

1

REINFORCEMENT LEARNING-BASED PID CONTROLLER DESIGN

FOR MASS FLOW

Moritz Allmendinger1*, Michael Erhard1

1Research and Development, Bürkert Fluid Control Systems, Christian-Bürkert-Straße 13-17, 74653

Ingelfingen

* Corresponding author: Tel.: +49 7940 10 96 269; E-mail address: moritz.allmendinger@burkert.com

ABSTRACT

This paper demonstrates a model-based control synthesis strategy based on artificial neural networks

and reinforcement learning. For this purpose, both the determination of the systems’ response as well

as the training of the neural network are transferred to a virtual environment. The neural network

acting independently but interacting with a conventional PI controller, is optimized in order to achieve

the predefined control target. The definition of the control target and the evaluation of the control

response are compared with each other in the time domain enabling a flexible integration and

adaptation to a wide range of possible requirements. The results illustrate the feasibility of control

synthesis based on a virtual trained neural network. Considering variations and uncertainties for the

control target and the environment, the neural network should become more robust and suitable for

real systems with inherent deviations between each other.

Keywords: Reinforcement Learning, Simulink, Mass Flow Control, PID

1. INTRODUCTION

Fermentation is the conversion of organic substances with the help of bacteria, fungi or cell cultures

in admixture with enzymes. The process is used in a variety of industries, from food and beverage to

pharmaceutical and chemical, as well as in research laboratories or pilot plants. To achieve optimum

fermentation results, precise control of all process parameters is essential. The type and concentration

of nutrients, the temperature, the oxygen content, and the pH-value in the fermenter are crucial

parameters for this. Up to 4 fermentation gases are used inside the fermenter to control the

fermentation process: oxygen (O2), nitrogen (N2), carbon dioxide (CO2) and air (21% oxygen and

79% nitrogen). Reproducible processes and repeatable product quality require precise control of these

gases. For this reason, mass flow controllers (MFC’s) are used to control the gas supply and exhaust.

Proportional-integral-derivative (PID) controllers are the most widely used control algorithms in the

industry. The control strategy of MFC’s for gaseous media used in fermentation processes is also

based on the proven PID approach. Although classical PID controllers require only a small set of

parameters to set up the control action, successfully tuning them can be a challenging task, especially

in the presence of dominant and state-dependent nonlinearities. This results in a time-intensive

optimization of the PID parameters to achieve an overall stable and robust control performance.

This paper examines whether neural networks and reinforcement learning (RL) can simplify standard

PID design and enhance PID control performance. Against this background, the control action of a

conservatively parameterized standard PID controller is extended by a further component that

originates from a neural network. For this purpose, both the determination of the systems’ dynamic

response as well as the training of the neural network are moved to a virtual environment. This

2

approach needs a dynamic simulation model of the system modeling all significant physical effects

of the MFC: nonlinear characteristic curves including actuator hysteresis and event-driven changes

in system dynamics with respect to system state.

The paper is structured as follows: section 2 provides an overview about reinforcement learning, the

used agent, and the training methods. The description of the simulated application is presented in

section 3. Section 4 explains the training setup for the agent used in reinforcement learning. The

results obtained are shown in section 5 and finally summarized in section 6.

2. REINFORCEMENT LEARNING – BASICS AND FRAMEWORK

2.1. Reinforcement Learning

Deep Learning requires labeled data to train a neural network. However, it is important to note that a

neural network will never perform better on the test data than on the training data. This problem can

be avoided with RL, which is based on trial and error.

The basic elements of RL are an agent and an environment. The agent observes a continuous-in-value

state 𝑠(𝑡𝑘) of the environment at a discrete time 𝑡𝑘. Based on the recent policy π(𝑡𝑘), the agent

performs a continuous action 𝑎(𝑡𝑘) out of space 𝐴 of possible actions. This leads to a new

state 𝑠(𝑡𝑘+1) of the environment. The reward 𝑟(𝑡𝑘+1) received for the new state informs the agent

about the quality of its action so that it can adjust its policy accordingly. The agent’s goal is to

maximize the cumulative reward.

