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ABSTRACT 

This paper deals with the evaluation of the credibility of simulation models and simulation model 

libraries exemplary shown on a model of the Rexroth BRSL Simulation Library. 

The topic tackles the questions on how engineers know that they really can trust the results of their 

simulation models, how exact their simulation models are and if the accuracy of their simulation 

models is sufficient or not. 

In industry, engineers usually validate their simulation model results against real measurement data 

to examine if the simulation model results match the reality. Usually there is no numerical number 

describing the accuracy of the simulation model. In the topic of credible simulation, numerical 

methods of data analysis are used to try to determine a numerical number, the so-called model form 

error. This then gives an idea of how plausible the simulation model is in terms of uncertainties. 

At Bosch Rexroth there is a prototypically developed app that enables users estimating the model 

form error, performing sensitivity analyses, and simulating variations of parameter uncertainties on 

key model parameters. Furthermore, there is the possibility to compare the simulation results with 

real measurement data. 

The app may help to certify credible simulation models in the future. 
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1. INTRODUCTION 

Credibility of simulations is becoming increasingly relevant. Especially in times of ever-increasing 

digitalization of products and workflows in the industry up to purely virtual-based product releases, 

simulation-based decisions become more and more important. For this purpose, it is crucial that 

simulation results are given the necessary confidence and that their agreement with reality can be 

scientifically proven. [1] 

Product validation via measurements on the real product is common and state of the art. Measurement 

data also contain certain inaccuracies and are not always easy to obtain, which is why they are already 

increasingly being supplemented by computer simulations. In this way, further confidence in the 

product can be gained and its behavior better understood. 

To save time and thus money, and provided that the simulation results can be trusted, real 

measurements on the product can be completely replaced by purely virtual computer simulations. 

The aim of this work at the Bosch Rexroth AG is to develop methods that allow full confidence in 

simulation results to be obtained by simulation and that this confidence level can be suitably 

represented by means of a numerical key figure, the so-called model form error. 
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In a further step, the determination of this credibility level should also be made possible for other 

models of other areas within the Bosch Rexroth AG. The credibility obtained can be integrated into 

digital product passports as metadata of the simulation models to certify the quality of the simulation 

model regarding its trustworthiness. This gained credibility stamp may help answering the following 

questions. Can you really trust your simulation? Do the simulation results match the reality? How 

exact is the simulation? Is it sufficiently exact? 

2. STATE OF THE ART 

2.1. Credibility standards in industry 

Currently there are some standards in industry developed by NASA, NAFEMS, ASME and few more 

[1]. Also, there is a lot of research done within the Robert Bosch GmbH trying to merge these different 

standards regarding their quality metrics describing simulation and model (S & M) credibility. [1] 

The paper in hand focusses on the calculation of a so-called model form error as a numerical key 

indicator describing S & M credibility. There are different methods which will be explained hereafter. 

2.2. Probability box (p-box) method 

The probability box (p-box) method is an interval-based method to represent mixed uncertainties of 

a simulation model based on epistemic and aleatory parameter uncertainties, see Figure 1 [2]. 

 

Figure 1: Representation of mixed uncertainties as p-box [2] 

Epistemic parameter uncertainties are characterized to have a constant but unknown parameter value 

due to missing system knowledge or data. They are represented as an interval [2] [3]. 

Against this, aleatory parameter uncertainties do not have a constant value, e.g., the temperature in a 

system. Aleatory parameter uncertainties are usually represented as cumulative distribution functions 

(CDFs) [2] [3]. 

A p-box is created from the CDFs of the different simulation results of parameter combinations of 

epistemic and aleatory parameters including numerical uncertainties. The most left and the rightest 

CDF are the boundaries of the p-box representing the lower and the upper limit of trustworthiness 

[2], compare Figure 2.  

