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ABSTRACT 

Modern hydraulic drives have an ever-increasing power density and robustness, however they 
become more and more complex in their design and control. In many systems, there is the 
possibility of using an overdetermination of system control inputs to optimize the operating strategy 
for energy efficiency or tracking error. Many applications are still largely based on empirical and 
hard coded rules. More advanced methods are using offline optimization algorithms [1] to calculate 
an optimized trajectory for more than one manipulated variable for a given command trajectory. 
However, this approach leads to a lack of robustness and flexibility if model equations are not exact 
enough, real time control is required or the operating point changes. Traditional algorithms lack in 
standardisation and scalability which is also crucial for success in the industry. To overcome the 
disadvantages of rule based or offline optimization methods this paper presents the fundamentals 
and the application of Model Predictive Control (MPC) with respect to electro-hydraulic drives. 
Furthermore, possibilities are described to make advanced algorithms economically transferable 
into series production. 
Keywords: model predictive control, digitalization, sustainability, optimization 

1. INTRODUCTION 

1.1. Motivation 

The system under investigation comprises two variable displacement hydraulic axial piston pumps 
attached to one single speed variable motor shaft. The pumps drive respective flows for two 
chambers of a differential hydraulic cylinder. Leveraging the flexibility of this setup, MPC is used 
to exploit the available input degrees of freedom (DOF) to match and weight different performance 
goals and constraints [2]. The algorithm demonstrates the effectiveness of optimization-based 
control in managing the system for optimal energy strategies and control under state constraints. 

2. OPTIMAL CONTROL OF AN ELECTROHYDRAULIC SYSTEM WITH MULTIPLE 
INPUTS 

2.1. Problem Description 

Model predictive control is a broad family of methods which solve an optimal control problem 
iteratively. If one stays in matured space of MPC a well-established set of standardized 
implementations is at hand. Here, the application is a complex electro-hydraulic system with three-
degree-of-freedom (3DOF) in its control inputs. The system consists of a permanent magnet 
synchronous motor, two displacement variable axial piston pumps on a single speed variable shaft 
and a differential hydraulic cylinder. The basic idea is to actively use the shaft speed and the two 



2 
 

pump displacements to control the cylinder position while optimizing a cost function and 
complying with the defined boundary conditions. 

 

 
Figure 1: Scheme for the electrohydraulic drive system – summating transformer 

 
Table 1: Parameters of the system  

Cylinder parameter Value  

Area 𝐴𝐴𝐾𝐾 85.33 × 10−3 [m²]  
Area 𝐴𝐴𝑅𝑅 42.66 × 10−3 [m²] 
Mass m 3.0 × 103      [kg] 
Volume pump 1,2 4.0 × 10-5     [m³] 
Piston stroke 0.4               [m] 

 

2.2. Modelling of the drive system 

The continuous-time model of the hydraulic cylinder drive system, with two pumps on a speed 
variable shaft, can be expressed in state space as in figure 2. The control inputs are 𝜔𝜔𝑃𝑃,𝑐𝑐𝑐𝑐𝑐𝑐, 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐

[1]  
and 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐

[2] . From top to bottom 𝑝𝑝�̇�𝐾 and 𝑝𝑝�̇�𝑅 describe the pressure dynamics of the respective chamber. 
The piston velocity ℎ̇ and piston acceleration ℎ̈ describe the mechanical equation of the cylinder. 
The swivel rate �̇�𝛼[1,2] and swivel acceleration �̈�𝛼[1,2] describes the swivel angle dynamics of both 
pumps, simplified to a second order system. The rotational speed 𝜔𝜔𝑝𝑝 and torque generating current 
𝐼𝐼𝑞𝑞 finishes the set of equations. Several simplifications were done by neglecting the suction circuit 
and pressure relief valve in the prediction model. Both assumptions are permissible because the 
operating strategy will be chosen to avoid the opening of the suction valves by penalising the 
controller to drop below defined threshold pressure. 
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Figure 2: Detailed dynamical model for the electro-hydraulic system  

 

𝑀𝑀𝐿𝐿 represents the load torque, including mechanical efficiency model of the axial piston pumps. 
The function is described with the help of mechanical efficiency maps (3). 

 

 
Figure 3: Mechanical efficiency maps regarding the axial piston pumps 𝑀𝑀𝐿𝐿 

 

𝑄𝑄𝑝𝑝  represents the pump flow, including the volumetric efficiency model of the axial piston pumps, 
which are described by volumetric efficiency maps (4). 

