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ABSTRACT 

Conventional control strategies for fluid systems often rely on local control of the system’s 

components, like pumps and valves. Here, communication between the control units is non-existent, 

which can have a negative impact on the energy efficiency. Distributed control is a promising 

alternative where so-called agents are assigned to components. These agents are autonomous units 

with individual goals. They can perceive and influence their environment through sensors and 

actuators. Furthermore, they are able to share information with each other. This leads to an increased 

energy efficiency while maintaining the positive aspects of local control, such as a low 

implementation effort and high robustness. The concrete methods are the subject of current research 

and are typically only verified in simulations. For a thorough evaluation and broad acceptance in 

industry, an assessment of the methods when facing real systems is crucial.  

In this work, we therefore focus on the physical implementation of distributed control. We examine 

a simple fluid system with a centrifugal pump and a valve. A valve agent measures its volumetric 

flow rate and communicates this information to a pump agent via Wi-Fi and OPC UA. The pump 

agent has the goal of achieving a target flow by using a PI controller and adjusting the rotational 

speed. The results are promising and easily scalable to more complex systems and control methods. 
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1. INTRODUCTION 

When it comes to the energy efficiency of fluid systems, such as the water supply in buildings or 

whole cities, expectations usually do not meet reality. Society demands special attention to be paid to 

the matter. This is once again confirmed when looking at the recently revised Energy Efficiency 

Directive 2023/1791 from the European Union, which puts “Energy Efficiency First” [1].  

Still, conventional control strategies for fluid systems are usually not tailored for efficiency. They use 

local control of components, mostly valves, to reach certain set points for the pressure or the 

volumetric flow rate, e.g., using PID controllers. In this way, the introduced energy from pumps gets 

dissipated due to throttling losses.  

These losses can potentially be avoided if additional information of the system, such as the current 

state or the topology, is used [2]. This information is used to decide if it is possible to reduce the 

introduced energy, e.g., by reducing the rotational speed of pumps, rather than throttling excessive 

energy, e.g., by shutting down valves. In central control, the information from all components and 

available sensors is collected and possibly enriched by a system model in a central controller. Using 

techniques from mathematical optimization, it is then even possible to calculate optimal operating 

modes with respect to efficiency, as shown in [3].  
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While this method theoretically offers the greatest possible improvement in this dimension, Logan et 

al. [2] list further requirements to control approaches that have to be taken into account. Looking at 

fluid systems as a vital part of critical infrastructure or production systems in industry, it becomes 

clear that the robustness of the control is of great importance. Perturbations in the operating phase, 

such as unforeseen load cases or wear of components up to component failures, should have a minimal 

influence on the overall function of the system. Central control systems can cope with slight 

perturbations, but pose a single point of failure and often rely on sufficiently accurate models. Local 

control, on the other hand, can in most cases still maintain a basic functionality, even if failures occur.  

Another aspect worth considering is the implementation effort of control systems. Fluid systems are 

getting increasingly complex and individual. Modelling is therefore cumbersome and accompanied 

with various uncertainties, for instance regarding the calculation of pressure losses. Over time, there 

might also be changes or extensions of the system, requiring further adaptions. These reasons serve 

as a possible explanation why local control is still preferred in a lot of applications.  

Aiming at combining the advantages of local and central control, Logan et al. [2] focus on distributed 

control. Here, the local controllers are designed as agents, which can access the sensors and actuators 

of the connected components and thus perceive and influence their environment. In contrast to local 

control, they are also able to exchange information through communication. Furthermore, they have 

individual goals. For a pump agent, this might be the desire to minimize the pumps input power.  

The concrete methods differ with regards to the decision rules of the agents, i.e., how they manipulate 

the actuators based on measurements and acquired information due to communication to reach their 

goals. The authors compare approaches from optimization theory, machine learning and game theory 

in simulations. The latter approach, referred to as market mechanism, is particularly promising. Here, 

a virtual budget is assigned to the agents, which is used to trade volumetric flow rate guarantees. 

Similar to a real market, one expects to reach an efficient allocation without explicit system 

knowledge. As this method therefore does not rely on system models or extensive training, it is highly 

flexible and transparent, which is beneficial for the acceptance in practical applications.  

Regarding the acceptance, it is also crucial to proof the validity of the concepts using experiments 

and real systems. The step from simulations to experiments often offers additional insights and is 

necessary for an overall evaluation. A first step towards a validation of the methods controlling real 

systems was presented in [4]. While the simulation of the fluid system was exchanged by the real 

counterpart, the agent system was still simulated on a central machine. Nevertheless, the results show 

a significant increase of the energy consumption compared to the simulation, which does not consider 

dynamics, such as limited opening rates of valves. Replacing the simulation of the agent system 

introduces additional complexity, such as limited computing resources of edge devices and 

communication latencies. In this work, we focus on establishing the necessary framework that enables 

an all-embracing validation of distributed control methods for fluid systems. We apply the results to 

a minimal example of distributed control that is outlined in the next section.  

