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ABSTRACT 

This contribution introduces a data-based modeling approach using Local Model Networks for the 

online learning of cylinder velocity controllers that are applied for the realization of excavator 

assistance functions like reference tracking of the tool center point (TCP). 

Even without any individual machine data, just using available data from a similar machine or expert 

knowledge, we can design an initial controller that is adapted during operation to improve the 

controller performance and to allow for automatic controller calibration. This allows for a significant 

reduction of manual machine commissioning efforts while ensuring the required accuracy of the 

assistance functions. In general, changes in the system behavior over machine lifetime could be 

compensated with our approach. 

To show the effectiveness of the proposed strategy, we have applied the proposed machine learning 

method to a hydraulic excavator. The data-based controllers are adapted online using a rapid-

prototyping system and are sufficiently fast to be implemented on a standard control unit. The control 

performance is comparable to traditional approaches while drastically reducing the time and effort 

for calibration. 

 

Keywords: Excavator assistance functions, learning-based control, local model networks, online 

learning 

1. INTRODUCTION 

Recently, there has been an increasing demand on assistance functions for working machines, which 

is also triggered with the recent advances in the field of electro-hydraulics and applied robotics. Such 

functions can simplify machine usage, increase the overall productivity, and improve machine safety 

during operation [1]. 

One of the core technological requirements for assistance functions is the ability of an accurate path 

tracking for the tool center point (TCP) which is located at the tip of the bucket. Since an experienced 

operator can follow a desired path with a high accuracy, tracking accuracy requirements for assistance 

functions are also similarly high. Simple empirical controllers fail to provide the required accuracy 

since the kinematics and the hydraulic system of the excavator is complex and highly non-linear. 

Deriving first-principles models for the model-based controller design requires lots of time and effort. 

Hydraulic excavators are typically high-mix / low-volume products, which makes the development 

of a model-based controller for each excavator economically not feasible. In the course of this paper, 
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we will apply a learning-based control approach for this control problem. A presentation of the target 

assistance function for leveling and sloping operations can be also found in the following video:  

LINK (https://youtu.be/6xE5ZYCYxtw?si=DyCSdjKmNeBXOdOY). 

For some time, speed control of hydraulic cylinders for autonomous and semi-autonomous working 

machines has been in the focus of the control and robotics community. While Bender et. al. [2] and 

Kalmari et. al. [3] introduce model-based controller structures, recently, pure data-based and hybrid 

controller structures have been presented. In [4], feedforward Neural Networks (NNs) were used as 

data-based models, while a Gaussian Process (GP) regression framework has been deployed for the 

same control problem in [5]. In [6], the authors present a reinforcement learning framework for 

control, which is trained offline, i.e., without interactions with the real machine using a data-based 

model. A similar control problem has been solved using local GP models for smaller robots in [7]. In 

all mentioned papers, the main focus has been the controller design rather than the efficiency of the 

data-collection process. An efficient data collection method is developed in [8] for the same 

application using active learning. The importance of an efficient design of experiments (DoE) grows 

if environmental factors and aging of the system behavior cannot be neglected. Another interesting 

challenge for data-based controllers is the handling of production tolerances, which can make it 

necessary to repeat the data collection process for each individual machine.  

The main contribution of this work is an efficient online adaptation of data-based controllers for 

excavator assistance functions, running embedded on the excavator control unit. We apply the 

concept of local model networks to learn the inverse system behavior so that the obtained model can 

be used as an adaptive feed-forward controller. Using measurements on a real excavator, we will 

show that the controller can ensure the necessary accuracy during typical leveling and sloping 

movements. Moreover, in the case of a deviation from the optimal performance, for example caused 

by a lack of a rich data sets for the training of the initial model or aging effects, the initial controller 

can be adapted during regular operation under limited computational and storage resources.  