In Figure 2 the CDFs of the interesting simulation result variable, the so-called Quantity of Interest 

(QoI), for the different simulated parameter combinations of epistemic and aleatory parameters, 

named here with m1, …, m5, are shown for the evaluated point in time while m1 and m5 form the 

lower (m1) and the upper (m5) boundaries of the p-box, defining the interval of trustworthiness for 

the simulated setup and the specific point in time. 
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Figure 2: Exemplary CDFs for p-box generation 

With the help of a p-box of a simulation model, a so-called model form error can be calculated in 

comparison with real measurement data, which quantifies the quality of the simulation model and its 

consistency with reality depending on how far the real measurement data are within or outside the p-

box limits for a single point in time [2]. 

Therefore, the CDF of the measurement data is compared with the generated p-box of the simulation 

model and the model form error is calculated as area outside the p-box between the CDF of the 

measurement data and the lower and the upper p-box limit, as exemplary shown in Figure 3. 

 

Figure 3: Calculation and graphical representation of the model form error 

2.3. Wasserstein metric 

The Wasserstein metric, also known as Wasserstein distance, Kantorovich-Rubinstein metric, optimal 

transport, or earth mover’s distance, is used to calculate the numerical cost of an optimal transport 

problem [3]. It is used for the (statistical) time series analysis of dynamic systems and considers 

temporal progressions as well as spatial distances [3][4]. 

Since the Wasserstein metric considers not only a purely vertical point-to-point comparison between 

two time series, but also the horizontal distances between the curves to be compared, it is a very 

powerful method for time series analysis, see Figure 4 [4]. 

 

Figure 4: Comparison of two time series using the Wasserstein metric 
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A time series 𝑦(𝑡, 𝜁) = 𝑥,  𝑥𝜖ℝ𝑚 is modeled as a stochastic process that follows a probability 

measure. Calculating the empirical distribution function for the x-values that occur, one obtains a 

point set 𝑝 with a weighting 𝜔𝑝 [5]. 

Between two time series 𝑝, 𝜔𝑝𝜖ℝ𝑚 and 𝑞, 𝜔𝑞𝜖ℝ𝑛 with probability measures 𝛾, 𝑣 the following 

optimization problem, shown in (1), applies [6]: 

 

𝑊α(𝛾, ν) = (min
(𝑓𝑖𝑗)

∑ ∑ 𝑑𝑖𝑗𝑓𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

)

1
α

 (1) 

with the following properties: 

• 𝑑𝑖𝑗 = ‖𝑝𝑖 − 𝑞𝑗‖
𝛼

 

• ∑ 𝑓𝑖𝑗
𝑛
𝑗=1 ≤ ω𝑝𝑖

, ∀𝑖 ∈ {1, . . , 𝑚} 

• ∑ 𝑓𝑖𝑗
𝑚
𝑖=1 ≤ ω𝑞𝑗

, ∀𝑗 ∈ {1, . . , 𝑛} 

• 𝑓𝑖𝑗 ≥ 0,  ∀𝑖 ∈ {1, . . , 𝑚},  ∀𝑗 ∈ {1, . . , 𝑛} 

• ∑ ∑ 𝑓𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 = 𝑚𝑖𝑛{∑ ω𝑝𝑖

𝑚
𝑖=1 , ∑ ω𝑞𝑗

𝑛
𝑗=1 } 

This problem is then solved as a linear optimization problem. 

In the Wasserstein metric, as with the p-box method, the most influential aleatory and epistemic 

parameters are varied, and the time series of the output variables are calculated. A Wasserstein 

distance is then calculated between the time series of the simulation and that of the measurement and 

is expressed as the model form error. 

While the p-box method can be used for calculating the model form error for single points in time, 

the Wasserstein metric can be used to calculate the model form error for whole time series. 

2.4. Sensitivity analysis 

There are already numerous, different sensitivity analysis methods for different use cases as well as 

(commercial) sensitivity analysis tools available on the market. However, since we do not need the 

complete, comprehensive range of available sensitivity analysis methods (of a tool), but rather a 

tailored, custom-fit solution for our own investigations, we have decided to implement the required 

functionalities for the Rexroth BRSL Credible Simulation app ourselves. 