The breakthrough of RL came in 2013 when the Deep Q learning algorithm developed by Deepmind

outperformed the best players of the Atari game [1]. Since then, the RL approach has made further

progress. A variety of new techniques and algorithms still exist today. Research is also increasingly

focusing on using RL in an industrial control context. Two relevant contributions are described below,

with overlapping content in some areas.

As a nonholonomic system with measurement noise and external disturbances, controlling a robotic

system is challenging. In their work [2], Gheisarnejad & Khooban demonstrate a possibility of how

a RL agent (here the Deep Deterministic Policy Gradient (DDPG)) can assist a conventional

controller in trajectory control. Therefore, the control action of the PID controller is manipulated by

a superimposed action selected by the DDPG. During training sequences, this approach can

compensate for uncertainties and disturbances in the trajectory control to ensure more robust control.

The advantages of this approach are highlighted by a comparison between the RL-based PID

controller and the previously used controller. Siraskar's article [3] investigates the use of the DDPG

algorithm as a flow control algorithm with nonlinear valves. The trained DDPG is compared to a PID

controller. The data indicates that the DDPG controller more accurately tracks the command signal

compared to the PID controller. In contrast, the PID controller shows superior performance in

suppressing disturbance variables.

A literature review suggests that combining PID control with RL-based control enhances the

performance of this hybrid control system. This approach has the potential to improve the control

performance for various problems, such as regulating gas mass flow. An RL-based PID controller

could combine the positive results of the agent’s control performance with the suppression of

disturbances by the PID controller, thus also improving the results obtained by Siraskar. With

reference to both publications and the DDPG used therein, this RL algorithm is also considered

suitable for the problem dealt with here.

3

2.2. DDPG

Lillicrap et al. [4] developed the Deep Deterministic Policy Gradient algorithm for solving problems

in environments with continuous-in-value states and action spaces. This previously mentioned

algorithm combines the Deterministic Policy Gradient and Deep Q-Learning agents. The DDPG is

based on the Deterministic Policy Gradient, as it can be used for continuous action spaces, and is

extended by the techniques of the replay buffer and the updating of networks from Deep Q-Learning.

2.3. Training

There are two ways to train an RL algorithm. One way is to train it against a real environment.

Therefore, the RL algorithm has to be executed on the intended real-time hardware and must be

connected to the environment physically. The advantage of this approach is the existence of a realistic

environment, ideally the environment into which the agent will later be integrated. The training with

a real environment should cover all effects that may occur during the subsequent operation. In doing

so, the agent is optimally trained for the later field of application. Computing power is often the main

problem with this training method. Compared to a high-performance computer, embedded systems

have significantly less memory and computing power on the target hardware. Another disadvantage

is the possible damage of the hardware used during training. It is unavoidable that hardware used in

the system is subjected to high loads due to the large number of training sessions or operating points

within limit ranges, which lead to increased wear and tear.

For this reason, the model-based training approach is becoming increasingly popular. Compared to

the previously described approach, the model-based training strategy relies on a simulated

environment. This solves the problems that occurred during training with the real system – limited

computing power together with increased wear and tear and sometimes even potentially dangerous

conditions depending on the application. The performance of the computing hardware used for

training can be easily adapted to the requirements of the training algorithm reducing overall training

time. In addition, there is no hardware wear in a simulation model. Both effects jointly reduce the

costs of training. In the model, the environment can always be parameterized in the same way making

a reproducibly testing and comparison of the several trained networks easy. In this way, parameters

and states in the model can be flexibly isolated and evaluated. This is only partially possible when

training on the real system.

MATLAB and Simulink in Release R2023a are selected as simulation environment. The

Reinforcement Learning Toolbox of MathWorks makes several implemented RL agents available,

including the DDPG algorithm. The architecture of the model used for simulation of controller, agent

and environment is shown in Figure 1. The plant model is described in section 3, RL setup, agent

and controller parameterization are discussed in section 4.