This work is structured as follows. In the next section, we will present the test vehicle and the control 

problem which will be solved using adaptive data-based controllers. Section 3 introduces the 

fundamentals of local model networks for non-linear system identification. In Section 4, our proposed 

online adaptation concept is presented in detail. Vehicle measurements in Section 5 are used to 

evaluate the effectiveness of the introduced learning-based control strategy. Concluding remarks are 

given in Section 6. 

https://youtu.be/6xE5ZYCYxtw?si=3z9iCrJnHHxVtT_H
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2. PROBLEM SETUP 

2.1. Test Vehicle 

 

Figure 1: Test Vehicle: JCB Hydradig hydraulic excavator 

The test vehicle as shown in Fig. 1 is a JCB Hydradig mobile hydraulic excavator which is used to 

validate the effectiveness of the proposed control strategy. The working arm of the excavator consists 

of four links actuated with four cylinders, called boom, tab, arm and bucket cylinder. Three of the 

cylinders are controlled using our proposed controller while the tab cylinder remains at a constant 

position during the excavator movement. The control input to the test vehicle is the modified output 

of the joystick signals. The operational software of the working machine is not modified. 

The test vehicle is equipped with a dSpace MicroAutoBox II rapid prototyping system. The proposed 

functionality is implemented in Matlab & Simulink which allows for efficient code generation for the 

dSpace system. 

2.2. Control Problem 

The structure of the overall system for the path tracking problem is presented in Fig. 2. As stated in 

the introduction, focus of this paper will be the learning control for hydraulic cylinders. It is important 

to notice that the controller structure has also been used in our recent papers [4, 5].  

 

 
Figure 2: Controller structure 
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It is assumed that the kinematics of the excavator arm are exactly known so that differential inverse 

kinematics can be calculated and have not to be learned from data. Details on the optimization-based 

solution of the inverse kinematics problem, as it has been applied here, can be found in Bender et. al. 

[2]. Hence, the tracking problem can be transformed from TCP coordinates to joint coordinates. The 

feedforward controller is learned from data and reflects the inverse system behavior. The control 

variables are the three joystick signals. 

3. LEARNING-BASED FEEDFORWARD CONTROL USING LOCAL MODEL 

NETWORKS 

 

 

Figure 3: Illustration of a Local Model Network, see [10]. 

 

 

Figure 4: Local model network with two inputs. The model output (right) is calculated as the weighted 

interpolation of local linear models (middle) using the corresponding validity functions (left). 

3.1. Local Model Networks (LoMoNet) 

Local Model Networks (Fig. 3) are a special type of neural networks which were developed in the 

context of nonlinear system identification [10]. The main idea is to calculate the model output �̂�  as 

a weighted sum of local models �̂�𝑖. Here, the weightings are so-called validity functions Φ𝑖, and the 

local models are usually chosen to be of linear type: 
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�̂� = ∑ �̂�𝑖(𝑥)Φ𝑖(𝑧) = ∑(𝑤𝑖0 + 𝑤𝑖1𝑥1 + 𝑤𝑖2𝑥2 + ⋯ + 𝑤𝑖,𝑛𝑥𝑥𝑛𝑥)Φ𝑖(𝑧)

𝑀

𝑖=1

𝑀

𝑖=1

 . (1) 

 

Using this model construction, it is possible to describe a nonlinear process behavior while having 

simple linear equations locally, see Fig. 4.  

An important aspect of LoMoNet models is that the inputs to calculate the local models as well as the 

inputs to calculate the validities can be treated individually.  Hence, it can be distinguished between 

the validity function inputs z that are influencing the model in a nonlinear way and the local model 

inputs x that affect the model output linearly. This is especially important, e.g., when dealing with 

dynamic processes where delayed versions of physical inputs have high correlation and should only 

be incorporated in x, but are omitted in z. 