Just as in chapter 2.3, it should be referred here mainly to the bachelor thesis of Ehsan Khademi [3] 

in which he has examined different sensitivity analysis methods to determine the main influencing 

epistemic and aleatory parameter combinations for the model form error calculation of simulation 

models for single points in time as well as for whole time series. 

The sensitivity index of the input parameters 𝜁𝑖 on the output variable 𝑦(𝑡𝑘, 𝜁) for a point in time 

𝑡𝑘𝜖[0, 𝑇] is defined as 
𝜕

𝜕𝜁𝑖
𝑦(𝑡𝑘, 𝜁). It is approximated by a finite difference method called elementary 

effects (EE) as follows (2): 

 
𝐸𝐸𝑖 =

𝑦(𝑡𝑘, 𝜁 + 𝛥𝑖 ∙ 𝑒𝑖) − 𝑦(𝑡𝑘, 𝜁)

𝛥𝑖
 (2) 

Using Morris' method, the sensitivity indices are calculated at a point in time for various combinations 

of input values [7][8].  
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The result is a ranking of the parameters according to their influence on the output variable as shown 

in Figure 5 [3] on the example of the well-known predator-prey model. 

 

Figure 5: Sensitivity indices of the input parameters to the output variable at each time step 

To check the sensitivity indices for the entire time series, the 𝐿2 norm is calculated for the sensitivity 

of each individual parameter 𝜁
𝑖
 over the entire period for all 𝑘 time steps after each variation of the 

input values, see (3). 

 

∫
𝜕

𝜕𝜁𝑖
𝑦(𝑡, 𝜁)2 𝑑𝑡

𝑇

0

≈ √∑(𝐸𝐸𝑖
(𝑘)

)
2

𝑇

k=0

 (3) 

These values are then displayed as box plots, which provide an overview of the influence of the 

parameters on the time series of the output variable, exemplary see Figure 6. 

 

Figure 6: Sensitivity indices of the input parameters to the entire time series of the output variable 

In [3], we have also investigated the use of the Wasserstein metric for a more detailed estimation of 

the sensitivity indices. 

For calculating the model form error uncertain epistemic and aleatory parameters must be chosen by 

the user. To know which epistemic and aleatory parameters make sense to vary and therefore have an 

influence on the model result of interest, the QoI, and which do not, performing a sensitivity study 
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on the simulation model parameters using suitable methods before can be useful. This makes the 

calculation of the model form error of the simulation model for relevant QoI and therefore the 

credibility evaluation of the simulation model more efficient. 

3. REXROTH BRSL SIMULATION LIBRARY 

The Rexroth BRSL Simulation Library, shown in Figure 7, is a simulation model library containing 

simulation models, so-called digital twins, which are designed for the usage of dynamic 1D system 

simulations. It contains many generic components for modelling physical systems as well as specific 

components of Bosch Rexroth products. 

The models are implemented in Modelica. Modelica is considered as a tool-independent 

programming language [8]. This means that the Rexroth BRSL Simulation Library models can be 

used in various simulation tools. The use as functional mock-up unit (FMU), a standardized exchange 

format, is also conceivable. 

 

Figure 7: Rexroth BRSL Simulation Library loaded in Dymola 2023x Refresh 1 

All simulation models from the Rexroth BRSL Simulation Library have been tested and validated 

together with experts against real measurement data as far as available or at least compared with more 

detailed and more complex simulation models if no measurement data have been available. 

The simulation models of the Rexroth BRSL Simulation Library are pre-parameterized and designed 

for the generic use case of dynamic system simulations. Users can focus on system modelling using 

the simulation models out of the rack without the need to model single system components before on 

their own. 

Furthermore, the generic components can be completely parameterized by the users according to their 

needs while the Bosch Rexroth specific components are already pre-parameterized offering the option 

to choose between specific products variants via their specific product type keys in a dropdown menu, 

see Figure 8. 

 

Figure 8: Pre-parameterized Bosch Rexroth_4WRPEH_2X_1 type key choices 



7 

 

This makes the Rexroth BRSL Simulation Library easy to use, reduces parameterization errors as 

well as the time needed for modelling. 

