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ABSTRACT  

Many mobile machines operate primarily through the use of boom structures, which account for a 

large share of energy consumption. The purpose of this work is to investigate if and to what extent 

the selection of the system pressure level in hydraulically driven boom structures can contribute to 

the reduction of the moving weight and thus to the reduction of the overall energy demand. The paper 

focusses on the choice of optimal system-pressure with regard to the cylinder-weight. A calculation 

method is derived that allows for the analytical calculation of cylinder weight with regard to system 

pressure to profit from the lightermost cylinders taking into account all sizes of differential cylinders, 

material properties , safety-factors and cylinder-ratio. It is shown that by specifying the load force, 

cylinder material, safety factor and area ratio as input parameters the system pressure level that allows 

the lightest cylinders can be determined. Application of the method shows that there are ideal pressure 

levels for hydraulic cylinders that are almost independent of the cylinder force and therefore machine 

size. The results show that a proper pairing of cylinder size and system pressure may have big weight-

saving potentials. Taking into account high-strength steel (tensile strength 𝜎 = 500 𝑁/𝑚𝑚2) 

enormeous weight savings may be achieved with rising system pressures. 
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1. INTRODUCTION 

Energy optimization in the sector of mobile machines is an important issue. The population of 8..40 

ton excacators worldwide is about 1.000.000 and needs more energy than the annually production of 

offshore windmills worldwide [1]. Together with wheel-loaders excavators have a share of around 

60% in mobile construction machineries fuel need [2]. Especially the hydraulic-driven boom 

structures have –due to a bad payload-to-weight ratio- a big share of the energy consumption in these 

machines. The improvement of energy efficiency in the operation of boom structures is the subject 

of numerous research projects which may be classified to optimisations of the diesel motor [3, 4], the 

task-related design of the kinematics, structural optimisations regarding material and construction [5, 

6] the use of compensators [7–10] and the hydraulic drivetrain [11–15]. Within the hydraulic 

drivetrain special attention is being paid to the efficient operation of the pump(s), the cirquit design 

and the proper adjustment of the cylinder size to the kinematics. For the optimisation of an energy-

efficient system all aspects have to be considered because they are strongly linked.  

In mobile machines there is a trend for lifting system pressures that can exemplarily be seen in 

hydraulic traction drives which today work with pressures up to 450 bar [16, 17]. Along with the idea 
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to increase power density the question arises which are the most important restrictions and if lifting 

system pressure would be a good solution for making boom structures more powerful. In addition to 

the approaches stated above an improvement of the payload-weight ratio may be achieved by a proper 

choice of the system pressure in system design, which may allow for lighter cylinders. 

After presenting the basic assumptions and design goals in chapter 2 the mathematical solution is 

presented in chapter 3. The possibilities and limitations of the methodology are discussed in chapter 4 

before drawing a conclusion and giving an outlook. 

2. BASIC ASSUMPTIONS AND DESIGN GOALS 

One key benefit oy hydraulic actuation systems is the high power density which may further be 

improved with higher system pressures. Concerning the increase of system pressure the question 

arises if there are additional effects that may be lead to an increased energy efficiency of the overall 

system. Reducing the cylinder weight can be advantageous for: 

 Reduction of energy consumption  (less mass to be lifted + machine weight) 

 Reduction of counterweights (cost + machine weight) 

 Reduction of machine weight → more power in same weight-class possible 

In the very price-sensitive market of mobile machines, these advantages can be exploited if 

production cost does not rise significantly, so changes in design and construction of hydraulic 

cylinders are not in the scope of this work.  

The guiding question for this work is whether there is a lightest standard cylinder for accomplishing 

a work task and how this can be calculated depending on the sytem pressure level or, viceversa how 

system pressure may be appropriately chosen for the lightest (standard) cylinders possible. 

2.1. Cylinder design 

The design of boom structures is strongly driven by a high payload-to-weight ratio and the restrictions 

given by the working tasks (working area, movements, sensibility). The basic idea is to reduce the 

cylinder weight by optimizing the cylinder in stroke, size and rated pressure taking into account the 

applicable directives[18]. Even though many restrictions like the tasks to fulfil, the available design 

space, the strength of the mechanical linkage and many more limit the design space for cylinder size, 

the knowledge of a minimal weight-design may add a design-factor that could be considered in 

kinematics development. 