As shown in (1), the i-th local linear model (LLM) �̂�i is described with: 

�̂�𝑖(𝑥) = 𝑤𝑖0 + 𝑤𝑖1𝑥1 + 𝑤𝑖2𝑥2 + ⋯ + 𝑤𝑖,𝑛𝑥𝑥𝑛𝑥 =  �̃�𝑇𝑤𝑖 , (2) 

where 𝑤𝑖 = [𝑤𝑖0 𝑤𝑖1 . . . 𝑤𝑖,𝑛𝑥]
𝑇

are the local model parameters, i.e., the offset and slopes in each 

input dimension and �̃� = [1 𝑥1 . . . 𝑥𝑛𝑥]𝑇 the input vector for the local model. The regressor “1” in �̃� 

extends the input vector 𝑥 for the estimation of the offsets 𝑤𝑖0. The linear formulation has the benefit 

that standard (weighted) Least Squares methods can be applied for estimation. Furthermore, 

especially in the context of the underlying application, this is an essential feature, because it allows 

to use recursive algorithms for updating the parameters online. 

The validity functions determine in which input region a local model is valid. The determination of 

the position and shape of these validity functions or the so-called partitioning, respectively, is a 

complex nonlinear optimization problem and, therefore, often is solved heuristically in practice.  

The underlying work uses the Local Linear Model Tree (LoLiMoT) algorithm which is described in 

detail in [10]. Here, the validity functions are calculated as normalized Gaussian membership 

functions. The partitioning is achieved with orthogonal splits which lead to Gaussians, described with 

diagonal covariance matrices. Hence, the calculation of the membership functions simplifies to 

μ𝑖(𝑧) = exp (−
1

2
(

(𝑧1−𝑐𝑖1)2

σ𝑖1
2 + ⋯ +

(𝑧𝑛𝑧−𝑐𝑖,𝑛𝑧)
2

σ𝑖,𝑛𝑧
2 )) , (3) 

where 𝜎𝑖𝑗 are the standard deviations and 𝑐𝑖𝑗 the centers of each local model. The membership 

functions are then normalized to achieve a partition of unity. Hence, for each input sample z all 

validity functions sum up to one: 

Φ𝑖(𝑧) =
μ𝑖(𝑧)

∑ μ𝑗(𝑧)𝑀
𝑗=1

, ∑ Φ𝑖(𝑧)𝑀
𝑖=1 = 1 . (4) 

Please, refer to [10] for more details on the functioning and characteristics of the LoLiMoT algorithm. 

However, important to note is that the LoLiMoT algorithm has two main hyperparameters: the 

maximum number of local models 𝑀 and the smoothness value which proportionally affects the 

calculation of the standard deviations 𝜎𝑖𝑗 in (3). Hence, the interpolation smoothness between the 
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local models is influenced. The higher the smoothness value is chosen the smoother the interpolation 

between local models becomes. Note that with higher interpolation smoothness the number of 

effective model parameters is reduced due to the local estimation of the LLM parameters. This leads 

to an implicit regularization effect, see [10] for details. 

For the underlying application, LoMoNet showed similar performance compared to, e.g., Gaussian 

Process models or neural networks (MLP). However, the architecture of LoMoNet models is 

especially useful for our use case, because the model meets the memory and computation 

requirements of the embedded controller and, furthermore, can be adapted in real-time on the target 

device. 

3.2. Online Learning using LoMoNet 

As shown in Fig. 2, the speed controller contains a feed-forward part that captures the inverse 

behavior of a hydraulic actuation and determines a corresponding joystick position based on the 

desired trajectories, like described in chapter 2.2. In the following, the inverse plant behavior is 

modeled with the LoMoNet approach. 

The learning of LoMoNet consists of two parts: 

1. Learning structural parameters (𝜎𝑖𝑗, 𝑐𝑖𝑗) that capture nonlinear characteristics by partitioning 

the input space. 

2. Learning the parameters of local linear model parameters 𝑤𝑖. 

The first part of learning is challenging due to the nonlinear formulation of the partitioning. In our 

work, the incremental, axis-orthogonal tree construction algorithm LoLiMoT was used to train the 

partitioning parameters from offline data. We assume that for similar excavators the partitioning does 

not change significantly, because the nonlinear behavior is comparable. Hence, the partitioning is 

trained offline based on data of a “golden sample” excavator and is then transferred to a new, similar 

excavator. Next, using the pre-trained partitioning, only the local model parameters are adapted to 

the new system. Therefore, it is possible to separate the complex offline training of the validity 

functions from the online learning of the local model weights. Note that it is even possible to manually 

define the input space partitioning based on physical system knowledge when the first commissioning 

of the machine is done with only a low number of inputs and initially no golden sample data is 

available.  