The Rexroth BRSL Simulation Library can help users validating the dynamic system behavior of 

their systems using computer simulation models. Furthermore, it can help answering future relevant 

questions regarding system energy consumptions and CO2 footprints. 

Nevertheless, due to simplified modelling assumptions, the simulation models can be used differently 

well for different use cases. How well a simulation model fit the specific use case can be estimated 

using credible simulation methods. 

4. REXROTH BRSL CREDIBLE SIMULATION 

The Rexroth BRSL Credible Simulation app written in MATLAB can be used to calculate the model 

form error of an uploaded simulation model using either the p-box method or the Wasserstein metric. 

It is currently limited to Modelica simulation models (not only Rexroth BRSL Simulation Library 

models but Modelica models in general) but is to be extended for other simulation models and FMU 

as well. 

The general workflow and the communication between the Rexroth BRSL Credible Simulation app 

and the simulation tool chosen by the user, pictured in Figure 9, is exemplary shown with Dymola 

as simulation tool and optional usage of the Rexroth BRSL Simulation Library. 

 
Figure 9: Communication of the Rexroth BRSL Credible Simulation app with commercial simulation tools 

using the example of Dymola 

The users can define epistemic and aleatory parameter uncertainties on specific model parameters 

which can be chosen via dropdown menus (due to step III) in Figure 9). If only one epistemic or one 

aleatory parameter should be varied, for the other parameter can be set a fixed value using the manual 

input checkbox shown in Figure 10. 

Moreover, the QoI can be chosen via dropdown menu as well, see Figure 10, and the simulation 

settings (‘Start time’, ‘Stop time’, ‘Solver method’, ‘Output interval’, ‘Tolerance’) for simulating the 

uploaded simulation model with varying parameter combinations of epistemic and aleatory 

parameters (simulating the parameter uncertainties) can be set in the app (compare step IV) in Figure 

9). 
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Figure 10: ‘Project Info’ tab for model and parameter settings 

A tool for simulating the simulation model with each parameter combination needs to be installed 

locally on the user’s personal computer. Which tool should be used (currently limited to Dymola but 

is to be extended for other simulation tools as well) can be specified in the ‘Project info’ tab using 

the settings button right next to the ‘Open .mo File’ button pictured in Figure 10. 

Starting the simulations of all variations, a pop-up window opens showing the progress of simulating 

all parameter combinations and plotting the result of each parameter combination in the ‘Variations’ 

tab. The result plot window can be maximized and curves of single (of all) parameter combinations 

(plotted in different colours) can be de-/selected in the results plot for better postprocessing. 

The QoI can be changed without recompilation of the simulation model choosing another QoI from 

the ‘Changing QoI’ dropdown menu and clicking on the ‘Change’ button. Thereby, the question mark 

button right next to the ‘Change’ button offers further information of the chosen new QoI. 

To find out which model parameters make most sense to be varied and which model parameters do 

not need to be varied, if they are not already known yet, there is the possibility to run a sensitivity 

analysis within the Rexroth BRSL Credible Simulation app (‘Sensitivity’ tab) to gain optimal 

simulation results. 

Having defined the best suitable setup for varying epistemic and aleatory model parameters to 

simulate parameter uncertainties of these parameters and watching the effect on the simulation results 

of the specified QoI, the model form error of the uploaded user’s simulation model regarding the 

defined setup can be calculated using either the p-box method (‘p-Box’ tab) or the Wasserstein metric 

(‘Wasserstein’ tab), see step VI) in Figure 9. 

While the Wasserstein metric exclusively provides a numerical calculation of the model form error 

of the whole time series, the p-box method provides a numerical calculation of the model form error 

as well as a graphical interpretation of specific points in time. 

The points in time that are of interest for generating a p-box plot can be chosen by the user from the 

‘Result variations’ plot of the specified QoI in the ‘Variations’ tab. The data can then be entered into 

the ‘p-Box Options’ within the ‘p-Box’ tab, see Figure 11. 
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Figure 11: ‘p-Box’ plot without measurement data 

Measurement data can be integrated into the p-box plot for the calculation of the model form error 

via the ‘Table of Measurements’ tab inside the ‘p-Box’ tab. This tab opens automatically unchecking 

the ‘Plot p-Box without measurements’ checkbox in the ‘p-Box Options’. 

