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ABSTRACT 

The correct sizing of pneumatic drives plays a central role when it comes to energy efficiency. While 

there are simple design formulas for force-based tasks such as pressing or clamping in order to size 

the drive efficiently, there is no such easy methodology for motion tasks. 

Up to now, the sizing of pneumatic drives has mainly been experience-based or simulation-based. A 

tool from Festo [1] now enables formula-based sizing without simulation, which directly provides the 

optimum piston diameter and other components. The approach behind this is based on the natural 

frequency of the pneumatic drive. 

The main drawback of this method is that it is only applicable for horizontal installation positions. 

Based on more recent findings (which arose in a joint project with the TU Dresden [2]) and based on 

numerous simulations and measurements, this formula has now been extended so that it can also be 

used with external forces and thus also for a vertical installation position. 
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1. INTRODUCTION 

Pneumatic drives are used in numerous applications in industrial machines. They are known for their 

simplicity, robustness, high power density, compact design and high forces. They are controlled by a 

switching valve in combination with exhaust air throttles to adjust the speed. The energy consumption 

only depends on the internal volume of the cylinder. In the age of global warming, the efficiency of 

drive systems becomes increasingly important.  

The simplest way to increase the efficiency of the drives is the sizing of the cylinder in order to reduce 

its volume. Dimensioning generally describes the process of assigning system components (such as 

cylinders, valves, etc.) to a given application. In addition to the application parameters such as stroke, 

force, transition time and moving mass, several additional factors like end position energy, vibrations, 

requirements on the motion profile (velocity, acceleration), guide load, lateral forces and special 

requirements like ATEX or LABS-free etc. are important. 

Once a cylinder has been found that can solve the application, additional requirements can be realized 

by selecting a suitable series and additional options. However, even the sizing process of the required 

piston diameter is not trivial for many applications and therefore often results in oversized drive 

systems. Other reasons for oversized drive systems include: 

• Safety factors and robustness issues 

• Storage costs for spare parts (reducing variants, one size for all applications) 

• Usage of cylinders as construction elements (mechanical stability) 
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Figure 1: Standard pneumatic system using a rodless cylinder (left) and cylinder with rod (middle), 

standard switching valves and exhaust flow throttles for speed adjustment. Right: orientation. 

In principle, a distinction must be made in the dimensioning between force and movement tasks. 

Force tasks are applications in which a force plays the central role within the process, e.g. in pressing 

processes, rolling, joining, etc. They are relatively easy to design, as the specified force 𝐹 is in a 

direct, algebraic relationship with the piston area 𝐴𝑘 and the pressure difference ∆𝑝 and therefore can 

be used for calculating the effective area: 

𝐹 = 𝐴𝑘 ∙ ∆𝑝. (1) 

Motion tasks are applications that require a movement within a specified time 𝑇𝑓. They are typically 

described by the moving mass, stroke, transition time, and a pressure level. For motion tasks an easy 

relationship as in (1) cannot be represented. In contrast to controlled electric drives, the movement 

profile and therefore the acceleration profile cannot be specified directly. Instead, it results from the 

selected system components and the throttle values. The aim of the design here is to achieve a defined 

transition time. Differential equations are used to describe the system behaviour [3]. The 

determination of the transition time as well as the design process itself is therefore often simulation-

based in combination with a variation of the throttle positions and the drive size. An important aspect 

in the design for motion tasks is the kinetic energy in end position, as this must be below a specified 

limit so that the drive can be operated permanently without destruction. This boundary condition 

determines the feasibility of an application with a selected system. Mixed forms of force and 

movement tasks are also frequently used. 

The energy consumption of a pneumatic actuator can be calculated directly from the air consumption 

[4]. In standard operation (switching valve + exhaust air throttling), it depends solely on the selected 

size (and the dead volume) and is independent of the throttle position and the resulting transition time. 

This makes the sizing particularly important for reducing energy consumption. Ultimately, it leads to 

the central question: 

"What is the smallest possible cylinder to fulfil the motion task?" 

