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ABSTRACT 

Compact electro-hydrostatic actuators (EHAs) offer a promising solution for subsea production with 

their cost-effective and energy-efficient design, combining the benefits of electromechanical and 

electro-hydraulic systems. However, adapting these compact EHAs to fit within the limited space of 

traditional subsea systems poses a challenge, particularly in maintaining system reliability. This study 

introduces a Digital Twin (DT), composed of a physical EHA model and multiple Kalman Filters for 

parameter estimation, aimed at creating digital redundancies for critical sensors. The effectiveness of 

this approach was validated using co-simulation with Dymola software, where a simulation model 

emulated both the Plant (Real Twin), as a Modelica model, And a mathematical model as a software 

object (Digital Twin). The results demonstrate reliable digital redundancies for position and load 

measurements, with minor deviations that are within acceptable limits.  

Keywords: Compact Electric-Hydrostatic Actuator, Fault tolerance, Digital Twin, Subsea Valve 

Actuator. 

1 INTRODUCTION 

 

The transition from conventional hydraulic and electro-hydraulic to electro-mechanical apparatus in 

subsea oil & gas exploitation fields is a growing trend, referred to as the "All-Electric Subsea" 

approach. This shift offers multiple advantages including reduced installation (CAPEX) and 

operation costs (OPEX), quicker system response, increased energy efficiency, reduced umbilical 

cable diameter (due to the elimination of hydraulic lines), enhanced operational flexibility, and 

environmentally sustainable design [1][2]. Electro-hydrostatic actuators (EHAs) are integral to this 

approach, amalgamating the benefits listed above with those of traditional electro-hydraulic systems, 

such as compactness, robustness, high power density, high load capacity, and effective overload 

protection with fail-safe functions performed by springs [3][4]. 

A significant challenge in implementing EHAs – self-contained control systems with numerous 

components – is the requirement to accommodate these within the space that is traditionally occupied 

by subsea hydraulic actuators. Figure 1 illustrates the various modules comprising a rotary electro-

hydrostatic subsea valve actuator, designed to fit within the dimensions of a conventional hydraulic 

cylinder [4]. 
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Figure 1 - Comparison of components integrated in a new Subsea rotary EHA [7]. 

 

The limited space in these intricate systems restricts the inclusion of redundant components, calling 

for alternative approaches to improve system reliability. Orth et al. [7] and Placido Neto et al. [8] 

highlight a significant challenge in applying EHA technology to replace hydraulic Subsea Valve 

Actuators (SVAs) where the new designs must fit into the space occupied by conventional units. This 

spatial limitation can restrict system redundancies, necessitating alternative approaches to bolster 

reliability. 

To tackle this issue, a Digital Twin (DT) – a high-fidelity simulation model integrated into the 

actuator's controller [6] – presents itself as an effective solution. Capable of accurately reflecting the 

actual system's behavior, it acts as a digital backup for essential sensors. To achieve this, the DT  must 

continuously update its parameters using sensor signals and control actions from the system, stepping 

in to substitute the feedback from a faulty sensor in case of failure. 

 

2 SUBSEA VALVE ACTUATOR 

 

The focal physical system modeled in this study is an electro-hydrostatic Subsea Valve Actuator 

(SVA) depicted in Figure 1. The SVA is engineered for the operation of rotary small-bore valves at 

water depths reaching up to 4,000 meters, designed concisely to match the size and weight of 

traditional subsea hydraulic actuators [7]. It not only accommodates a standard electric interface but 

also seamlessly integrates essential components, including electric drives and controls. Moreover, the 

actuator is equipped with an embedded system to facilitate motion control and offers a 

communication interface compliant with the Subsea Instrumentation Interface Standardization (SIIS) 

- specifically, a fault-tolerant CANOpen (SIIS Level 2) - ensuring reliable communication for 

operators. 
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According to Kritzinger et al.[6], a Digital Twin must ensure that any alteration in the physical 

object's state is mirrored in the digital object's state. This necessitates the establishment of a well-

defined set of system elements that constitute the Digital Twin, thereby creating a control volume. 

This control volume defines the scope of the system covered by the Digital Twin, essentially forming 

a control system. A critical aspect of this process is the mapping of the system's inputs and outputs, 

which forms the basis for continually updating the information within the Digital Twin. 