Within the ‘Table of Measurements’ tab there is a slider choosing between manual input of 

measurement data or upload measurement data as .csv data into the Rexroth BRSL Credible 

Simulation app. The unused option is greyed out as shown in Figure 12.  

 

Figure 12: ‘Table of Measurements’ tab for the p-box 

The measurement setup must match the simulation model under investigation, which is why real 

measurement data are often not available. Therefore, the model form error of the simulation model 

can not be calculated using the p-box method. Nevertheless, sensitivity studies on uncertain model 

parameters can be performed for a better system understanding. 
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As far as available, having inserted measurement data for comparison, the p-box can be plot again 

with the measurement data included to calculate the model form error of the uploaded simulation 

model for the chosen point in time. 

If the uploaded simulation model totally matches the uploaded measurement data, the CDF of the 

measurement data will be totally inside the p-box plot and the model form error will be zero (compare 

Figure 3 I)). 

Otherwise, if the CDF of the measurement data is outside the p-box plot (on the left and/or on the 

right side), the model form error on the left side, on the right side and in total (left side + right side) 

will be calculated as area between the CDF of the measurement data and the left and right boarders 

of the p-box plot of the simulation model for the specified point in time. 

The circle to the right of the total model form error colours in traffic light colours depending on the 

calculated model form error. If the calculated model form error is zero, which means that the CDF of 

the measurement data is completely within the p-box limits, the circle is coloured in green. If parts of 

the CDF of the measurement data are outside the p-box limits the circle is coloured in orange 

(compare Figure 3 II)) and if the CDF of the measurement data is completely outside the p-box limits 

(compare Figure 3 III)), the circle is coloured in red. 

A green circle (model form error = 0) means, that the user can trust the simulation model under the 

simulated conditions and for the samples used. A red circle means, that the user cannot trust the 

simulation model under the simulated conditions and an orange circle means, that the user can 

partially trust the simulation results and carefully needs to check the conditions for which the 

simulation model is trustworthy, and for which it is not. 

The calculated model form error is use case specific. That means that the user always must check the 

simulation results and the calculated model form error for the specific use case the simulation model 

is designed for. The Rexroth BRSL Credible Simulation app therefore provides an indicator if the 

simulation model is (partially) credible or not. 

Moreover, error handling routines are implemented for a better user experience dealing with invalid 

user inputs as well as errors in the used simulation tool or within the Rexroth BRSL Credible 

Simulation app and providing suggestions on how to solve the occurred issue. 

5. USE CASE EXAMPLE 

The Rexroth BRSL Credible Simulation app can be used to evaluate the simulation model credibility 

of simulation models such as those of the Rexroth BRSL Simulation Library, shown on a small 

exemplary test model of a MS2N05 electric drive of the Bosch Rexroth AG, shown in Figure 13. 

 

Figure 13: Simulation model of an electric drive of the Bosch Rexroth AG 
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In this small example a Bosch Rexroth MS2N05 electric drive is simulated in position control. It is 

controlled by the tabular setpoint specification of parameter ‘P_0_0048’ over time and runs load-free 

against an internal system friction modelled at the motor flange to test the idling behaviour of the 

electric drive. 

Having talked with experts and having varied couple of different parameter combinations of epistemic 

and aleatory model parameters that seemed to be uncertain, it came out that for the example pictured 

above in Figure 13, the internal friction ‘gain1.k’ as uncertain aleatory and the motor current at 

standstill ‘mS2N05.S_0_0111’ as uncertain epistemic parameter are most suitable. 

For the motor current at standstill, ‘mS2N05.S_0_0111’, five random epistemic parameter samples 

were generated within the interval of 0 − 10 Ampere, while for the internal friction ‘gain1.k’ twenty 

random aleatory parameter samples were generated with an expectation value μ = −0.5 and a 

standard deviation of σ = 0.2 what leads to 100 simulations since each epistemic parameter value is 

combined with each aleatory parameter value. 