Cylinders of different sizes may be compared by their work. Cylinders of equal work fulfill the 

equation: 

 𝐹𝑐 ⋅ 𝑙𝑐 = 𝑐𝑜𝑛𝑠𝑡. (1) 

with the cylinder force 𝐹𝑐 and the length 𝑙𝑐. In other words, a cylinder that is mounted closer to the 

joint has a shorter stroke but needs to supply more force, what in general leads to a bigger diameter. 

We will refer to different cylinder sizes fulfilling equation (1) as “equal-work cylinders” according 

to Figure 1 (left). 

Assuming that cylinder parts that are stroke-independent like hinges have a defined length, the 

cylinder can be calculated according to its position. The weight of the cylinder, which is the variable 

to be optimized here, is determined by the design of its components. In the following, we calculate 

performance-equivalent cylinders in order to find the lightest cylinder depending on system pressure 

and material for the given application. We will only consider parallel displacements of the cylinders 

according to Figure 1 (left) here. A change of the cylinder ratio 𝛼, which is defined as the ratio 



 

3 

 

between rod and piston area, or any further degrees of freedom in the cylinder design is not considered 

in this work to get comparable results. 

3. CALCULATION OF CYLINDER WEIGHT 

Single-acting cylinders consist of a piston, a piston rod, a piston tube, as well as a piston head at both 

ends and mounting elements on the piston rod and piston bottom. These need be dimensioned during 

the design process. The cylinder weight then is calculated of its elements according to Figure 1 with 

the material constants 𝜌 = 7850 𝑘𝑔/𝑚^3 (steel) and 𝜌𝑜𝑖𝑙 = 880 𝑘𝑔/𝑚3(mineral oil). 

 𝑚𝑐 ≅ 𝜌 ⋅ 𝜋 ⋅ (4 ⋅ ℎ ⋅ 𝑟2 + 𝑙 ⋅ (2 ⋅ 𝑟 ⋅ 𝑠 − 𝑠2) + 𝑙 ⋅ 𝑟𝑠
2 ) + 𝑜𝑖𝑙 𝑓𝑖𝑙𝑙𝑙𝑖𝑛𝑔 (2) 

with the cylinder mass 𝑚𝑐, and nomenclature according to Figure 1 (right). Hereby it is considered 

that the cylinder rod and the end caps have the same height h and the stroke of the cylinder can be 

approximized as 𝑥 = 𝑙 − ℎ. 

 

 

Figure 1: cylinders with 𝐹 ⋅ 𝑙 = 𝑐𝑜𝑛𝑠𝑡 (left) and cylinder elements (right) 

The cylinder rod with radius 𝑟𝑠 can be calculated on the basis of the maximum stroke and the acting 

force 𝐹𝑐 on buckling with buckling factor 
𝑙𝑘

𝑙
= 0,7 whereas: 

 

𝑟𝑠 =
√𝐹𝑐 ⋅ 4 ⋅

𝑙𝑘

𝑙
⋅ 𝑠𝑓 ⋅ 𝑙0,9

2

𝐸 ⋅ 𝜋3

4

 
(3) 

whereas 𝑙0,9 is 90% of the rod length and the elastic modulus of the material: E=2.1𝐸10 𝑁/𝑚2, the 

security factor which is assumed to be 𝑠𝑓 = 1,5  for hydraulic cylinders in mobile applications and 

𝑙𝑘/𝑙 = 0,7 for the Euler-buckling factor. 

The cylinder inner radius 𝑟 then is calculated for a given maximum system pressure 𝑝 and force 𝐹𝑐 

via: 

 
𝑟 = √

𝐹𝑐

𝑝 ⋅ 𝜋
   (4) 

Complying the restriction of a given aspect ratio 𝛼 there may be the need to choose a bigger radius 

l1

l2

F1 F2

𝐹𝑖 ⋅ 𝑙𝑖 = 𝑐𝑜𝑛𝑠𝑡.
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for the cylinder according to: 

 
𝑟 = √

𝛼 ⋅ 𝑟𝑠
2

𝛼 − 1
   (5) 

Note: Formulae (4) and (5) show that choosing the right cylinder ratio 𝛼 may reduce the cylinder 

diameter without any further optimisation.  