Figure 1: Structure and main components of training model

Plant

RL agent

+Controller
u(tk)

DAC

ADC

dc(tk)

ṁsensor(tk)

ṁsensor

ṁset(tk)

a(tk)

4

3. PLANT MODEL

This section deals with the plant model visualized in Figure 1 as counterpart to the controller and RL

agent. For reasons of simplicity, the entire fermentation process is reduced to boundary conditions

acting at the inlet and outlet of the MFC. Thus, the plant model only includes the physical effects

inside the MFC, interacting with the application through (constant) boundary conditions. As shown

in Figure 2, a MFC consists of 3 main components – an electronic control unit, a proportional valve,

and a flow rate sensor. Because the controller is part of the control unit and modeled together with

the RL agent in a discrete manner, the physical plant model reduces further. In the end, the modeling

task will only include the valve and the sensor.

Figure 2: Mass flow controller layout (left), detailed signal flow interface chart

for continuous plant model (right)

Taking a closer look at the time-continuous plant model, the governing equations from first principles

must describe several physical domains and their interactions as indicated in Figure 2. Hereby, the

modeling of the dynamic response of the proportional valve is the largest subtask, which will be

discussed in more detail in the sections below.

The electro-magnetic actuator is made from soft-magnetic material excited by a current-driven coil.

All relevant data for this solenoid is calculated with the help of finite element simulation yielding the

nonlinear current inductance 𝜕𝜓 𝜕𝑖𝑐𝑜𝑖𝑙⁄ |𝑥,𝑖 and the moving inductance 𝜕𝜓 𝜕𝑥⁄ |𝑥,𝑖 as well as the

corresponding reluctance force map 𝐹𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑. The underlying equations (1) and (2) describe the

current and force behavior for the electro-magnetic actuator.

 𝜕𝑖𝑐𝑜𝑖𝑙

𝜕𝑡
=

1

𝜕𝜓
𝜕𝑖𝑐𝑜𝑖𝑙

∙ (𝑑𝑐 ∙ 𝑈𝐵 − 𝑅𝑐𝑜𝑖𝑙 ∙ (𝑖𝑐𝑜𝑖𝑙 + 𝑖𝑒𝑑𝑑𝑦) −
𝜕𝜓

𝜕𝑥

𝜕𝑥

𝜕𝑡
)

(1)

 𝐹solenoid = 𝑓(𝑖coil, 𝑥) (2)

Considering Figure 2 again, there is a nonlinear time delay between the applied duty cycle 𝑑𝑐 of the

PWM excitation and the coil current or solenoid force, respectively. The supply voltage 𝑈𝐵 for the

PWM-controlled coil acts only as a constant boundary condition and is not changed during the

different training episodes. An additional eddy current model fitted with transient finite element

results completes the underlying dynamic simulation model of the actuator.

pin pout

MAGNETIC

MECHANIC

FLUIDIC

pin

pout

ṁvalve
SENSORIC

UB

Ffluid

Fsolenoid x

x

xnorm

normaliz.

dc(tk)

ṁsensor(tk)

continuous

domain

discrete

domain

ṁsensor(tk)

ṁset(tk) dc(tk)
e(tk)

ṁvalve

5

On the fluidic side, the modeling is limited to the description of the mass flow 𝑚̇𝑣𝑎𝑙𝑣𝑒 as a function

of valve stroke 𝑥 and input or output pressures 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡 applied. It is known from ISO 6358 that the

upstream pressure 𝑝𝑖𝑛 together with the pressure ratio 𝑝𝑜𝑢𝑡 𝑝𝑖𝑛⁄ is sufficient to calculate the mass

flow through a restriction. The dependence from valve opening is implemented through the scaling

of the conductance 𝐶(𝑥𝑚𝑎𝑥) for the fully opened valve with the normalized valve stroke 𝑥𝑛𝑜𝑟𝑚.

Above the critical pressure ratio 𝑏, mass flow changes with outlet pressure as equation (3) indicates.

Below the critical pressure ratio, the flow is saturated and mass flow depends only on upstream

pressure, see equation (4). The missing parameters such as the conductance, the critical pressure ratio

or the valve stroke normalization are determined from flow measurements at different valve openings.