1.1. Starting point 

We consider standard pneumatic drives consisting of a cylinder with exhaust air throttles and an 

adjustable pneumatic cushioning system and a switching valve as shown in Figure 1. The design 

methodology focuses on motion tasks (with additional force requirement), i.e. on the sizing of the 

system components for a specified application given by: mass, stroke, transition time, supply 

pressure, external force and a permissible end position behaviour (compliance with the maximum 

permissible residual energy). The focus here is on energy efficiency, so that a design methodology 

for medium to large drives is required, as small or short stroke drives require only little energy in 

absolute terms. 
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2. STATE OF THE ART 

In addition to simulation-based design methods, there are efforts to map the non-linear and complex 

processes of the dynamic model in algebraic formulas for a sizing purpose. Even if the force and 

acceleration profiles result from the application and can only be specified in a highly simplified form, 

there are a number of methods that attempt to do just that. These include force equilibrium method 

[5], minimum cylinder [3], exergy equilibrium method [6], operating point analysis [7]. 

In principle, a distinction can be made between two different assumptions regarding the motion 

profile: constant acceleration and constant speed. 

2.1. Assumption of constant acceleration 

The following approaches fall into this category: force equilibrium method [5], exergy equilibrium 

method [6], minimum cylinder [3]. The common idea behind those methods is that if we search for 

the smallest cylinder which fulfils the given application (without considering the kinetic energy at 

end stop) we must apply the maximum acceleration all the time. The result is that the speed increases 

and reaches its maximum at the end stop. The above-mentioned methods differ in their physical 

derivation but lead to very similar results and equations. In [5] and [6] constant friction forces are 

assumed for a cylinder whose diameter is not known yet. Therefore, iterations may be necessary to 

adjust the friction force in dependence on the chosen piston diameter. In [3] the constant friction is 

replaced by a friction model using Coulomb and viscous friction. The result is similar than in the 

other equations, but due to the viscous friction the velocity will reach a constant value if the stroke 

length is long enough. 

2.2. Assumption of constant velocity 

A constant velocity can also be directly specified in the known methods: force equilibrium method 

[5], exergy equilibrium method [6] and operating point analysis [7]. As shown in [5], the results are 

very similar but not equal. 

Both the approaches with constant acceleration and constant velocity have the same drawback: the 

velocity at stroke end and therefore the kinetic energy is not taken into account. This means that the 

applicability of those methods seems to be restricted - but also suitable - only for short stroke cylinders 

with low payloads. For longer strokes (and therefore higher velocities) shock absorbers have to be 

used. Short stroke cylinders with low payload however will not need much energy, s.th. energy 

efficiency considerations are less important. 

2.3. Assumption of a damped system behaviour at stroke end 

In contradiction to the previous mentioned methods no direct assumption on the trajectory is made. 

Only the assumption of realising a velocity at end stop which yields in a kinetic energy value below 

the given limit. The only approach using this assumption is published in [8,3] and makes use of the 

eigenfrequency of the pneumatic system. In [5] some extensions of the eigenfrequency approach were 

made: an additional external spring force was integrated, a polytropic change of state was assumed, 

and both cylinder chambers were treated independently. In [9] a similar formula – the dimensionless 

mass – is derived by similarity considerations and is used for a special control strategy. 
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Figure 2: Measurements of the dynamic behaviour of a cylinder in dependence on the exhaust flow throttle 

and the resulting PFR values. 

3. THE PNEUMATIC FREQUENCY RATIO (PFR) 

The pneumatic frequency ratio (PFR) was published in [8,3] and expresses the ratio of the pneumatic 

eigenfrequency 𝜔0 and the application specific frequency 𝜔𝑓 = 2𝜋 𝑇𝑓⁄  which is given by the 

transition time 𝑇𝑓. Therefore, it expresses the ratio of the speed (expressed in terms of 𝜔) the system 

would be able to do (𝜔0) and the speed the system achieved within the application (𝜔𝑓):  

Ω =
𝜔0

𝜔𝑓
=

𝑇𝑓

𝜋
√

𝐴𝑘𝑝

𝑚𝐿
 (2) 

This formula depends on the effective area of the cylinder 𝐴𝑘, the load 𝑚, the transition time 𝑇𝑓, the 

supply pressure level 𝑝 and on a characteristic length 𝐿. The characteristic length 𝐿 includes the stroke 

length 𝑙𝑧 and an additional length 𝑙𝑡 resulting from the dead volume: 𝐿 = 𝑙𝑧 + 𝑙𝑡. The idea behind 

this formula is that the PFR characterizes the system behaviour, such that all systems with the same 

PFR behave similar. In [8] an optimal Ω = 1 is determined by evaluating simulation data of optimal 

movements. Optimal movements mean that it moves as fast as possible but with the restriction of 

having a damped system behaviour at stroke end such that the kinetic energy at the end stop does not 

exceed the permissible value. For those movements a PFR of Ω = 1 has been determined. Figure 2 

shows the dynamic response of a system in dependence on the PFR. Optimal behaviour is achieved 

with Ω = 1 as no oscillations at stroke end are visible in the velocity signal. 