Once the partitioning is available, the local model weights are adapted online, embedded in the control 

unit software. The initial values of the local model parameters are taken from the offline training as 

well, hence, are determined by the data of a similar excavator. For (online) adaptation of local model 

parameters, a state-of-the-art recursive least squares algorithm can be used. 

4. EXPERIMENTAL RESULTS 

Databased models only ensure a good model accuracy if the working space is covered with data in a 

dense way. In this work, we have been using an already available, rich dataset which has been also 

introduced in [4]. The dataset has been generated using quasi-random (multi-sine and amplitude 

modulated pseudo random binary signal (APRBS)) excitation of single and multiple cylinders. With 

this dataset, three different LoMoNet models were trained for the three cylinders with the following 

input features and model settings, see Table 1. Note that in all experiments the inputs for 𝑥 and 𝑧 are 

chosen equally. 
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Table 1:   Input features and hyperparameters of LoMoNet models for different cylinders  

(#LMs = number of local models). 

Model Input features for 𝑥 and 𝑧  #LMs  smoothness 

Boom Cylinder speed, acceleration, ∆psys 
 110 1.5 

Arm Cylinder speed, acceleration  90 1.2 

Bucket Cylinder speed, ∆psys 
 51 1.2 

  

4.1. Offline Validation of Online Learning using Vehicle Measurements 

First, the obtained models have been validated using test data which wasn’t included in the training 

data. While training data has been generated during random APBRS and multi-sine movements, test 

data has been collected using typical leveling and sloping operations. Levelling and sloping 

movements are repeatable excavator tasks with high accuracy requirements and low external load.   

As expected, all the controllers show a good modeling accuracy as shown in Table 2. 

Next, the robustness of the obtained controller against changes in the system behavior has been 

analyzed. Such deviations in the behavior can arise due to aging or other environmental effects. 

Another possible reason for data-to-behavior deviations would be production tolerances, if collection 

of individual training data for each vehicle is omitted and initial controllers have been trained using 

the same nominal data set. In our experiments, in order to analyze the robustness of the databased 

controller against changes in the system, we switched at our test machine to a different operation 

mode (power mode); when not only the speed of the combustion engine and consequently the 

maximum available power for the hydraulic system but also the characteristics between the joystick 

position and volume flow demand changes. Please note that the vehicle behavior in power mode 

stimulates the behavior of a similar but not identical vehicle.  Consequently, we observed a clear drop 

of the model accuracy which is reflected in the model errors shown in Table 2. Please notice that the 

training data has been collected in normal mode and we didn’t repeat the data collection in power 

mode. 

The bad performance obtained with the initial controller in power mode (i.e. at a different working 

machine) is not really surprising and the typical measure against this situation would be to repeat the 

data collection stage at the “new vehicle” i.e. at power mode. Consequently, new models can be 

trained using individual training at the cost of a higher data generation effort. However, even if the 

system behavior in power mode deviates from the behavior in normal mode, it is still similar so that 

it is reasonable to expect that the databased controller can achieve again a good performance after a 

slight adaptation of local model parameters. An offline analysis of vehicle measurements also 

validates our expectation; using online learning, we obtained a very significant improvement of the 

system accuracy, see Table 2 vs. Table 3. Table 3 shows that even at the normal mode, after online 

adaptation, the controller performance can be improved since in this way the model parameters can 

be optimized more for the leveling operation at the cost of the model generalization.  

 

Table 2:   Path tracking performance for different cylinders at normal mode and power mode. 

Model Normal mode 

RMSE [%]   R2 [-] 

Power mode  

RMSE [%]   R2 [-] 

Boom Cylinder 4.03              0.974 6.52              0.861 

Arm Cylinder 4.83              0.983 5.84              0.952 
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Bucket Cylinder 4.29              0.973 4.62              0.948 

  

 

Table 3: Path tracking performance for different cylinders at normal mode and power mode  

(online adaptation is enabled). 