 

 
Figure 4: Volumetric efficiency maps regarding the axial piston pumps 𝑄𝑄𝑃𝑃 
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The electric power losses are comprised by simplified formula for copper (1) and iron losses (2).  

𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡,𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒  =  
3
2
⋅ RS ⋅ �Iq,eff �

2
  (1) 

Where 𝑅𝑅𝑆𝑆 is the electrical resistance of the copper windings and 𝐼𝐼𝑞𝑞,𝑒𝑒𝑒𝑒𝑒𝑒 is the effective torque 
generating current. 

𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡,𝐹𝐹𝑒𝑒  =  kHys ⋅ 𝜔𝜔𝑀𝑀 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑀𝑀) + kw ⋅ (𝜔𝜔𝑀𝑀)2  
(2) 
 

𝜔𝜔𝑀𝑀 is the rotational motor speed and kHys, kw are fitted motor factors. All these loss-models build 
the foundation for an operating strategy which allows the efficient operation of the system [1]. The 
aggregate loss model (3) consists of the volumetric and mechanical losses for both pumps, the iron 
and copper losses of the motor, the inverter losses and mechanical cylinder losses. For further 
details, we recommend studying [2]. 
 

𝑃𝑃𝑙𝑙𝑀𝑀𝑙𝑙𝑙𝑙 =   𝑃𝑃𝑃𝑃1,𝑉𝑉𝑀𝑀𝑙𝑙 +  𝑃𝑃𝑃𝑃2,𝑉𝑉𝑀𝑀𝑙𝑙 +  𝑃𝑃𝑃𝑃1,𝑀𝑀𝑒𝑒𝑐𝑐ℎ +  𝑃𝑃𝑃𝑃2,𝑀𝑀𝑒𝑒 +  𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡,𝐹𝐹𝑒𝑒 

+ 𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡,𝐶𝐶𝐶𝐶 +  𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡,𝑀𝑀𝑒𝑒 + 𝑃𝑃𝐶𝐶𝐶𝐶,𝑒𝑒 + 𝑃𝑃𝐶𝐶𝐶𝐶𝑙𝑙,𝑀𝑀𝑒𝑒 
(3) 

 

3. CONTROL DESIGN 

3.1. MPC and adaptive linear MPC 

Model Predictive Control (MPC) is an advanced control strategy that computes control inputs by 
solving an optimization problem at each time step. It involves the use of a model of the system to 
predict its future behaviour over a finite horizon. The MPC algorithm computes the control inputs in 
a way that minimizes a cost function, typically by finding a compromise between the deviation from 
a desired command trajectory and the control effort. Once the optimization problem is solved, only 
the first control input of the optimized sequence is applied to the system. Then the whole process is 
repeated at the next time step. This 'receding horizon' strategy allows MPC to handle multivariable 
systems with constraints on inputs, system states, and outputs.  

 

 
Figure 5: Traditional MPC scheme 
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Adaptive Linear MPC (ALMPC) on the other hand, is an extension of the traditional MPC 
approach, that is tailored for systems with time-varying linear dynamics. It involves an online 
update of the linear model used in the MPC optimization as new data becomes available. This 
enables the controller to adjust to changes and nonlinearities in the system dynamics. 

 

 
Figure 6: Adaptive linear MPC scheme 

 

A general disadvantage of MPC is the high computational demand. It scales significantly with 
number of states N, number of constraints m and number of inputs n. For example, for the interior 
point method the complexity is 𝒪𝒪(N3 ⋅ (𝑠𝑠 + 𝑚𝑚)3) [4].  

Additionally, the prediction horizon 𝑠𝑠𝑃𝑃, the control horizon 𝑠𝑠𝑐𝑐   and the controller sample time 𝑇𝑇𝑙𝑙 
are also critical parameters in MPC frameworks. 𝑠𝑠𝑃𝑃 limits the time frame for forecasting the 
system's trajectory, while 𝑠𝑠𝑐𝑐 defines the duration over which control actions are optimized. A 
higher 𝑠𝑠𝑃𝑃 leads to a more forward-looking but also increases the computational burden 
exponentially. Similarly, extending 𝑠𝑠𝑐𝑐 generally results in more optimized control sequences but at 
the cost of higher computational demand. A smaller 𝑇𝑇𝑙𝑙 leads to a higher computational burden but 
also to more accurate control behavior. 

Therefore, the target is to use the least number of states, constraints, and inputs as well as the 
biggest control sample-time, the shortest prediction and control horizon as possible, while 
preserving the advantages of the optimal control strategy. To reach both, accuracy and 
computational viability for industrial control systems, a detailed operating strategy (reference) and a 
reduced operating strategy are implemented and validated in simulation.  