2. CONTROL TASK 

As a model system, we consider the water supply of a residential building. In order to have a sufficient 

pressure on the higher floors, it is necessary to install pumps, which are usually placed in the basement 

of the building. To control the volumetric flow rate, the different floors are equipped with valves. 

This model system can be scaled down to a test rig, that is shown in Figure 1. Water is pumped by a 

booster station from a tank to five floors, which are equipped with valves and flow sensors. The 

available pumps are centrifugal pumps used in heating applications. They possess integrated 

frequency converters which allow an adjustment of the rotational speed 𝑛. It is possible to measure 
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Figure 1: Schematic (left) and photograph (right) of the modular test rig [5]. 

the pressure difference Δ𝑝 and the electrical power consumption 𝑃𝑜 of each pump. From the different 

floors, the water then returns to the tank through a drain pipe. Because of the modular design of the 

test rig, it is possible to realise different topologies. For a detailed description of the test rig we refer 

to [5].  

In this work, we only consider the simple case where a single pump is placed in the booster station 

and all valves except for the valve in the first floor are shut. The control task is to fulfil a target flow 

rate by using a PI controller, which is assigned to the pump. This serves as a minimal pump agent. 

The counterpart of the pump agent is the combination of the valve and the flow sensor on the first 

floor, which constitutes a valve agent. As the actual flow rate is not directly accessible to the pump 

agent, it needs to acquire this information through communicating with the valve agent.  

3. DEVELOPED FRAMEWORK 

3.1. Hardware 

To be able to realize the proposed control task, it is first and foremost necessary to physically 

represent the agents with appropriate hardware. For this purpose, ESP32-S3-DevKitC-1 [6] 

development boards are used as a basis, which combine an ESP32-S3 microcontroller with additional 

peripherals to form a programmable PCB board. This allows to program and process the internal logic 

of the agents. The microcontrollers are equipped with 512 KB of SRAM, up to 16 MB of Flash and 

have a maximum clock speed of 240 MHz. Additionally, they include Wi-Fi capabilities, which can 

be used for the physical layer of the agent communication. However, as this requires an additional 

access point which poses a single point of failure, an Ethernet interface is connected to the 

development board which can be used as an alternative. To be able to connect the sensors and 

actuators of the agents to the general-purpose input/output (GPIO) pins of the microcontroller, further 

components, like connectors, voltage dividers and Digital-to-Analog-Converter (DAC) modules, are 

installed. With this, input signals from 0-10 V/ 4-20 mA and output signals from 0-10 V are possible. 

The final hardware is shown in Figure 2. A distinction between pump agents and valve agents is done 

solely on the software-side, which enables a straightforward addition of other agent types.  
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Figure 2: Side view (left) and top view with open (middle) and closed lid (right) of the hardware 

implementation of the agents 

3.2. Software 

The software of the agents has to perform different tasks. On the one hand, the control algorithms 

have to be carried out, which are specific to the subtype of distributed control being considered. For 

the example in the scope of this work, this reduces to a discrete PI controller for the pump agent. 

Associated with this are also the sensor readings and the actuator control. 

On the other hand, the software needs to manage the connection and communication of the agents. 

This normally involves additional aspects, such as the discovery of other agents in the network and 

their topological relationship, i.e., if another agent is connected upstream, downstream or in parallel. 

We consider this information given. As a possible extension, network discovery can easily be 

achieved by performing mDNS or ARP scans.  

OPC UA 

For the communication of the agents, we employ the platform independent machine-to-machine 

standard OPC UA (Open Platform Communication Unified Architecture) [7]. OPC UA offers a wide 

range of features, such as security settings, that partially extend the scope of our work. We therefore 

refer to the official reference [7] for additional information.  

In OPC UA, not only the raw data transport is considered, but rather the transport of information 

through an extensive information modelling framework. In essence, this information model is a graph 

consisting of nodes and references between them [8]. Different node types are available, e.g., object 

nodes and variable nodes. Object nodes represent physical or abstract elements of the system and may 

contain further nodes. Variable nodes represent values (e.g., sensor data) that can be read or written 

and have an associated data type. The nodes have different attributes, such as unique node ids, 

descriptions or time stamps [7]. 

For the lower-level transport layer, different protocols are available, of which the binary TCP-based 

protocol used here is the most common [8]. Depending on the chosen protocol, two different 

communication models, namely client-server and publish-subscribe (PubSub), can be applied. We 

focus on the client-server communication model, although OPC UA PubSub is a promising 

alternative for applications with very high latency requirements, as demonstrated in [9]. 