The QoI are the motor speed ‘mS2N05.n’, shown in Figure 14, the torque/force feedback value 

‘mS2N05.S_0_0084’, shown in Figure 15, and the velocity error ‘mS2N05.S_0_0347’, shown in 

Figure 16, which are interesting to look at and for which a p-box plot for the interesting point in time 

should be created. 

  

Figure 14: Variation and p-box plots of the motor speed of the MS2N05 simulation model 

Figure 14 shows varying simulation results for the motor speed for the 100 simulation runs of all 

different parameter combinations of aleatory and epistemic parameters. The epistemic and aleatory 

influences on the QoI are also visible in the p-box plot. The more the CDF of the left and the right 

boarder of the p-box plot vary in x direction (along the time axis) the greater is the epistemic 

parameter influence on the QoI. The more the CDF of the left and the right boarder of the p-box plot 

vary in y direction (along the axis of the QoI) the greater is the aleatory parameter influence on the 

QoI (compare Figure 1). 

Moreover, the permissible validity range of the real measurement data (min/max values) can be read 

directly from the x-axis values of the p-box limits. For example, the p-box plot of the motor speed 

(Figure 14 on the right) shows that about 58% of the measurement values need to be less than 39 

rpm, otherwise the measurement data will indicate a model form error. In addition, if most of the 

measured values are greater than 35 rpm, a model form error (outside the p-box limits) can be 

assumed, as most measured values are expected to be smaller than 35 rpm according to the p-box plot 

of the motor speed. 
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Figure 15: Variation and p-box plots of the torque/force feedback value of the MS2N05 simulation model 

Figure 15 shows varying simulation results for the torque/force feedback value for the 100 simulation 

runs of all different parameter combinations of aleatory and epistemic parameters. 

The p-box plot at t = 1.8 s on the right shows that measurement values greater than 31.3 N will directly 

lead to a model form error. Also, all values need to be greater than zero and between 19.8 N and 31.3 

N. Furthermore, 41 % of the measurement values are expected to be smaller than 9 N. 

 

Figure 16: Variation and p-box plots of the velocity error of the MS2N05 simulation model 

Figure 16 shows varying simulation results for the velocity error for the 100 simulation runs of all 

different parameter combinations of aleatory and epistemic parameters. The p-box shows big 

epistemic and aleatory parameter influences. Compared to the other two QoI, the p-box plot for the 

velocity error shows the biggest scope of validity. 

The plotted p-boxes of the three QoI show the ranges in which the user can trust the simulation results 

obtained according to the aleatory and epistemic parameter combinations (values stored in 

‘Variations’ plot) which is also kind of a sensitivity study for the chosen parameter combination. 

Unfortunately, there are no real measurement data available for this example. If there would be 

measurement data available, they could be inserted in the p-box plots, and if the CDF of the 

measurement data would be totally within the p-box boarders, the user could totally trust the 

simulation model for the samples used. Since there are no real measurement data available the model 

form error cannot be calculated via the Rexroth BRSL Credible Simulation app. 

Nevertheless, there is an even more detailed simulation model for this example available which was 

used during development as a reference model for the validation of the MS2N05 simulation model of 

the Rexroth BRSL Simulation Library, so the user can trust the simulation results of the simulation 

model which matches reality. Only the model form error as numerical key figure describing how 

exact this simulation model matches the reality is missing. 
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6. CONCLUSION AND OUTLOOK 

The paper in hand has shown how to evaluate the simulation credibility of simulation models and 

simulation model libraries exemplary shown on the Rexroth BRSL Simulation Library and how it is 

done at the Bosch Rexroth AG. It has presented useful methods such as the interval-based p-box 

method including a graphical interpretation as well as the Wasserstein metric for calculating the 

model form error of simulation models. The paper in hand has presented the inhouse Rexroth BRSL 

Credible Simulation app and its usage on an example simulation model of the Rexroth BRSL 

Simulation Library. 