The Subsea Valve Actuator (SVA) illustrated in  Figure 1 and detailed in Figure 2 is designed to 

operate rotary small-bore valves at depths of up to 4,000 meters [7]. The application software, housing 

the Digital Twin, is tailored to meet various normative, proprietary, and customer requirements, 

enabling the actuator to perform multiple functions. These functions, partially outlined in Placido 

Neto et al. [8], include (1) Preload fail-safe mechanism, (2) Command open of the process valve, (3) 

Command close of the process valve, (4) Emergency shutdown of the process valve (Fail-safe 

closing), and (5) Hold position. 
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Figure 2 - Exemplary hydraulic circuit diagram 

 

In the operation of the SVA R2, its Digital Twin must accurately replicate the behavior of its physical 

components. This requires the development of a robust mathematical model capable of adapting to 

the unique characteristics of the physical system, including manufacturing variances, environmental 

uncertainties, and component degradation. The details of this mathematical model and the methods 

for its continual updating are discussed in the following sections. 
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3 DIGITAL TWINS 

 

Introduced in 2003 at the University of Michigan's Executive Course on Product Lifecycle 

Management (PLM) [5], the concept of a Digital Twin (DT) has evolved, yielding various definitions 

encompassing diverse systems and applications [9][10]. Rosen et al.[11] describe a DT as a highly 

realistic model reflecting the real-time state and behavior of a system or process interacting with the 

real world. According to Grieves (2014), a DT comprises three elements: physical products in real 

space, virtual products in virtual space, and the data connections binding the two. 

Borangiu et al. [14] enumerate the primary benefits of DTs, including visibility (enabling operation 

visualization of individual equipment to larger systems), prediction (facilitating future state 

forecasting through modeling techniques applied to DT models), interaction (allowing condition 

simulation for “what if” scenario analyses impractical with physical prototypes), documentation 

(providing insight into the behavior of components), and integration (implementing DT models for 

connection with backend business applications in large systems). 

However, the proliferation of definitions, along with related concepts like digital simulation, Cyber-

Physical Systems (CPSs), and the Internet of Things (IoT), often results in confusion [12].  Some 

works between 2016 and 2019 referred to models as DTs even though they lacked essential DT 

attributes [13]. To clarify, Kritzinger et al. [6] propose classifying DTs into three subcategories: 

Digital Models, Digital Shadows, and Digital Twins, each representing different degrees of data 

integration and interaction between the physical and digital entities: 

 

• Digital model: a digital representation of an existing or intended physical object that does not 

use any form of automatic data exchange between physical and digital objects. The 

communication between both objects is done manually. The digital representation may be 

more or less accurate in relation to the physical object; 

• Digital shadow: In the digital shadow, there is already an automatic one-way flow of data 

between the state of the existing physical object and the digital one. A change in the state of 

the physical object leads to a change of state in the digital object, but not in a opposite way; 

• Digital twin: data flow between the existing physical object and the digital object is fully 

integrated into both directions. The digital object can also act as a control instance for the 

physical object. 

 

Kritzinger et al. [6] underscore that a Digital Twin must reflect changes in the physical object state 

with corresponding changes in its digital counterpart. Consequently, it is imperative to delineate a 

precise set of system elements comprising the Digital Twin. This process effectively constructs a 

control volume, delineating the scope of the system encompassed by the Digital Twin and forming a 

control system framework. Essential to this endeavor is the accurate mapping of the system's inputs 

and outputs, serving as the foundation for information updates within the Digital Twin. 

4 SENSOR FUSION 

 

According to Liu and Ma [15], sensor fusion is about combining information from different sensors 

to get a complete picture of an area or object. For example, in autonomous vehicles (AVs), various 
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sensors are placed in different spots to help the vehicle understand its surroundings from all angles. 

Sensor fusion becomes really important when there is a lot of information coming from different 

directions. It helps identify the same object seen by different sensors and puts together all the 

information from these sensors to create a big, unified picture of the area being sensed. 