3.1. Calculation of the required piston diameter 

Equation (2) can now be used for several tasks: characterizing a system by using (2) directly, 

calculating an optimal diameter 𝑑 of a cylinder for a given application (with 𝐴𝑘 = 𝜋/4 ∙ 𝑑2), 

calculating the necessary supply pressure level and to estimate the transition time 𝑇𝑓 for a given 

system. Both most important inversions are listed below: 

𝑑 =
2𝜋Ω

𝑇𝑓
√

𝑚𝐿

𝜋𝑝
 (3) 

𝑇𝑓 = 𝜋 ∙ Ω√
𝑚𝐿

𝐴𝑘𝑝
 (4) 
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Figure 3:  Approximation of the transition time using the PFR for several cylinders in horizontal orientation. 

 

As in [8], once again we simulated a whole bunch of systems and applications by varying all the 

parameters (piston diameter 𝑑 ∈ {20,25,32,50,80} mm, stroke length 𝑙𝑧 ∈
{50,100,200,250,500} mm, pressure 𝑝, load 𝑚 ∈ [0,200] kg). Additionally, the exhaust flow 

throttle and the throttle of the pneumatic cushioning system (PPV) were varied in order to find a 

suitable combination. Useful combinations lead to a damped system behaviour which fulfil the 

condition for the kinetic energy at stroke end. Only those results are used afterwards, leading to 

optimal results (having no oscillations within the pneumatic cushioning system). The simulation study 

was made with CACOS (a simulation tool of Festo) and contains approximately 5 Mio. Simulations 

and 27.000 optimal results. Figure 3 shows the comparison of those optimal simulations of several 

systems and their corresponding approximation of the transition time 𝑇𝑓 using (4). The PFR reflects 

quite good the simulation results for all types of cylinders in horizontal orientation. In most the 

graphics there is a second optimality curve visible for a PFR of Ω ≈ 1.7 which can be approximated 

using (2) respectively (4), too. 

Figure 4 shows again the results for one system (DSBC-32-200-PPV of Festo SE & Co. KG) in 

different orientations. Again, the PFR matches quite good for horizontal orientation, but for vertical 

orientation there is an obvious mismatch between the simulation result and the PFR. This is due to 

the gravitational forces which are not included in (2). 

3.2. Calculation of the required sonic valve conductance 

Once the piston diameter is specified, the sonic conductance of the valve can be calculated using a 

mean value of the required mass flow [8]: 

 

𝐶𝑣 = 𝐾𝐶

𝐴𝑘𝐿

𝑇𝑓
= 𝐾𝐶 ∙ 𝜋2Ω2

𝑚𝐿2

𝑇𝑓
3𝑝

 (5) 

Thereby 𝐾𝐶 is a constant which must be determined [8]. Concerning energy efficiency however, the 

valve conductance does not have a direct influence. It is important, that the sonic conductance is great 

enough to fulfil the required pressure dynamics of the application. Strictly speaking, (5) does not give 

the necessary conductance of the valve, but the necessary total conductance consisting of the valve, 

hose, and inlet port of the cylinder. The valve must be chosen, s.th. the overall conductance is met.  

This dimensioning method is also part of the tool “Pneumatic Sizing” of Festo SE & Co. KG for an 

adjustable cushioning and is available online at: https://www.festo.com/x/pneumatic-sizing [1]. 

 

https://www.festo.com/x/pneumatic-sizing
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Figure 4: Approximation of the transition time using the PFR for horizontal and vertical orientation of a 

DSBC-32-200-PPV of Festo SE & Co. KG. 