𝑚̇𝑣𝑎𝑙𝑣𝑒 = 𝑥norm ⋅ 𝑝in ⋅ 𝐶(𝑥max) ⋅ 𝜌0 ⋅ √
𝑇0

𝑇in

√1 − (

𝑝out

𝑝in
− 𝑏

1 − 𝑏
)

2

 (3)

𝑚̇𝑣𝑎𝑙𝑣𝑒 = 𝑥norm ⋅ 𝑝in ⋅ 𝐶(𝑥max) ⋅ 𝜌0 ⋅ √
𝑇0

𝑇in

 (4)

In addition to these descriptions resulting from the state-of-the-art, the flow forces play an important

role. On the one hand, an increase in mass flow results in an additional upstream pressure drop

reducing the nominal lift force. On the other hand, the pressure profile interacting with the valve spool

is highly velocity-dependent, resulting in an additional deviation form nominal lift force assumptions.

Without significantly increasing the measurement effort, the same procedure as for the actuator is

used, and the missing force characteristic map 𝐹𝑓𝑙𝑢𝑖𝑑 is calculated via computational fluid dynamics.

 𝐹𝑓𝑙𝑢𝑖𝑑 = 𝑓(
𝑝𝑜𝑢𝑡

𝑝𝑖𝑛
, 𝑥) (5)

The translational movement of the valve spool connects the electro-magnetic with the fluidic domain.

From balance of forces as shown in equation (6), the position 𝑥 and velocity 𝑥̇ are determined. These

interface variables complete the calculations in the adjacent domains.

 𝑑2𝑥

𝑑𝑡2
=

1

𝑚
∙ (𝐹solenoid − 𝐹fluid − 𝐹friction − 𝐹stop) (6)

Due to the thermal measurement principle for the mass flow, a first order time delay is used as a

simplified sensor model, see equation (7).

 𝜕𝑚̇𝑠𝑒𝑛𝑠𝑜𝑟

𝜕𝑡
=

1

𝑇
∙ (𝑚̇𝑣𝑎𝑙𝑣𝑒 − 𝑚̇𝑠𝑒𝑛𝑠𝑜𝑟) (7)

With all model equations and parameters in hand, a complete model verification is performed for

each domain as well as for the entire system. Without going too much into details, a final verification

of the fluidic performance dependent on electrical excitation is highlighted in Figure 3. The measured

mass flow is compared to the calculated mass flow. The two values are in good agreement.

6

Figure 3: Verification of measured mass flow behavior 𝑚̇𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑓(𝑖𝑐𝑜𝑖𝑙)

The verification results suggest that the dynamic simulation model is suitable for the reinforcement

learning approach as a counterpart to the real world.

4. REINFORCEMENT LEARNING AGENT AND CONTROLLER

This section describes the setup of the RL agent and the PID controller. As shown in Figure 1, the

DDPG adjusts the control signal of the controller. Recalculation of the valve’s duty cycle 𝑑𝑐 takes

place at fixed points 𝑡𝑘 in time according to equation (8).

 𝑑𝑐(𝑡𝑘) = 𝑎(𝑡𝑘) + 𝑢(𝑡𝑘) (8)

Accordingly, the parameters of the PI controller remain constant and so does the closed-loop control

behavior. The agent interacts with the control-loop at the same point as a feedforward control, but its

action is generated in a different manner. In general, the control action of the agent accelerates or

delays the opening of the valve depending on the current system status.

4.1. Observation Vector

The state observed by the agent consists of the following elements listed in equation (9). The control

error 𝑒(𝑡𝑘) and the actual mass flow 𝑚̇𝑠𝑒𝑛𝑠𝑜𝑟(𝑡𝑘) provide information for the control. The previous

control error 𝑒(𝑡𝑘−1) contains information about the dynamics of the system. Observing the

action 𝑎(𝑡𝑘) informs the agent about its own behavior.

 𝑠(𝑡𝑘) = [𝑒(𝑡𝑘), 𝑒(𝑡𝑘−1), 𝑚̇𝑠𝑒𝑛𝑠𝑜𝑟,𝑛𝑜𝑟𝑚(𝑡𝑘), 𝑎(𝑡𝑘)]
𝑇
 (9)

It is not necessary to include a history of the control error. The current duty cycle can also be omitted.

