands/ 
Summer MobimaSkidRoads 

Stems 175/34 177/54 83/34 
Trees 425/108 697/232 2762/672 
Stumps 13/1 53/17 67/19 
Obstacles 6/0 7/11 32/1 
Persons 0/0 10/1 0/0 

Images 100/26 100/26 234/59 

4. TRAINING SETUP 

Three different network architectures, Mask R-CNN, Cascade Mask-RCNN, and Mask2Former were 
implemented in the following comparison. The architecture implementations from the PyTorch-based 
library MMdetection were employed [20]. In this study, the Swin-T backbone is used for each 
architecture except for the Mask R-CNN architecture, where we compared the results of the R101 
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backbone with those of the more complex Swin-T backbone.  

All backbones were initialized with pre-trained weights from the COCO dataset. The weights were 
obtained from the MMDetection library. Training detection backbones is time-consuming; pre-
trained backbones allow fast transfer learning on new datasets and minimize the computational time 
for training adapted detectors. Additionally, the first stages of the backbone layers have been frozen, 
as studies indicate that retraining the complete backbone has no significant benefit [21]. For the Mask 
R-CNN and Cascade Mask R-CNN architectures, the first backbone stage was frozen. For the training 
of the Mask2Former architecture, all backbone stages were frozen to reduce the number of trainable 
parameters.  

In addition to the two published datasets, we included the Mobimalogs dataset from [17] in our 
training. To prevent a possible bias due to the different dataset sizes, the data loader created a mini-
batch of 5 samples with a sample ratio of [1,1,2,1] from MobimaWoodlands/Winter, 
MobimaWoodlands/Summer, MobimaSkidRoads, and MobimaLogs respectively. 

The training results largely depend on the training pipeline. Typically, a random image section is 
extracted from the base image at each training epoch. This section can be a part of the image or, with 
a certain probability, be the complete image. In contrast to this approach, the training pipeline 
depicted in Figure 3 uses a random section of each image but never the complete image to prevent 
overfitting of the networks to the surrounding area. Each image was resized first to a maximal size 
randomly sampled from the interval 𝑅𝑅𝑝𝑝𝑝𝑝 ∈  [1280, 3072] 𝑝𝑝𝑝𝑝 while conserving the aspect ratio. In a 
subsequent step, a random section with size: 𝑤𝑤𝑃𝑃𝑤𝑤𝑤𝑤ℎ 𝑝𝑝 ℎ𝑃𝑃𝑃𝑃𝑒𝑒ℎ𝑤𝑤 =  800𝑝𝑝800𝑝𝑝𝑝𝑝 was taken from the 
resized image. The section was flipped horizontally with a probability of 50%. Hence, only image 
parts with a ratio of 0.625𝑝𝑝 to 0.26𝑝𝑝 of the original image were utilized in the training process. This 
training pipeline reduced the performance of the trained networks when trained on a single dataset 
but increased it when different datasets with various tree aspects were present.  

 
Figure 3: Training Pipeline 

Due to the large bias in the datasets, evaluating the mAP would largely overrepresent the influence 
of the obstacle and person instances. In contrast to most studies evaluating the mAP, we evaluate the 
AP on a per-class basis.  

5. RESULTS 

The trained architectures are evaluated on the validation sets of the training datasets and the complete 
dataset of unknown forest areas represented by the CanaTree100 and the FinnWoodlands datasets. 

5.1. Training Datasets 

At first, the trained network architecture was evaluated on the validation sets. Figure 4 depicts the AP 
on a per-class basis for the validation set of MobimaWoodlands/Summer for all four network 
architectures and the backbone (in parentheses). In the whole validation dataset, only one person is 
present, and all networks predicted the person with at least an IoU of 0.5. On the other hand, the 
random separation has put many of the obstacles in the validation set, and therefore all architectures 
struggle with the recognition of the obstacles, especially as this class includes various object types. 
This example illustrates, that the mean Average Precision is not a suitable metric when working with 

Batch 
Sampler 

Random 
Resize 

[1280,3072] 

Random 
Crop 

(800x800) 

Random 
Horizontal 

Flip 
Network 
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biased datasets. All four architectures perform similarly on the tree class, with a small benefit for the 
Mask2Former architectures on stem and stump classes.  