In the client-server-model, servers offer services to clients, such as reading or writing of variable 

nodes values. The question if a particular component should be implemented as a client or server 

depends greatly on the use case. As advocated by Rinaldi [10], assigning a server and clients to 

components might be beneficial. In our use case, we implement every agent that has access to data 

that needs to be shared, e.g., from sensors, as a server. If an agent needs to access data from other 
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agents, it additionally needs to implement a client for each of those agents.  

For the servers, a set of nodes has to be defined. The valve agent’s server contains a variable node for 

the volumetric flow rate, which gets updated through readings of the respective input. An additional 

variable node is the valve opening. Writing to this node allows clients to directly influence the valve 

agent’s output. Similarly, the pump agent’s server contains nodes for the pressure difference, the 

rotational speed, the on/off state and the volumetric flow rate. The latter is updated whenever the 

valve agent communicates new values. Additionally, the pump agent’s server contains a PI controller 

object node, which in turn contains variable nodes for the set point and the gains as well as an activity 

node that can be used to enable and deactivate the control. As described above, these node sets 

constitute basic information models. 

For the data exchange, we make use of a subscription concept defined by the OPC UA standard. With 

this, it is possible to make servers send out notifications at a predefined rate, if the value of a variable 

node has changed. This especially facilitates the reading of constantly changing values. In our 

example, the pump agent subscribes to the value change of the volumetric flow rate node of the valve 

agent’s OPC UA server at a publishing rate of 10 Hz.  

To implement the OPC UA concept, the open source OPC UA stack open62541 [8] is used. The stack 

is written in the C programming language and offers support for FreeRTOS [11], which is a well-

established operating system for ESP32 microcontrollers. As a basis for our software, a GitHub 

project [12] by GitHub user cmbahadir was used, which implements a simple OPC UA server based 

on the open62541 stack. Additionally, the project implements the necessary Wi-Fi connection and a 

time synchronisation via a NTP server. 

Control Dashboard 

For the purpose of logging and supervising the control process, which includes visualisation, starting 

the PI control or manually adjusting the pump’s rotational speed, a central computer is used. As for 

instance the PI control could also be enabled directly from the start in the microcontroller program, 

this does not impair the idea of a distributed control but rather simplifies the conduction of 

experiments. 

The central computer hosts an HTTP server based on the Python framework Flask [13] with a 

website based on the JavaScript library Highcharts [14] shown in Figure 3. This acts as a control 

dashboard. Two additional OPC UA clients for the valve and pump agents, based on the Python 

library opcua-asyncio [15], share data with the HTTP server. In this way, reading information 

(e.g., the current volumetric flow rate) and writing information (e.g., the gains of the PI controller) 

of the OPC UA servers is possible from any computer or smart device in the same network 

without additional software. For the visualization of sensor values, the aforementioned 

subscription concept is again applied.  

The final framework is summarized in Figure 4. 

4. RESULTS 

To prove the functionality of the presented framework, the control task described in section 2 needs 

to be assessed. For this purpose, two different experiments are conducted. In the first experiment, the 

pump is set to its maximum rotational speed before starting the PI control. As a set point, a volumetric 

flow rate of 1 m3/h is specified. In a second experiment, the pump is set to its minimum rotational 

speed before starting the PI control to reach a set point of 3 m3/h.  

The controller is parametrized for the first set point starting with the well-known Ziegler-Nichols 

method with a critical gain of 0.38 and a critical period of 6.7 s. Afterwards, the proportional and  
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Figure 3: HTML page based on the JavaScript library Highcharts [14], which serves as a control dashboard. 

 

 

Figure 4: OPC UA-based distributed control framework. 

 

integral gain are slightly adjusted for a better controller performance. The sampling rate is set to 2 Hz.  

As shown in Figure 5, the control starts after approximately 20 s and is able to reach the set 

points quickly. However, the volumetric flow rate signal from the valve agent is highly noisy, 

which leads to an even higher fluctuation around the set point due to the PI control. Worth noting 

is also the apparent increase of the volumetric flow rate in the first experiment before the set point 

is reached. A possible explanation is that the PI controller, having a different subscription than 

the logging computer, receives a value below the set point, causing an increase of the rotational 

speed of the pump.  

Looking at the sample mean after sufficient time, one can conclude that the control at least on average 

reaches the set point with sufficient precision. Table 1 shows the numerical values of the mean and 

the standard deviation of the volumetric flow rate signal. 
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Figure 5: PI control starting from maximum speed with a setpoint of 1 m3/h (left) and from minimum speed 

with a setpoint of 3 m3/h (right). The gray line indicates the mean volumetric flow rate after 40 s. 