Both approaches were examined in advance and showed no positive effects. Therefore, only the

current action remains as part of the state vector. For training purposes, the values for the

setpoint 𝑚̇𝑠𝑒𝑡(𝑡𝑘) and actual value 𝑚̇𝑠𝑒𝑛𝑠𝑜𝑟(𝑡𝑘) are scaled to a range between [0,1]. This ensures that

all values of the observation vector are in a similar range of values.

7

4.2. DDPG Agent Networks

The used configuration of the actor and critic networks of the DDPG agent is shown in Figure 4.

Both networks use fully connected (FC) layers as hidden layer and a ReLu layer as activation

function. The concatenation layer inside the critic network combines the current state 𝑠(𝑡𝑘) with the

action 𝑎(𝑡𝑘). The actor network uses a tanh-layer as the last layer to limit the value range of the

action 𝑎(𝑡𝑘) between [−1,1].

Figure 4: Network configuration of DDPG agent: a) critic network and b) actor network

The action 𝑎(𝑡𝑘) = 1 opens the valve completely, irrespective of the PID control action. Conversely,

this applies also to an action value 𝑎(𝑡𝑘) = 0, the valve is then always closed.

4.3. DDPG Agent Hyperparameters

The hyperparameters of the agent and its training configuration are listed in Table 1. The DDPG uses

the Ornstein-Uhlenbeck (OU) process as a noise model to solve the problem between exploitation

and exploration.

Table 1: Hyperparameter of DDPG agent and training

Hyperparameter Unit Setting

Sample time ms 10

Steps per episode - 150

Discount factor - 0.99

Replay buffer size - 1⋅106

Batch size - 64

Optimizer - Adam

Smoothing factor - 1⋅10−3

Learning rate - critic - 1⋅10−3

Learning rate - actor - 1⋅10−4

OU standard deviation - 0.2

OU standard deviation decay rate - 5⋅10−5

4.4. Reward

The reward function used is described in equation (10). The reward function consists of two parts:

the first part rewards the control error, and the other part rewards the reduction in the change in the

action signal. The first part aims to teach the agent to minimize the control deviation.

 𝑟(𝑡𝑘) = −√|𝑒(𝑡𝑘)| − 0.5 ⋅ √|𝑎(𝑡𝑘) − 𝑎(𝑡𝑘−1)| (10)

First training results only including the control error showed that the agent's action tends to oscillate.

For this reason, further investigations were necessary leading to the integration of the second part

shown above. The agent should minimize the control error by making as few changes as possible to

a) critic network

b) actor network

8

the action signal 𝑎(𝑡𝑘). Weighting factors ensure that the agent’s focus remains on minimizing the

control error, which is why the second part is only weighted by half.

4.5. Episode Management

The scaled mass flow setpoint of each training episode is chosen randomly between [0.05,1]. For the

dynamic simulation model of the plant, the initial condition of the valve opening is always fully closed

meaning that there is no mass flow. Other environmental conditions such as inlet pressure and heating

are not initially varied. The boundary conditions for the MFC model are fixed with an inlet pressure

of 6 bar and with a solenoid temperature of 20°C. These fixed environmental conditions simplify the

complexity of the training.

5. RESULTS

In this section, the performance of the trained DDPG-PI controller is evaluated using the simulation

model of the MFC. Figure 5 shows the control result of the DDPG-PI controller (solid lines)

compared to the result of the conventional PI controller (dotted lines) for different setpoints (dashed

lines). The PI controller is usually optimized for a specific setpoint using an autotune algorithm. In

this case, the PI controller was optimized for the middle of the normalized operating range. Due to

the nonlinear plant characteristics (overcoming the spring preload), settling times and overshoots in

other operating points should differ from the tuned configuration.

Figure 5: Comparison of the control performance between DDPG-PI and conventional controller

Compared to the conventional PI controller, the control performance of the DDPG-PI controller

performance is significantly better in terms of settling times. This is not unexpected, as the agent’s

interaction with the control loop can be like the behavior of a static feedforward action. With the

agent, all settling times are shorter regardless of the setpoint value. Particularly with low set values,

the reduced settling time is linked to larger overshoots. However, these are acceptable as they do not

damage the system. Because all mass flow transients start in the same way, it can be assumed that the

agent has learned the nonlinearity of the plant and has thus implicitly linearized it.