From the sizing of rod and inner cylinder diameter the whole cylinder can be calculated for all 

pressure levels. Dimensioning the piston tube according to DIN 2413:202-04 is used if the ratio of 

outer and inner diameter is 𝑑𝑎/𝑑𝑖 < 2. This may not be applied for higher pressures, therefore an 

unequal distribution of tension along the wall thickness shall be assumed. We assume linear-elasticity 

and ideal plasticity along the wall. In comparison of the calculation methods: normal stress 

hypothesis, shear stress hypothesis or shape change energy hypothesis the latter gives nearly exact 

values for the maximum pressure 𝑝𝑖 at the inner radius 𝑟𝑖. In consequence the outer radius 𝑟𝑎 of the 

cylinder will be calculated with formula (6) according to [19]. In comparison with the standard 

calculation methods for cylinders (𝑑𝑎/𝑑𝑖 < 2) this formula is accurate in pressure ranges above 

500 bar. 

 𝑝𝑖 =
𝑅𝑒

𝑠𝑓
⋅

𝑟𝑎
2 − 𝑟2

√3 ⋅ 𝑟𝑎
2

 (6) 

With 
𝑅𝑒

𝑠𝑓
≥ 𝜎 The cylinder cap height ℎ follows the maximum tangential tension 

 𝜎𝑡 ≤ 𝜎𝑡,𝑚𝑎𝑥 = 𝑓 ⋅ 𝑝 ⋅
𝑟2

ℎ2
 (7) 

with the factor 𝑓 = 0.8 considering the cap as a panel with clamped edge (welded construction). The 

same height is applied to the piston and the lid with minor error. The attachments at both sides are 

considered with the weight of one lid. 

With these formulae the lowest cylinder mass for equal-work cylinders under the given restrictions 

of material and security factor can be calculated depending on the system pressure according to (1) 

with 𝑠 = 𝑟𝑎 − 𝑟.  

4. RESULTS AND DISCUSSION 

Relevant changes of cylinder mass result from variation of force, stroke, maximum pressure level and 

material. Calculation results are visualized in Figure 2 for the example of cylinder ratio of 𝛼 = 2.  

On the left hand side results for cylinders made of standard steel (𝜎 = 235 𝑁/𝑚𝑚2) are shown, on 

the right hand side cylinders made of steel with high tensile strength (𝜎 = 500 𝑁/𝑚𝑚2). All 

diagrams show different cylinder configurations: each line represents possible configurations for a 

kinematic with given work scenario. Along each line the lightest equal-work cylinders for different 

pressure levels are shown. The lower diagram shows the corresponding lengths. 
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Figure 2: mass and length for lightest equal-work cylinders 

The lightest standard industrial steel cylinders with an area ratio 𝛼 = 2 have an ideal pressure level 

of between 300 and 450 bar with a minimum around 370 bar. The ideal pressure for saving cylinder 

weight is thereby nearly independent of the machine size. The ideal cylinder length grows with the 

cylinder power. The calculations show that manufacturing cylinders from high-strength steel halves 

the weight of a comparable cylinder from standard steel. The main reason for that effect is the shorter 

stroke. The distribution of weight for equal-work cylinders with 700 kNm (compare Figure 2, purple 

lines) is shown in Figure 3. Weight of piston, caps, attachments and tube grow with rising pressure 

(even length decreases) whereas weight of rod and oil volume decreases resulting in a defined 

minimum of weight. As buckling depends on elasticity-module (which is nearly constant for all steel 

materials) the weight of the piston rod is independent from the strength of the chosen material. 