In the Industrial Internet of Things (IIoT) context, sensor fusion is an approach also applied to predict 

faults in industrial equipment where the data from multiple sensors is combined in order to aid the 

continuous operation without interruptions [16]. The sensor fusion approach is also applied in 

hydraulic power systems in the detection of faults, as presented by Zhong et al. [17], Chen et al. [18], 

and Shi et al. [19]. Kalman filter algorithms are also strongly used in sensor fusion approaches as 

shown in Kheirandish et al. [20] and Demirci et al. [21]. 

For hydraulic systems of medium and/or high complexity, the application of a sensor fusion technique 

becomes more challenging, since the correlation between sensor signals can or not happen depending 

on the states of individual components. For example, the current in a HPU electrical motor is 

proportional to the system pressure just while the motor is activated. Therefore, the causality between 

components, depending on the system’s state must be known, for a proper sensor fusion algorithm to 

be implemented. 

In addition, to create digital redundancies for critical sensors, which is to replace the feedback signal 

of the fault sensor with an estimated value based on a model behavior and other sensors, it is 

imperative that the Kalman filter algorithm is applied to update parameters of the system, so the 

model can be able to work similarly to the real system even when a parameter is not updated anymore. 

Therefore, a finite state model of the SVA R2, as shown in Figure 3 was developed. For each state 

the correlation between signals is obtained through a causality analysis. Fundamentals about finite 

state modeling can be seen in Dathan and Ramnath [22]. 
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Figure 3 - State transition diagram for the SVA R2 
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In Figure 3 , S1 to S11 are the possible defined states of the actuator and T0 to T19 are the transitions 

between these states. Then, by knowing the states of the actuator, the parameter estimation algorithm 

uses the causality between elements to update the Digital Twin parameters. 

 

5 DIGITAL TWIN MODELLING 

 

There are several ways of building the structure of dynamic systems models, such as Physical Models, 

where is system is divided into subsystems whose behaviors are known, Identification Models, where 

observations from the real system are used to fit in a chosen model structure, or even neural networks 

[23] [24] [25] [26]. Dynamic models are also divided into deterministic and stochastic models, being 

deterministic if they present an exact relationship between measurable and derived variables and work 

without uncertainty or stochastic if they present uncertainty or probability concepts [24].  

The objective of this work was to develop a physics-based Digital Twin, with a parameter estimation 

system to update the DT main parameters based on sensors' readings and control actions. Hence, 

state-space modeling, or dynamic linear modeling, presented itself as a fit solution for its 

development, once it is a general modeling structure that allows the combination of deterministic 

equations with uncertainty components [27]. 

As given by Shumway & Stoffer [27], the basic form of the state-space model employs an order one, 

n-dimensional vector autoregression as in  

 

𝑥𝑘 = Ф𝑘𝑥𝑘−1 + 𝑤𝑘 (1) 

𝑦𝑘 = 𝐻𝑘𝑥𝑘−1 + 𝑣𝑘 (2) 

 

where 𝑦𝑘 is a vector of observable variables n x 1, 𝑥𝑘 is a vector of unobservable variables m x 1 

called state variables, 𝐻𝑘 is a matrix of known coefficients and 𝑣𝑡 is a white noise n x 1 vector, called 

measurement error, with covariance E(𝑒𝑘𝑒𝑘
′ ) =  𝑅, Ф𝑘 is an m x m matrix of autoregressive 

coefficients and 𝑤𝑡 is a white noise m x 1 vector with covariance E(𝜀𝑘𝜀𝑘′) =  𝑄, called state error. 

Inputs variables may enter into the states or into the observations, where a r x 1 inputs vector is added 

to equations 1 and 2, as 

 

𝑥𝑘 = Ф𝑘𝑥𝑘−1 + 𝛶𝑢𝑘 + 𝑤𝑘 (3) 

𝑦𝑘 = 𝐻𝑘𝑥𝑘−1 + Г𝑢𝑘 + 𝑣𝑘 (4) 

 

where 𝛶 is a 𝑛 𝑥 𝑟 input matrix and Г is a 𝑞 𝑥 𝑟 feedforward matrix.  

In order to obtain a modular design of the Digital Twin program (see Dathan et al. [22]), composed 

of individual modules, which are the mathematical models of individual components or component 

assemblies of the system, a modular state-space modeling based as described by Wang et al. (2018) 

and Yang and Wang [28] is chosen to be implemented.  
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6 PARAMETERS ESTIMATION USING KALMAN FILTER 

 

The Kalman filter has been applied in several areas to describe the evolution of dynamic systems, 

where its main objective is to update the knowledge of a system each time a new observation is 

brought in [30] [31]. The algorithm objective is to find estimates of unobservable variables based on 

related observable variables through a set of equations called a state space model, which were already 

depicted in Equations 1 and 2.  