Environmental conditions may vary during the use of MFCs. The capability of the DDPG to handle

untrained system states is therefore being investigated. Figure 6 a) shows the control behavior that

results when the DDPG agent has to deal with untrained changes in the environmental conditions. In

the fixed environment, the boundary conditions are 6 bar for the inlet pressure and 20°C for the coil

temperature. This control result is displayed as blue line. The red line corresponds to the case, where

the coil temperature inside the plant model has changed from 20°C to 80°C. The orange line

9

corresponds to the case in which the inlet pressure of the model has been reduced to 4 bar. With the

help of the PI controller, the agent always reaches the setpoint regardless of the changes made. The

integral component of the controller is mainly responsible for this because it minimizes the control

deviation continuously. However, the settling time for reaching steady state has increased for both

variations of the environmental conditions. To achieve the same mass flow at reduced inlet pressure,

the valve must be opened further. A rise in coil temperature also delays the valve opening. The

integral part requires more time to overcome this.

Figure 6: Control result of DDPG agent with a) untrained and b) trained environmental variations

Different variations of the environmental conditions are part of the further training sequences to

improve the control results. The inlet pressure and coil temperature are randomly selected from the

following range of values at the start of each training episode: inlet pressure 3…6 bar, coil

temperature 20…80°C. Figure 6 b) shows the control results for the same environmental variations

as in Figure 6 a), with the difference that the environmental variations were now part of the training.

The settling time of the mass flow, especially the last few percent before reaching steady state, has

improved significantly. For all variations, the setpoint is reached within 100 ms. However, the

robustness of the RL-PI controller has decreased. Although the RL-PI controller can robustly control

the mass flow in the first inference at 20°C coil temperature and 6 bar inlet pressure, it is no longer

capable in this inference. The mass flow oscillates around the setpoint after it has been reached.

6. CONCLUSION

As part of a feasibility study on RL agents for control engineering problems, this paper demonstrates

the possibility of control synthesis based on a virtually trained neural network with RL for mass flow

control. The DDPG agent is used as RL algorithm and extends the conventional PI controller by

manipulating its control action. The training of the DDPG-PI controller is shifted to a simulation

environment while retaining the advantage of high computing power and avoiding the disadvantage

of system wear and tear. Therefore, a dynamic simulation model of a MFC is created using MATLAB,

Simulink and the RL Toolbox. The DDPG-PI controller is validated using the simulated system. The

findings reveal that a DDPG-PI controller improves the control result for different setpoints compared

b) MiL inference with trained

environmental variations

a) MiL inference with untrained

environmental variations

10

to a conventional PI controller with fixed parameters. In particular, the settling time is reduced for all

setpoint values. Of course, more advanced, e.g. model-based control approaches are also suitable for

achieving such improvements.

Tolerable variations in the ambient conditions are also adequately handled by the RL-based controller

due to the continuous action of the (fixed) PI controller. Extending the training sequences to include

these variations improves the settling time, but also leads the DDPG-based controller losing stability.

Further considerations are required to maintain robustness under variable environmental conditions,

especially with regard to the signals to be included into the observation vector.

NOMENCLATURE

a Action of agent -

e Control deviation normalized -

𝑚̇ Mass flow kg/s

p Pressure (absolute) Pa

r Reward -

s State of environment -

𝑇 Temperature °C

DDPG Deep Deterministic Policy Gradient

MFC Mass flow controller

PID Proportional-integral-derivative

RL Reinforcement Learning

REFERENCES

[1] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M A (2013)

Playing Atari with Deep Reinforcement Learning. Computing Research Repository (CoRR):

abs/1312.5602

[2] Gheisarnejad M, Khooban M H (2021) An Intelligent Non-Integer PID Controller-Based Deep

Reinforcement Learning: Implementation and Experimental Results. IEEE TRANSACTIONS IE

68(4):3609-3618

[3] Siraskar R (2021) Reinforcement Learning for Control of Valves. Machine Learning with

Applications 121–134 68(4):3609-3618

[4] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D., Wierstra D (2019) Continuous

control with deep reinforcement learning.