 

Figure 3: mass distribution for equal-work cylinders with 700 kNm and different material strength 

Amongst material and area ratio the minima also depend on the chosen security factor. As a rule of 

70kNm

1120kNm

70kNm

1120kNm
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thumb weight scales proportional with the security factor and optimal pressure halves. 

Figure 4 shows the points of minimal mass of equal-work cylinders (red asterisks in Figure 2) for 

cylinders with varying area ratios 𝛼. For standard-steel on the left hand and for high performance 

steel on the right hand side.  

 

Figure 4: mass and length for lightest equal-work cylinders 

The figure shows that weight heavily varies with the strength of the steel but the points of optimal 

weight stay constant: Cylinders with an area ratio of between 𝛼 = 1.2 and 𝛼 = 1.5 have the best 

power-to-weight ratio, independent of the material and the cylinder power needed. The smaller the 

area ratio 𝛼 is, the lower is the ideal working pressure with respect to cylinder weight. With regard to 

this outcome the optimal pressure for the lightest cylinders can be plotted over the area ratio.  

 

Figure 5: ideal system pressure for minimal-weight cylinders with regard to area ratio α 

Figure 5: shows the ideal pressure for the lightest cylinders produced from different materials. As a 

rule of thumb it can be stated here that the optimal system pressure scales proportional to the strength 

of the used material. 
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5. SUMMARY AND CONCLUSION 

With respect to hydraulic-driven kinematics the results give insights in how moving mass may be 

reduced if system pressure and cylinder size are matched to each other. Rising system pressure 

without using different materials may have the potential to save cylinder weight independent of the 

machine size in many applications. If high-strength steel is used, enormous weight savings may be 

realised with rising system pressures. The comparison of different system pressure levels in Figure 6 

exemplarily shows possible weight reductions of about 27% when rising system pressure from 

160 bar to 410 bar and twice as large if a high-strength steel is used. The weight-saving potential 

increases with higher security-factors 𝑠𝑓 and slightly with bigger area ratios 𝛼. 

 

 

Figure 6: weight savings for cylinders with different materials and pressure levels 

The availability of components for increasing the system pressure above 500 bar is currently not 

(yet) given. However, the investigation shows the potential for significant weight savings. 

Savings in the weight of the boom are directly reflected in additional handling capacity and or a 

reduced mass of the counterweight (approximately factor 3). As a result, the power density of the 

machines may be increased, alternatively machines of the same power get lighter. There might 

be drawbacks in application: Even if calculations for some practical cases show that simple 

strengthening of the cylinder mounting points is sufficient, there may be cases where forces 

become too high. Precision may also be lost if cylinders become very short. Changes in stiffness 

and natural frequency of high pressure systems should also be further investigated. 

ACKNOWLEDGEMENT 

The author thanks the Research Association for Construction Machinery of the German 

Engineering Federation VDMA for its financial support. Special gratitude is expressed to the 

participating companies and their representatives in the accompanying industrial committee for 

their advisory and technical support in the IGF project No. 21840 BR/1 “Systemdruckniveau in 

mobilen Arbeitsmaschinen”. 

NOMENCLATURE 

𝜎 Tensile strength 𝑁/𝑚2 

𝛼 cylinder ratio  − 

𝐹 Force 𝑁 
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.𝑜𝑖𝑙 Oil − 

ℎ height 𝑚 

𝑠 wall thickness 𝑚 

𝑟𝑖 Inner radius 𝑚 

𝑟 (outer) radius 𝑚 

𝑥 Cylinder stroke 𝑚 

𝑟𝑠 Rod radius 𝑁 

𝑠𝑓 Security factor − 

𝑙𝑘/𝑙 critical (buckling) length  − 

𝐸 Elasticity modulus 𝑁/𝑚2 

𝑝 Pressure 𝑁/𝑚2 

𝑅𝑒 Yield strength 𝑁/𝑚2 

𝐹 Force 𝑁 

𝑓 Form factor − 
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PROGRAMMING EXAMPLE 