4. EXTENSION OF THE PFR FOR APPLICATIONS WITH EXTERNAL FORCES 

As shown in [5] and [8], the application of PFR (2) is limited to horizontal load cases, as gravitational 

forces cannot be fully compensated by an adapted dimensioning of the cylinder using (2). This holds 

also for other external forces like forces resulting from the process e.g., for pressing or clamping and 

for increased friction forces due to external guidance.  

Therefore, another simulative study was carried out for several systems by varying not only the load, 

and the throttles, but also an external force. The external force is a counter force, s.th. a positive value 

indicates a force against the direction of motion. Figure 5 shows the results of all optimal solutions 

for a DSBC-32-200-PPV cylinder in dependence on the external forces. It shows, that for each curve 

of constant external force the transition times can be approximated by adjusting the PFR. As the 

external force increases, the transition time of an optimal movement decreases and therefore results 

in a higher value for Ω according to (2). This however would indicate that the system is oversized (in 

the sense of PFR), but due to the external force it is not the case: it is well sized because all the data 

points are optimal solutions. As for the PFR Ω, this should be reflected by the extended version, too. 

In other words: all optimal solutions should have the same value for Ω𝑒𝑥𝑡 - independent of the applied 

force 𝐹. The new equation for an extended PFR Ω𝑒𝑥𝑡 should also satisfy the following condition: 

Ω𝑒𝑥𝑡(F = 0) =  Ω. The following ansatz function was used for finding an extended version of the 

PFR: 

Ω𝑒𝑥𝑡 = Ω ∙ 𝑓(𝐹) (6) 

The function 𝑓(𝐹) = Ω𝑒𝑥𝑡 Ω⁄  is now identified using the measured values for Ω shown in Figure 5. 

For Ω𝑒𝑥𝑡 = 1 it is the reciprocal of the measured Ω-values and is illustrated in Figure 5 on the right 

in blue. We found out that its slope equals to: −1/(𝐴𝑘𝑝),  such that the searched function for 

extending the PFR can be stated as: 

𝑓(𝐹) = 1 − 𝐾 ∙
𝐹

𝐴𝑘𝑝
 (7) 

Thereby we introduced an additional factor 𝐾 ≈ 1 for adjustments. This function equals to one when 

no force is applied and becomes zero for 𝐾 = 1 and 𝐹 = 𝐴𝑘𝑝 which is the maximum force of the 

driving chamber. Using this function (7) and (6) the extended PFR can be stated as: 

Ω𝑒𝑥𝑡 = Ω ∙ (1 − 𝐾 ∙
𝐹

𝐴𝑘𝑝
) =

𝑇𝑓

𝜋
√

𝐴𝑘𝑝

𝑚𝐿
∙ (1 − 𝐾 ∙

𝐹

𝐴𝑘𝑝
) (8) 
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Figure 5: Simulation results (dots) of optimal movements in dependence of the load 𝑚 and the external 

force 𝐹 in comparison to the PFR approximation (solid line). Left: transition time, middle: PFR, 

right: PFR in dependence on the external force. 

For 𝐹 = 0, we get Ω𝑒𝑥𝑡 = Ω ,  for 𝐹 = 𝐴𝑘𝑝, we get Ω𝑒𝑥𝑡 = 0. In this case, the external force equals 

the maximum force of the cylinder, such that it won’t move. All in all, we found out, that the force 𝐹 

should not exceed 50% of the maximum force of the cylinder to guarantee a proper motion. As for 

the PFR, the extended version (8) can now be used for several purposes by inversion. Especially for 

dimensioning the piston diameter, the following inversion is of interest: 

𝑑𝑒𝑥𝑡 = (Ω𝑒𝑥𝑡 + √Ω𝑒𝑥𝑡
2 + 4 (

𝑇𝑓

𝜋
)

2 𝐾𝐹

𝑚𝐿
) (2𝑇𝑓√

𝑝

4𝜋 ∙ 𝑚 ∙ 𝐿
)⁄ . (9) 

For validating the simulation data, the transition time is also a useful inversion: 

𝑇𝑓 = 𝜋 ∙ Ω𝑒𝑥𝑡√
𝑚𝐿

𝐴𝑘𝑝
∙ 1 (1 − 𝐾

𝐹

𝐴𝑘𝑝
)⁄ . (10) 

Figure 6 shows again the optimal simulation data, but this time in comparison to the equations of the 

extended PFR (8) and (10). On the left we see that the transition times are approximated quite well 

by using (10). And the graph in the middle proves that all the measured transition times correspond 

to an extended PFR of approximately Ω𝑒𝑥𝑡 = 1 independent on the external forces. There is a slight 

deviation for lower loads at high speed of the piston. This might be a result of viscous friction forces 

or of pressure losses which increase with the velocity. Additionally, Figure 7 shows further validation 

data for a lower supply pressure and for other piston diameters and stroke lengths. The approximation 

(8) matches quite good also for these combinations. 