In this work, the Kalman filter was implemented to estimate the parameters of the Digital Twin, 

instead of states. As shown in Liu [32] and Grewal and Andrews [33], the Kalman filter can be 

implemented to simultaneously estimate states and parameters by the addition of the observed 

parameters in the state vector. As an example, assuming two parameters a and b, included in the 

equation and as follows 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘, 𝑎𝑘) + 𝑤𝑘 (5) 

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑏𝑘) + 𝑣𝑘 (6) 

𝑎𝑘 = 𝑎𝑘−1 (7) 

𝑏𝑘 = 𝑏𝑘−1 (8) 

 

The implemented algorithm was written as described in Costa & Alpuim [30]. Below, the iterative 

algorithm for updating the DT pump volumetric efficiency is depicted. During states 9 and 10, see 

Figure 3, the algorithm produces an estimator of the parameter 𝜂𝑣𝑘
 at each time 𝑘, based on the 

information up to time 𝑘 − 1, as given by 

 

�̂�𝑣𝑘|𝑘−1
= �̂�𝑣𝑘−1|𝑘−1

 (9) 

 

when at time 𝑘, 𝜂𝑣𝑘
 is available, the prediction error or innovation 𝑣𝑘 is given by  

𝑣𝑘 = 𝜂𝑣𝑘
− �̂�𝑣𝑘|𝑘−1

 (10) 

 

𝜂𝑣𝑘
, in steady-state, is calculated through 

 

𝜂𝑣𝑘
=

𝐴𝐴1
𝑑𝑥𝐴1

𝑑𝑡
𝐷𝑃1𝜔𝑃1

 

(11) 

 

where 𝐴𝐴1[m2] and 𝑥𝐴1[m] are respectively the cylinder A1 area and position and 𝐷𝑃1[m3/rad] and 

𝜔𝑃1[rad/s] the pump P1 volumetric displacement and angular velocity. The error 𝑣𝑘 is used then to 

estimate �̂�𝑣𝑘
 with the equation 

 

�̂�𝑣𝑘|𝑘
= �̂�𝑣𝑘|𝑘−1

+ 𝐾𝑘𝑣𝑘 (12) 

 

where 𝐾𝑘 is called the Kalman gain and is given by 

𝐾𝑘 = 𝑃𝑘|𝑘−1(𝑃𝑘|𝑘−1 + 𝑅)
−1

 (13) 

 

where R is the measurement error covariance. Additionally, the mean squared error MSE matrix of 

the updated estimator �̂�𝑘|𝑘 represented by 𝑃𝑘|𝑘 verifies is updated by 
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𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 + 𝑄 − 𝐾𝑘𝑃𝑘|𝑘−1 (14) 

 

where 𝑄 is the so called state error covariance.  

7 COO-SIMULATION SETUP 

 

The Digital Twin model and parameter estimation algorithms were developed in C code using 

the aforementioned equations. The C program was then compiled as an external object using the 

software Dymola. In the Dymola program, an already developed model simulates the Real Twin 

where both the DT and Modelica model received the same inputs coming from the Controller. 

Figure 4 shows shows the Dymola model that interconnects the three different programs.  

 

 

Figure 4 - Coo-simulation setup 

 

8 RESULTS 

 

With the coo-simulation setup developed, two different scenarios were simulated with the objective 

of observing the capacity of the Digital Twin parameter estimation program to adapt chosen 

parameters, e.g. volumetric efficiency and coulomb force, to the Real Twin and serve as a digital 

redundance. 