%MATLAB® example code for calculation of cylinder mass 
% Author Tobias Radermacher, TU Dresden, Chair of Fluid-Mechatronic Systems 
% License: GNU GPL 
% download: github.com/boing0815 
clc,clear, close all 
%calculation of mass for F*l=const 
sig=235E6; %N/m^2,max tension,reversibel 
Re=sig; 
sf=1.5;%security factor 
alpha=2; %ratio 
leg=""; 
l_light=[]; 
force=700; %niveau of force for f*l 

  
f=figure(); hold on; grid on; 
% calculation of lines with F*l=const 
l=[0.1:0.3:1.6]; 
skal=0.02:0.02:4; %scaling ofo F*l 
for h=1:length(l) 
    ls=l(h)./skal; 
    fs=force.*skal; 
    for k=1:length(skal) %for every variant with f*l constant 
        sp(k)=pfl(fs(k)*1000,ls(k),alpha,sf); %neccesary pressure level in bar 
        m(k)=zylindermasse_von_r(sig,Re,sp(k)*1E5,fs(k)*1000,ls(k),alpha,sf); %calc cyl. mass; change force to N 
    end 
    [m_min_f_mal_l(h),ind(h)]=min(m); 
    p_min_f_mal_l(h)=sp(ind(h)); 
    l_light(h)=ls(ind(h)); 
    f_light(h)=fs(ind(h)); 

     
    pl=plot(sp,m); 
    uistack(pl,"bottom"); 
    test=convertCharsToStrings(sprintf('%.0f', force*l(h))); 
    leg=[leg,test]; 
end 
title(["mass for equivalent lightest cylinders","\alpha=2, sf=1.5, \sigma=235 N/mm^2"]); 
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xlabel('pressure level [bar]'); 
ylabel('mass [kg]'); 
xlim([0,1800]) 
ylim([0,600]) 
%marking min. 
plot(p_min_f_mal_l,m_min_f_mal_l,'*') 
%scale position for paper size 
f.Position(3:4) = [400 300]; 
%make legend 
le=legend(leg(1,2:end)); 
le.String=flip(le.String); %flip legend 
le.Position = [0.4 0.5 0.1 0.2]; 
saveas(f,"lightest cylinders_mass.fig"); 
saveas(f,"lightest cylinders_mass.emf"); 

  
function p=pfl(F,l,alpha, sf) 
    %calc of p for defined area ratio 
    E=2.1E10; %E-module in N/m^2; 
    %go for it 
    % min. radius der of rod against buckling 
    % buckling length 90% 
    r_s=(F*sf*2*(0.9*l)^2/(E*pi^3))^(1/4); 
    r_i=sqrt(alpha/(alpha-1))*r_s; %area ratio    
    p=F/(r_i^2*pi); 
    p=p/1E5; %in bar 
end 

  
function [m] = zylindermasse_von_r(sig,Re,p,F,l,alpha,sf) 
%change mass to 1E-12, if useless geometry 
% sig, Re in N/m^2, p in N/m^2, F in N, l in m 

  
%input: 
    %mat. properties 
    rho=7850;%kg/m^3, dens. steel 
    rho_oel=880; %kg/m^3 
    E=2.1E10; %E-module in N/m^2 
%calculation 
    %rod radius 
    r_s=(F*sf*2*(0.9*l)^2/(E*pi^3))^(1/4); 
    %piston radius 
    r_i=sqrt(F/(p*pi)); 
    %wall thickness (fat, plasticity=yes) 
    r_a=r_i/sqrt(1-p*sf*sqrt(3)/sig); 
    s=r_a-r_i; 
    %wall thickness (thin, elastic): 
    %s=r_i*p/(sig-p) 
%cap heigth  
    h=(r_i+s)*sqrt(0.8*p/(sig/sf)); 
%finally: the result: 
    %mass: 
    m_platten=rho*pi*(4*h*r_a^2); 
    m_rohr=rho*pi*(2*r_a*s-s^2)*l; 
    m_stange=rho*pi*l*r_s^2; 
    mz=m_platten+m_rohr+m_stange; 
    m_oel=(l-h)*r_i^2*pi*rho_oel; 
    m=mz+m_oel; 
    if s>0.1 || s<=0 %delete useless wall values 
        m = NaN; 
    end 
end 
 