4.1. Applications with gravitational forces 

As shown in the previous section, the extended version of the PFR reflects quite good the influence 

of external forces. In this section we will use and test it with systems in vertical orientation. The force 

𝐹 needed in (8) therefore evaluates to: 

𝐹 = 𝑚 ∙ 𝑔 ∙ sin 𝛼 , for extension 

𝐹 = −𝑚 ∙ 𝑔 ∙ sin 𝛼 ,      for retraction 
(11) 

Thus, the applied force varies with the used mass and is also dependent on the direction of movement. 

Figure 8 shows the same data set of Figure 4 but now in comparison with the extended version of 

PFR. It shows that (10) now approximates the transition times quite well also in vertical orientation 

(𝛼 =+90°) for the extension stroke as well as for the retraction stroke.  
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Figure 6: Simulation results (dots) of optimal movements in dependence of the load 𝑚 and the external 

force 𝐹 in comparison to the extended PFR approximation (solid line). Left: transition time, 

middle: extended PFR, right: mass-velocity diagram. 

 

 

 

 

Figure 7: Validation data of the extended PFR for different diameters, lengths, and pressures. 

 

 

 

 

 

Figure 8: Approximation of the transition time using the extended PFR with external forces for horizontal 

and vertical orientation of a DSBC-32-200-PPV. 
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Figure 9: Measurements of two different cylinders with different loads and comparison of the resulting 

transition times with the PFR approach. 

5. VALIDATION AND COMPARISON TO OTHER APPROACHES 

In this section we validate the PFR and extended PFR formulas by measurements. Thereby all the 

measurements were done by adjusting the exhaust flow throttle as well as the throttle of the pneumatic 

cushioning system, s.th. an optimal behaviour is achieved. That means the fastest possible transition 

time with the condition of having nearly no oscillation at end stop. 

5.1. Validation of PFR 

Figure 9 shows the measurements for a horizontal installation position of two systems with several 

loads in comparison to the calculated transition time of the PFR approach using (4) (same as (10) 

with F = 0). It shows that for both systems the optimal transition times match quite good the 

calculation if we use Ω = 1.1 instead of Ω = 1.0. This is a learning from all the measurements done, 

that in the experiments the PFR is always a little greater than in simulation, and may be caused by 

idealized conditions within the simulation and mismatches concerning friction forces, pressure losses 

etc. The curves in principle however match quite good and can be taken for sizing the actuators just 

by adjusting the PFR. 

5.2. Validation of extended PFR 

Figure 10 shows the measurement results for a DSBC-32-200-PPV cylinder for the extension stroke 

in three different orientations (α = 0°, α = 90°, α = −90°). Again, for the calculation of the 

transition times using as (10) and (11) an Ω𝑒𝑥𝑡 = 1.1 was assumed. As could be seen, the measured 

transition times match quite good the predicted values of the PFR approach. 

5.3. Comparison of the extended PFR to other approaches 

In this section we compare the PFR-sizing approach with the constant acceleration and constant 

velocity approaches for exemplary applications. Table 1 shows three applications and the 

corresponding piston diameters by using different approaches. 

The first application is a typical application which is based on speed. For specifying the required 

piston diameters two different approaches were used. The first is the constant acceleration approach 

(acc.) which yields half the diameter as in comparison to the PFR approach. The results of both the 

systems are shown in Figure 11 on the left. Thereby using the PFR sizing method yields a reduced 

velocity at stroke end, whereas a smaller cylinder leads to very high velocities which would indicate 

an infeasible solution or would lead to the necessity of using external shock absorbers. 
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Figure 10: Measurements of a DSBC-32-200-PPV cylinder for the extension stroke in different orientations 

and comparison of the resulting transition times with the PFR approach for Ω𝑒𝑥𝑡 = 1.1. 