 

3.2. Full order model operating strategy 

Optimization problem formulation 

The detailed variant is benchmarked against a state-of-the-art P-controlled system [5] (with 
acceleration feedback). The controller is only utilising the speed input of the pump and the swivel 
angle is set to maximum for both pumps. 

 

For the strategy itself there are two important aspects, the cost function (4), and the state and input 
constraints (5) of the problem. The cost function consists of the following parts: control deviation 
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𝑒𝑒𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑀𝑀𝑙𝑙 , rate of control inputs 𝑑𝑑𝑑𝑑 and the total loss energy use 𝐸𝐸𝑆𝑆𝐶𝐶𝑙𝑙,𝑙𝑙𝑀𝑀𝑙𝑙𝑙𝑙. 

 

 [u, x, s]T  =  𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 f𝑐𝑐𝑀𝑀𝑙𝑙𝑡𝑡 (e𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑀𝑀𝑙𝑙 , du, ESys,loss) (4) 

 

The constraints are set by the system boundaries. It is distinct between hard and soft constraints, 
whereas hard constraints (5) are mandatory to be hold. In this case minimal and maximal pump 
speed and minimal and maximal swivel angle are considered. 

 

𝜔𝜔𝑃𝑃 − 𝜔𝜔𝑃𝑃
[𝑐𝑐𝑚𝑚𝑚𝑚]                   ≤ 0 

−𝜔𝜔𝑃𝑃 − 𝜔𝜔𝑃𝑃
[𝑐𝑐𝑚𝑚𝑚𝑚]                 ≤ 0 

±𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐
[1,2] − 1                       ≤ 0 

±𝜔𝜔𝑃𝑃,𝑐𝑐𝑐𝑐𝑐𝑐 −  𝜔𝜔𝑃𝑃
[𝑐𝑐𝑚𝑚𝑚𝑚]         ≤ 0 

−|𝜔𝜔𝑃𝑃 | − 𝜔𝜔𝑃𝑃
[𝑐𝑐𝑚𝑚𝐶𝐶]             ≤ 0 

 

(5) 

Soft constraints (6) are on the pressure A and B port. Soft constraints can be violated if no feasible 
solution can be found. For this reason, a slack variable is introduced to weight such violations 
negatively in the cost function. However, the slack variables have been omitted for reasons of 
clarity. 

 

𝑝𝑝𝐾𝐾 − 𝑝𝑝[𝑐𝑐𝑚𝑚𝑚𝑚]                       ≤ 0 

𝑝𝑝𝑅𝑅 − 𝑝𝑝[𝑐𝑐𝑚𝑚𝑚𝑚]                       ≤ 0 

−𝑝𝑝𝐾𝐾 + 𝑝𝑝[𝑐𝑐𝑚𝑚𝐶𝐶]                    ≤ 0 

−𝑝𝑝𝑅𝑅 + 𝑝𝑝[𝑐𝑐𝑚𝑚𝐶𝐶]                    ≤ 0 

(6) 

 

The total loss energy of the system (7) is calculated by the integral over the total loss power 
equation (3). 

 

𝐸𝐸𝑆𝑆𝐶𝐶𝑙𝑙,𝑙𝑙𝑀𝑀𝑙𝑙𝑙𝑙 = �𝑃𝑃𝑙𝑙𝑀𝑀𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 

 
(7) 
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Results 
 

The design and performance evaluation of the MPC algorithm is based on a reference cycle (7). The 
use of a reference cycle helps to evaluate the advantage of the proposed control scheme for a 
specific or generic task. 

 

 
Figure 7: Reference cycle 

Figure (8) shows the comparison of three different approaches: A state-of-the art p-controller (with 
acceleration state feedback), the ALMPC method without energy efficiency optimization and 
ALMPC method with energy efficiency optimization. 

 

 
Figure 8: Result for reference cycle 𝑠𝑠𝑃𝑃 = 40, 𝑠𝑠𝐶𝐶 = 12 and 𝑇𝑇𝑆𝑆 = 10ms 

 

After a hyper parameter tuning (parameter set 𝑠𝑠𝑃𝑃 = 40, 𝑠𝑠𝐶𝐶  = 12 and 𝑇𝑇𝑆𝑆 = 10 ms) the results for the 
benchmark cycle show that both conflicting performance indicators could be improved at the same 
time. For MPC without energy optimization the control accuracy is slightly better than MPC with 
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energy optimization. Both approaches yield a significant improvement over the P-controller 
benchmark for both energy usage and tracking performance. 