Model Normal mode 

RMSE [%]   R2 [-] 

Power mode  

RMSE [%]   R2 [-] 

Boom Cylinder 2.14              0.992 1.99              0.987 

Arm Cylinder 1.87              0.997 2.08              0.994 

Bucket Cylinder 1.36              0.997 3.21              0.975 

 

 

4.2. Online Validation at the Working Machine 

After the offline analysis, the online adaptation of feed-forward databased controllers has been also 

validated at the test vehicle. Please note that during validation measurements, the feedback part of 

the cylinder speed controller is deactivated so that different feed-forward controllers can be directly 

compared.   

In the measurements, first, online adaptation is disabled and the path following accuracy during 

typical levelling movements at normal mode has been evaluated. Figure 5 shows the tracking 

accuracy at different hydraulic cylinders. 

As described above, we wanted to check the robustness of the databased controller against changes 

of the system behavior. Figure 6 shows the controller performance at power mode which represents 

a similar but not identical machine. As expected, we observed a significant drop of the controller 

performance. Especially, strong oscillations arise at boom cylinder which is not acceptable. 
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Figure 5: Trajectory tracking performance of databased controllers during leveling at normal mode (nominal 

machine). The desired cylinder speeds are depicted in blue and the measured speeds in red. 

 

 

Figure 6:  Trajectory tracking performance of databased controllers at power mode (i.e at a similar 

machine) during leveling. The desired cylinder speeds are depicted in blue and the measured 

speeds in red. 
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Figure 7: Trajectory tracking performance of databased controllers at power mode (i.e at a similar machine) 

during leveling. The desired cylinder speeds are depicted in blue and the measured speeds in red. 

Online adaptation of local model parameters is enabled, which ensured a low tracking error 

compared with the previous measurement presented in Figure 6.  

 

 

Figure 8: Leveling error (deviation from desired height) during online learning. 

 

To be able to compensate for the change of the system behavior, online adaptation is enabled, and the 

local model parameters are adapted dependent on the obtained prediction error. Figure 7 clearly shows 
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that the controller performance can be improved in a significant way after a very short time. With the 

help of online adaptation, also the TCP-tracking accuracy can be improved, which is presented in 

Figure 8. Please notice that online adaptation ensures that the deviation from the desired height 

remains under 3cm which is a very impressive performance for the size of the excavator. 

5. CONCLUSION AND OUTLOOK 

In this work, we presented a learning-based control concept for the speed control of hydraulic 

cylinders using local model networks. The proposed framework models the complex hydraulic 

behavior with good accuracy. Furthermore, model parameters can be adapted in an efficient way, so 

that it is even possible to run it on the embedded control unit software. As a result, the robustness of 

the learning-based controller is significantly improved against changes of the system behavior. This 

is a very important achievement since such deviations are very typical during regular operation due 

to environmental effects, aging or part replacements.  

In our current research, we are working on the robustness of the online learning algorithms against 

“bad” data, so that learning can be activated all the time and functionality shall decide which data can 

be used to adapt databased models. Another interesting research point is to learn databased models 

of the forward path of the system which can be then used for controller design.  

NOMENCLATURE 

TCP Tool center point  

x Pose of tool center point in horizontal, vertical, and relative bucket angle m, m, rad 

xR Desired pose of tool center point in horizontal, vertical, and relative bucket angle m, m, rad 

s Measured cylinder position for boom, arm, and bucket cylinder m 

𝑠𝑅 Desired cylinder position for boom, arm, and bucket cylinder m 

u Controller output (modified joystick output) % 

∆𝑝𝑠𝑦𝑠 System pressure i.e. pressure difference between pump pressure and load sensing 

pressure 

bar 

LLM Local linear model  

𝑤𝑖 Parameters of the i-th local linear model  

𝜎𝑖𝑗 Standard deviations of i-th local model inputs  

𝑐𝑖𝑗 Center of i-th local model  

RMSE Root mean square error  

R2 Coefficient of determination  
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