The results for all datasets are given in Table 3. The highest value for each class and dataset is 
displayed in bold. Both the MaskRCNN (Swin) and the Mask2Former perform better on some classes 
for the same datasets. In total, transformer backbones and the transformer architecture of 
Mask2Former did not lead to improvements regarding the average precision. In combination with the 
high AP levels of an IoU threshold of 0.5, this leads to the conclusion that the overall performance of 
the networks is not limited by the architecture but by the quality of the input datasets. Especially, the 
distinction between trees in the foreground, which are labeled, and trees in the background, which are 
not labeled, is ambiguous and therefore varies between images and datasets. 

  
Figure 4: Average Precision (𝑨𝑨𝑷𝑷𝟓𝟓𝟓𝟓 stacked on 𝑨𝑨𝑷𝑷𝟓𝟓𝟓𝟓:𝟗𝟗𝟓𝟓) of all architectures on the 

MobimaWoodlands/Summer validation set 

5.2. Generalization 

In the next step, the trained networks were evaluated on the dataset CanaTree100 ([7]) and 
FinnWoodlands ([6]). As these datasets had not been used for the training, the networks were 
evaluated on the complete sets, including both, the training and the validation set. For the other 
datasets, that had been used for the training, the networks were evaluated on the validation set and 
not on the training set. The generalization of the networks was analyzed for the tree class, as the other 
classes are not consistent across all datasets. Figure 5 shows the AP of the tree class for all datasets. 
On the CanaTree100 dataset, the AP remained in the same range of 𝐴𝐴𝑃𝑃50:95 ∈  [0.42,0.58] with no 
significant variation between the architectures.  On the FinnWoodlands dataset, however, the AP of 
all architectures diminished significantly.  
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Table 3: Average Precision per class for each dataset (bold: best AP per dataset) 

 Stem Tree Stump Obst. Person Stem Tree Stump Obst. Person 

MW/Winter MaskRCNN (R101) MaskRCNN (Swin) 

Box 𝐴𝐴𝑃𝑃50:95 0.62 0.49 0.70 - - 0.63 0.47 0.80 - - 
Segm 𝐴𝐴𝑃𝑃50:95 0.39 0.48 0.80 - - 0.42 0.45 0.80 - - 

 Cascade MRCNN (Swin) Mask2Former (Swin) 

Box 𝐴𝐴𝑃𝑃50:95 0.65 0.48 0.90 - - 0.78 0.51 0.80 - - 
Segm 𝐴𝐴𝑃𝑃50:95 0.44 0.44 0.80 - - 0.71 0.51 0.70 - - 

MW/Summer MaskRCNN (R101) MaskRCNN (Swin) 

Box 𝐴𝐴𝑃𝑃50:95 0.54 0.56 0.39 0.01 0.70 0.56 0.56 0.41 0.28 1.00 
Segm 𝐴𝐴𝑃𝑃50:95 0.46 0.58 0.42 0.02 0.70 0.47 0.58 0.45 0.24 0.90 

 Cascade MRCNN (Swin) Mask2Former (Swin) 

Box 𝐴𝐴𝑃𝑃50:95 0.47 0.57 0.42 0.02 0.80 0.55 0.50 0.49 0.08 1.00 
Segm 𝐴𝐴𝑃𝑃50:95 0.39 0.57 0.44 0.02 0.70 0.53 0.57 0.54 0.09 0.90 

MSkidRoads MaskRCNN (R101) MaskRCNN (Swin) 

Box 𝐴𝐴𝑃𝑃50:95 0.26 0.60 0.30 0.90 - 0.30 0.59 0.37 0.90 - 
Segm 𝐴𝐴𝑃𝑃50:95 0.12 0.47 0.30 0.80 - 0.15 0.47 0.35 0.80 - 

 Cascade MRCNN (Swin) Mask2Former (Swin) 