The flow measurements are taken from the valve agent’s OPC UA server. 

 

Table 1: Sample statistics of the flow rate in m3/h (100 samples per experiment at 2 Hz). 

Experiment Set point Mean, last 10 seconds 

(Corrected) standard 

deviation, first 10 

seconds 

(Corrected) standard 

deviation, last 10 

seconds 

1 1 1.0795 0.086 0.126 

2 3 2.969 0.098 0.161 

 

Another important aspect of the presented framework is the performance of the communication. As 

defined by the OPC UA standard, a sourceTimestamp is applied by an OPC server at the data source 

to a variable value at each change, and a serverTimestamp denotes the time when a server receives 

the value. The difference between these two timestamps can be used to approximate the overall 

latency of the communication. In our example, the valve agent’s OPC UA server assigns a 

sourceTimestamp when performing a reading from the flow sensor. When the pump agent’s OPC UA 

client receives this value through the subscription, the variable value gets written to the corresponding 

variable node alongside its sourceTimestamp. The serverTimestamp, on the other hand, gets set to 

the current time. For a meaningful comparison, the clocks of both agents need to be sufficiently 

synchronized, which is achieved by a NTP server. Still, slight clock drifts might be possible. It is also 

important to note that additional computation steps of the microcontrollers might further increase the 

total latency. For both experiments, the resulting differences are shown in Figure 6 and Table 2. 

While the mean and median latency are acceptable, especially considering the connection over Wi-

Fi, large outliers can be detected. Still, the results validate the use of a sample rate of the PI controller 

and the logging of 2 Hz. 
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Figure 6: Boxplots of the difference between server and sourceTimestamps of the volumetric flow rate as a 

measure of latency. Sample size = 100. Maximum whisker length = 1.5 ⋅ IQR (Interquartile range). 

The dashed lines represent the mean and the solid lines the median of the data. 

 

Table 2: Sample statistics of the difference between server and sourceTimestamps of the volumetric flow 

rate as a measure of latency in seconds. Sample size = 100. 

Experiment Mean Median Maximum (Corrected) standard deviation 

1 0.103 0.081 0.399 0.048 

2 0.097 0.090 0.198 0.019 

5. CONCLUSION 

In this work, we introduced a framework for the validation of distributed control algorithms. To 

physically represent the agents, microcontrollers with appropriate peripherals are used. The 

communication between the agents is achieved by Wi-Fi and OPC UA. In this context, a OPC UA 

server is assigned to each agent. Also, an additional OPC UA client is assigned to an agent for each 

agent that it needs to communicate with. The additional integration of a central computer facilitates 

logging and supervising of the distributed control. The framework was assessed using a test rig, which 

represents the water distribution in a residential building. In the test setup, a pump agent employs a 

PI controller to reach a target volumetric flow rate. As the pump does not have direct access to a flow 

rate sensor, it needs to acquire the information from an upstream valve agent. This is achieved by 

subscribing to the value changes of the volumetric flow rate node in the valve agent’s OPC UA server 

address space. Though the results show a high fluctuation of the sensor readings and harsh outliers in 

the communication latency, the control task can in general be achieved satisfactorily.  

To tackle the latency of the communication, Ethernet connections are a natural alternative to Wi-Fi. 

These in turn pose additional questions, e.g., regarding data transmission topologies.  
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As pointed out by the manufacturer of the microcontrollers, the integrated ADCs are sensitive to 

noise, which explains the high fluctuations of the volumetric flow rate readings. To mitigate this 

issue, the manufacturer suggests the usage of bypass capacitors, which could be examined in a next 

step. 

The developed framework is readily scalable to more sophisticated distributed control tasks. The 

server-client principle of the agents allows new agents to enter the network in a simple “plug-and-

play” manner. However, further considerations have to be taken into account. For one, additional 

clients pose additional memory requirements and computational complexity for the microcontrollers. 

This might be unfeasible for systems, where an agent has to be able to communicate with a large 

number of peers. In such settings, OPC UA PubSub is worth considering. OPC UA PubSub is 

especially relevant for one-to-many, many-to-one or many-to-many communication settings, but does 

not reliably ensure the data transmission. Looking at the different variants of distributed control, 

particularly the market mechanism, a reliable one-to-one communication might however be 

important. 

Especially the more sophisticated distributed control methods require richer information models than 

those that are considered in this work. In a first step, predefined node sets from the OPC Foundation 

might be used. Further research could aim at developing an information model to fully describe 

agents, irrespective of their type. Taking the market mechanism as an example again, the information 

model should also be capable of mapping complex communication patterns, such as negotiations, to 

make the framework universally applicable. 
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