 

3.3. Reduced Order Model Operating Strategy 

Optimization problem formulation 

To bring the MPC approach closer to the real-time applicability, computational burden must be 
reduced. To speed up the embedded optimization problem a reduced order prediction model, fewer 
constraints and a new reduced cost function is formulated. These simplifications are done while the 
goal is to preserve most of the results of the high order model. 

 

 
Figure 9: Reduced dynamical model for the electro-hydraulic system 

 

First, the required effort to tune the weights of the cost function is reduced considerable by moving 
the control deviation 𝑒𝑒𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑀𝑀𝑙𝑙 out of the function and transform it into a soft constraint. Also, the 
weight tuning is simplified by having a reduced size weight matrices to trade off the opposing 
optimization objectives [3]. 

 

 [u, x, s]T  =  𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 f𝑐𝑐𝑀𝑀𝑙𝑙𝑡𝑡 (du, ESys) 
(8) 
 

As the swash plate dynamics is removed from the model, no constraints are set on the minimum and 
maximum swivel angle and swivel rate. The control deviation  𝑒𝑒𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑀𝑀𝑙𝑙 is now formulated as a soft 
constraint, which penalizes the exceeding of a limit  𝑒𝑒𝑡𝑡𝑀𝑀𝑙𝑙. As in the first optimization problem the 
slack variables have been omitted for reasons of clarity. 

 

𝑒𝑒𝑐𝑐𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑀𝑀𝑙𝑙 − 𝑒𝑒𝑡𝑡𝑀𝑀𝑙𝑙                 ≤ 0 

−𝑒𝑒𝑐𝑐𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑀𝑀𝑙𝑙 − 𝑒𝑒𝑡𝑡𝑀𝑀𝑙𝑙              ≤ 0 

𝑝𝑝𝐾𝐾 − 𝑝𝑝[𝑐𝑐𝑚𝑚𝑚𝑚]                      ≤ 0 

𝑝𝑝𝑅𝑅 − 𝑝𝑝[𝑐𝑐𝑚𝑚𝑚𝑚]                      ≤ 0 

−𝑝𝑝𝐾𝐾 + 𝑝𝑝[𝑐𝑐𝑚𝑚𝐶𝐶]                   ≤ 0 

−𝑝𝑝𝑅𝑅 + 𝑝𝑝[𝑐𝑐𝑚𝑚𝐶𝐶]                 ≤ 0 
 

(9) 

While searching for controller hyperparameters, of the reduced order problem, we observed better 
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results for lower prediction and control horizons than for long prediction and control horizons. This 
can be explained by the fact that ALMPC uses linearization. Therefore, the model uncertainty of the 
prediction model increases with a rising distance to the operating point such that modelling errors 
and linearizing effects accumulate along the prediction horizon. However, this fact comes in very 
handy when we try to have the controller run in an embedded environment. The shorter horizons 
result in less computing effort. 

 

 
Figure 10: Result for reference cycle 𝑠𝑠𝑃𝑃 = 12, 𝑠𝑠𝐶𝐶 = 6 and 𝑇𝑇𝑆𝑆 = 5ms 

 

Noteworthy is that by reducing the problem complexity the amount of compute dropped 
significantly and allowed for a wider and more granular hyperparameter search. This ultimately led 
to hyperparameters (parameter set 𝑠𝑠𝑃𝑃 = 12, 𝑠𝑠𝐶𝐶  = 6 and 𝑇𝑇𝑆𝑆 = 5 ms) which gave similar results on the 
benchmark cycle versus the full order model. Additionally, the reduced amount of compute brought 
the software into the realm of real time operation on an industrial computer.  

 

4. CONCLUSION AND OUTLOOK 

In summary, our work has demonstrated the scalability and potential of Model Predictive Control 
(MPC) for control systems with multiple degrees of freedom in its inputs. The optimization-based 
approach makes it a scalable and versatile tool for achieving different performance goals under 
constraints and safety margins.  

Looking forward, the future of MPC in hydraulic systems is promising. Combining control 
algorithms with AI and machine learning will further enhance capabilities, and the demand for 
energy-efficient solutions underscores the importance of MPC in optimizing hydraulic operations. 
The competencies of hydraulic control engineers need to evolve towards dynamical modelling and 
optimization-based control to harness the power of discussed approaches. Collaborative efforts 
between academia and industry will facilitate the transition of these advancements into practical 
applications, benefiting numerous sectors that rely on hydraulic systems. In conclusion, MPC offers 
substantial benefits, and its future applications promise improved control performance and energy 
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efficiency in various hydraulic industries, driving innovation in engineering and automation. 
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