Box 𝐴𝐴𝑃𝑃50:95 0.26 0.62 0.32 0.90 - 0.34 0.47 0.35 0.70 - 
Segm 𝐴𝐴𝑃𝑃50:95 0.12 0.48 0.31 0.80 - 0.30 0.42 0.34 0.70 - 

 
Figure 5: Average Precision (𝑨𝑨𝑷𝑷𝟓𝟓𝟓𝟓 stacked on 𝑨𝑨𝑷𝑷𝟓𝟓𝟓𝟓:𝟗𝟗𝟓𝟓) of all architectures for the Tree object class 

To explain the difference between the CanaTree100 and the FinnWoodlands results, three possible 
explanations are likely. The CanaTree100 dataset is probably more similar to our datasets and 
therefore requires less generalization of the network. Additionally, the FinnWoodlands dataset 
includes many birch trees which are not present in our datasets and therefore unknown to the 
networks. Figure 6 (a) and (b) illustrate False Negative detection of birch trees. Finally, missing labels 
reduce the AP, as seen in the example of Figure 6 (c) and (d). The network correctly identifies tree 
instances that were not labeled as trees. This ambiguity of the ground truth labels remains a major 
challenge when creating datasets and training image detectors for trees with different datasets. 
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(a) Ground truth 

 
(b) Inference 

 
(c) Ground truth 

 
(d) Inference 

Figure 6: Inference examples of the Mask2Former architecture on the FinnWoodlands dataset (blue: 
stems, purple: trees, green: stumps, red: obstacles). 

The distribution of True Positives, False Negatives, and False Positives is displayed in Figure 7. The 
previous assumption that the remaining error on the training datasets is due to unlabeled trees, which 
are recognized as False Positives, is supported by the high percentage of False Positives, especially 
regarding the Mask2Former architecture. On the FinnWoodlands dataset, the number of False 
Positives detections is not larger than on the other datasets. On the contrary, many False Negatives 
were not detected, indicating that especially the undetected (birch) trees were responsible for the 
decreased AP. 

  

 
Figure 7: Error causes of tree classes (stacked: True Positive (IoU > 0.5), False Negative, False 

Positive, 100% = TP+FN) 
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6. CONCLUSION 

In this paper, we trained four instance segmentation architectures with two different backbones on 
two newly generated datasets. All four architectures achieved a high Average Precision for the three 
primary object classes: stems, trees, and stumps. For IoU thresholds of 0.5 an Average Precision of 
above 0.80 is reached for the tree class with less than 10% False Negative tree detections. A 
qualitative evaluation of the detection results indicates that most of the remaining false detections are 
due to incorrect labels. Deciding whether a tree is in the foreground and should be labeled as a tree 
or whether it is part of the background is ambiguous and therefore prone to errors. Similar issues arise 
for stems and stumps, whether they are still distinguished objects or part of the forest floor. In a 
subsequent step, the trained networks were evaluated on two public datasets CanaTree100 and 
FinnWoodlands. The generalization of the network was analyzed on the tree class as the other classes 
are inconsistent across the datasets. On the CanaTree100 dataset, the 𝐴𝐴𝑃𝑃50 decreased only about 0.1 
for all architectures. On the FinnWoodlands dataset, however, the 𝐴𝐴𝑃𝑃50 decreased by 0.3 points, and 
the detection result had around 50% false negatives detections. The high number of False Negatives 
could be explained by the fact that some of the tree specimens of the FinnWoodlands were not present 
in the training dataset. The findings indicate, that adapted training procedures and large datasets 
improve the transferability of the networks to unknown forest areas. However, the performance 
cannot be guaranteed, especially if the training dataset is from a different vegetation zone. More 
complex network architectures and new transformer architectures as well as transformer backbones, 
however, did not lead to better detection and generalization results than the Mask R-CNN 
architecture.  

In the future, different approaches could be beneficial to further improve the generalization of object 
detectors in forest environments. The amount of available training data from different locations, 
representing different phenotypes and environmental conditions, needs to be increased and the quality 
of these datasets has to be ensured. New approaches, including stuff classes for background, could be 
beneficial to solve the ambiguity of background objects. Generative adversarial networks on the other 
hand could provide fictional images to train the detector on various object phenotypes and 
environmental conditions.   
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