The second application is a vertical application with speed requirements. As in application 1, the 

result is similar, that with the const. acc. and const. vel. approach the cylinder is chosen too small 

such that a proper motion is not possible. However, when the requirements on the speed are relaxed 

– as in application 3 - the sizing result is similar. 

This is shown in application 3 which is the same as application 2 but with a very large transition time 

of 𝑇𝑓 = 7 𝑠. As the required dynamics is very low the piston diameter then is mainly influenced by 

the gravitational and friction forces and thus lead to similar results between both approaches. As could 

be seen in Figure 11 on the right, the cylinder needs several seconds before it starts to move. This is 

caused by the exhaust flow throttle which is adjusted to achieve the large transition time. 

 

Table 1: Applications and calculated/selected piston diameters. 

 Application 1 Application 2 Application 3 

load [kg] 𝑚 12.5 kg 22.5 kg 22.5 kg 

stroke [mm] 𝑙𝑧 200 mm 300 mm 300 mm 

transition time [s] 𝑇𝑓 0.25 s 0.45 7 s 

orientation, dir. [°]  𝛼 0° ext. 90° ext. 90° ext. 

 acc. PFR vel. PFR vel. PFR 

diameter [mm] 𝑑 13.8 / 16 30.6 / 32 22.1 / 32 39.3 / 40 22.1 / 25 21.0 / 25 

corresponding PFR  Ω𝑒𝑥𝑡 0.49 / 0.57 1.1 / 1.15 0.15 / 0.73 1.1 / 1.13 2.3 / 5.3 1.1 / 5.3 

impact velocity [m/s] 𝑣𝑒  1.7 0.09 0.65 0.09 0.08 0.08 

transition time [s] 𝑇𝑓 0.26 0.24 0.52 0.42 6.8 6.8 
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Figure 11: Comparison of different sizing approaches on basis of simulation results for three different 

applications. 

 

6. CONCLUSIONS 

The sizing of the system components is a simple measure to save energy. The choice of piston 

diameter is crucial here. However, many approaches for sizing only work for short drives or small 

moving masses because the end position speed is not taken into account or would otherwise lead to 

greatly oversized drives. In view of an energy-efficient design, however, medium, and large drives 

play a more important role. For these drives, however, the dynamic behaviour must also be 

considered, especially in the end position. 

The PFR approach takes into account the dynamic properties of the drive and the end position 

behaviour and can be used for evaluation, design, determination of the transition time or also for 

calculating a reduced supply pressure for oversized drives. The biggest disadvantage, that the PFR is 

only valid for a horizontal installation position, was eliminated in this article by a corresponding 

extension of additional forces. Both approaches of PFR are simple algebraic equations that reflect the 

essential relationships, but do not represent exact solutions but lead to feasible systems. 

In practical applications, the necessary value for Ω can be somewhat larger, as additional pressure 

drops, dead volumes, hose dynamics or frictional forces from external guides are present. Differences 

between the two directions of movement are also common due to the different surface ratios. Typical 

values here are in the range Ω ∈ [1.1, 1.6]. 

Ultimately, the Ω is a design factor that can be determined based on measurements and simulations, 

so that it can also be used for other cylinders and damping systems. 

The presented approach will be used in a future version of the sizing tool of Festo. It has thus reached 

maturity, so that pneumatics is also equipped for the future in times of climate change.  

NOMENCLATURE 

A area m2 

d piston diameter (bore size) m 
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F force N 

g gravitational acceleration  m/s² 

L generalized length m 

lz cylinder length m 

lt dead length m 

m mass kg 

p pressure Pa 

𝑇𝑓 transition time s 

𝛼 angle of orientation rad 

Ω pneumatic frequency ratio - 
𝑒𝑥𝑡 Index indicating the extension - 

   

CACOS Computer Aided Cylinder Optimisation System, a simulation tool of 

Festo SE & Co. KG 

 

DSBC Standards-based profile cylinder (ISO 15552) of Festo SE & Co. KG 

Type code: “DSBC-diameter-length” 

 

DSNU Round cylinder (ISO 6432) of Festo SE & Co. KG 

Type code: “DSNU-diameter-length” 

 

PFR Pneumatic Frequency Ratio  

PPV adjustable pneumatic cushioning system of Festo SE & Co. KG  
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