Nevertheless, the model form error calculation for the estimation of the simulation model credibility 

is use case dependent and depends on the availability and quality of measurement data for the specific 

use case and the epistemic and aleatory parameter samples used. The more data the better. 

In the future it is planned to consecutively estimate the simulation model credibility for all simulation 

models of the Rexroth BRSL Simulation Library using the in chapter 2.1 mentioned framework [1] 

of the Robert Bosch GmbH. The result will be a simulation model credibility estimation like the one 

exemplary shown for the ‘Rexroth_ElectricDrives’ (see Figure 7) in Figure 17. 

 

Figure 17: ‘Rexroth_ElectricDrives’ credibility estimation 

In a next step, the credibility attributes shown in Figure 17 can be integrated as metadata to the 

simulation models and thus also into the Asset Administration Shell (AAS) [9]. 

In the future, business models regarding certification services of the credibility of simulation models 

based on simulation credibility levels are also conceivable. 

The further app development such as supporting further simulation tools and simulation model types 

or FMU in the Rexroth BRSL Credible Simulation app is constantly progressing at the Bosch Rexroth 

AG. Furthermore, final test validation and release for productive usage of the Rexroth BRSL Credible 

Simulation app is pending. 

NOMENCLATURE 

Rexroth BRSL Simulation 

Library 

Simulation model library of the Bosch Rexroth AG containing generic 

1D simulation models as well as simulation models of Bosch Rexroth 

specific products for system simulation 

 

Rexroth_ElectricDrives Simulation model library of the Rexroth BRSL Simulation Library 

containing electric drive simulation models of the Bosch Rexroth AG 
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Rexroth BRSL Credible 

Simulation 

App developed by the Bosch Rexroth AG to estimate the credibility of 

simulation models 

 

V & V Verification & Validation  

NASA National Aeronautics and Space Administration  

NAFEMS International Association for the Engineering Modelling, Analysis and 

Simulation Community 

 

ASME American Society of Mechanical Engineers  

S & M credibility Simulation & Model credibility  

p-box probability box  

e.g. for example  

CDF Cumulative Distribution Function  

QoI Quantity of Interest / Quantity of Interest  

m1, …, m5 Exemplary CDFs  

𝑦(𝑡, 𝜁) Time series as a function of time and model input parameters  

t Time s 

𝜁 Vector of model input parameters  

𝛾, v  Probability measures of the time series  

x Representation of output values of an output variable  

m, n Dimension of the output variable  

p, q The occurred values of the output variable  

𝜔𝑝, 𝜔𝑞 Cumulative probability of p, q values  

𝑊𝛼 Wasserstein distance of order alpha  

d Cost matrix between two-point sets (Euclidean distance)  

f Flow matrix between two-point sets  

T Simulation time limit s 

EE Elementary effects  

e Unit vector  

alpha Reproduction rate of the prey (Lotka-Volterra model)  

beta Mortality rate of the predator per prey (Lotka-Volterra model)  

gamma Mortality rate of the predator (Lotka-Volterra model)  

delta Reproduction rate of the predator (Lotka-Volterra model)  

prey_pop_init Initial prey population (Lotka-Volterra model)  

pred_pop_init Original predator population (Lotka-Volterra model)  

pred_pop Predator population (Lotka-Volterra model)  

L2 norm Euclidean norm  

k Number of time steps  

FMU Functional Mock-up Unit  

Dymola 2023x Refresh 1 Dynamic Modeling Laboratory, commercial Modelica simulation tool   

Rexroth_4WRPEH_2X_1 4WRPEH valve of the Bosch Rexroth AG  

CO2 Carbon dioxide  

MS2N05 MS2N servo motor of the Bosch Rexroth AG  

P_0_0048 Velocity command value of controller  

gain1.k Factor for friction modelling  

mS2N05.S_0_0111 Motor current at standstill A 

mS2N05.n Motor speed rpm 

mS2N05.S_0_0084 Torque/force feedback value  

mS2N05.S_0_0347 Velocity error rpm 

𝜇 Expectation value  

𝜎 Standard deviation  

AAS Asset Administration Shell  
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