 

8.1 Scenario 1: Regular actuation cycle with constant resistive load – No fault sensor 

 

In the initial scenario, the effectiveness of the Digital Twin's parameter estimation algorithm is 

evaluated. For this test, the hydraulic pump P1 (Plant) in the Dymola model is set with a volumetric 
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efficiency of 87.7%, whereas the initial parameters of the Digital Twin are configured at 72%. Figure 

5(a) displays the position sensor signal of the SVA (Plant) [°], the digital twin position [°], the SVA 

(Plant) position [°], and the difference between the Plant and Digital Twin positions [°], and Figure 

5(b) presents the plant and tDT pump model volumetric efficiencies. The real value of the Plant 

position and its sensor are shown because in scenario 2 a fault in the position sensor will be simulated 

and the difference between the DT position and Plant position will be of interest. 

 

 

Figure 5 - Scenario 1: Plant and Digital Twin positions as the Kalman filter parameter estimation 

algorithm updates the volumetric efficiency. 

 

It can be observed from Figure 5 (a) and (b) that the values of the open and closed volumetric 

efficiencies take 4 cycles to converge. At 250 seconds the difference on angular position between the 

plant and Digital Twin is 0.2% for open function and 0.04% for closing. Another aspect to be observed 

is the difference between Plant and Digital Twin positions, that has a maximum value of 24.8° for the 

1st cycle and 3.36° for the 4th cycle. 

It can also be observed that the parameters are just updated during the expected operational state, that 

means, the open and close volumetric efficiencies are updated, respectively, during the open and close 

operations, which are the states 10 and 9 in Figure 3. Another important variable to be monitored in 

a subsea valve actuator is the load torque required to operate the production valve. In this first 

scenario, a constant resistive load torque was applied. Figure 6 shows the plant and digital twin. 

 

(a) 

(b) 
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Figure 6 - Scenario 1: Plant and Digital Twin Load Torques. 

 

The updated parameter presented in Figure 6 is the coulomb friction from the SVA load, which also 

updates as the cycles go forward, resulting in a torque difference of 3.5 Nm between Plant and Digital 

Twin model in the 4th cycle. 

 

8.2 Scenario 2: Regular actuation cycle with constant resistive load – Fault sensor at 200 

seconds 

 

In scenario 2, a fault in the position sensor is simulated. In 200 seconds, the value of the position 

sensor is nullified. A Stuck-at detection algorithm (see Liu et al. [34]) is implemented to detect 

the faulty sensor.  

 

 

Figure 7 - Scenario 2: Plant and Digital Twin positions as the Kalman filter parameter estimation 

(a) 

(b) 

(a) 

(b) 
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algorithm updates the volumetric efficiency. 

 

In Figure 7 it can be noticed that after 200 seconds, the value of the angular position sensor goes to -

30°, which simulates that the sensor voltage output is zero. In this point the volumetric efficiency and 

load torque parameter estimation algorithm stop working and the Digital Twin position signal starts 

being used as feedback signal for the system controller. It can be observed by the comparison between 

the Plant angular position value and the Digital Twin Angular position, as well as the difference value, 

that the Controller is still able to control the plant while using the Digital Twin feedback signal. 

 

 

Figure 8 - Scenario 2: Plant and Digital Twin Load Torques. 

 

Figure 8 demonstrates that the Digital Twin continues presenting a fit value regarding the real system, 

even after the parameter estimation algorithm is deactivated at 200 seconds. 

 

9 FINAL REMARKS 

 

The outcomes from the simulated scenarios show that the developed Digital Twin can 

successfully mimic its real-world counterpart's behavior offering a reliable level of confidence, 

given the required time for it to adapt its parameters as a function of the real system sensors 

readings and control actions. This enables tracking unmonitored variables and more importantly 

in the studied system, replacing malfunctioning sensors, e.g. position sensor, with digital versions 

that are less precise, but yet allow the system to continue its key functions with only minor dips 

in accuracy. 

(a) 

(b) 
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Additionally, this method can be applied to all actuated valves in a Christmas Tree subsea setup, 

significantly aiding in developing a comprehensive Christmas Tree Digital Twin for various 

subsea applications. Such widespread use enhances the detailed monitoring of equipment 

parameters, improving the overall condition assessment of the Christmas Tree subsea systems. 

The ability to enhance a fault tolerant automation system through software, without adding to its 

hardware complexity or incorporating extra physical components, is extremely beneficial for oil 

and gas subsea production or processing systems. It's also vital for cutting costs and boosting 

reliability and safety in emerging energy sectors like Carbon Capture Utilization and Storage 

systems, or offshore green hydrogen (H2) production. 
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