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ABSTRACT 

This paper deals with fault localization for a mobile hydraulic system with independent metering, but 

it is also applicable to other hydraulic systems. The basis for this contribution is a model-based fault 

detection, which generates multiple symptom patterns for various component failures using a set of 

parity equations (see previous publications from the authors). The symptom patterns are evaluated 

through different classification methods such as geometric, statistical, and artificial intelligence 

methods. The evaluation focuses on simple approaches that are applicable in practice. Taking into 

account the limitations of mobile systems, different operating points, and a variety of fault scenarios, 

a correct fault localization of up to 92% of detected faults is possible. After locating faults correctly, 

IM systems enable a range of reconfiguration modes to keep the machine's functionality and therefore 

rise the availability. Laboratory demonstrator tests confirm the simulation-based outcomes. 
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1. INTRODUCTION 

Systems with independent control edges offer high energy efficiency and great structural flexibility. 

To fully exploit these benefits, electrohydraulic drive systems and sensor technology are required. 

Despite the ongoing digitalization and automation of machines, there are only a few market-ready 

implementations of independent metering (IM) systems such as [1] and [2]. Possible reasons for this 

are the increased system complexity of IM systems in combination with extensive control algorithms, 

software architectures and safety aspects. 

Previous work shows that IM systems are capable of meeting high safety requirements if the required 

diagnostic coverage is provided [3]. One possibility to achieve the required diagnostic coverage is a 

model-based fault detection, using parity equations. The implementation of such a reliable fault 

detection was shown in [4]. The increased system complexity creates the opportunity to use a set of 

eleven different parity equations with individual boundaries. These customized balance limits lead to 

varied sensitivity of the parity equations under diverse fault conditions. The resulting symptom 

pattern provides the basis of the investigated fault localization presented here. 

Starting with the introduction of the object of study, basic approaches for fault detection are derived 

and their practical validation is presented in this paper. While maintaining knowledge-based (model-

based) approaches, different methods for fault localization are introduced and implemented. The 

accuracy of their localization is compared. Test bench measurements confirm the effectiveness of the 

localization algorithms. The well-functioning fault localization allows partial compensation of faulty 

components through various reconfiguration modes - structural measures or control interventions to 

provide defined machine movement in case of failure - thus increasing availability. 
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2. SUBJECT OF INVESTIGATION 

Subject of investigation is the independent metering (IM) system of the excavator test rig at the 

research centre. The system includes two IM sections, each consisting of two pilot-operated 2/2 

proportional valves (see Figure 1, Vprop,A, Vprop,B) and four 2/2 switching valves (Vsv,AP, Vsv,AT, Vsv,BP, 

Vsv,BT). These IM sections are responsible for controlling the boom and stick cylinder of a compact 

excavator implement. The proportional valves regulate the flow rate and cylinder pressure according 

to the methods described in [5], while the switching valves determine the operation mode of the IM 

structure. The test rig enables extensive sensory monitoring. Sensors measure the cylinder velocities, 

the spool positions of the proportional valves and all pressures in the cylinder chambers and between 

the valves. 

  

Figure 1: Design of the investigated independent metering system. 

In addition to the physical test bench, a validated software-in-the-loop (SIL) environment is used for 

the development of the fault detection and localization algorithms. A comprehensive variant study 

enables the consideration of a large number of components that may cause errors, as well as different 

error characteristics and operating points. This takes into account the system complexity on the one 

hand and the operator-guided control of mobile machines on the other. The SIL environment has 

certain limitations that are typical in software development for mobile machinery, e.g. low computing 

capacities and restricted task times of the control unit. In total, 7 operating points with 542 error 

scenarios each form the basis of the investigation [4]. 

3. MODELL-BASED FAULT DETECTION 

The test rig's vast sensory equipment enables the calculation of several parity equations. The aim of 

these equations is to generate residuals through the comparison of measured and calculated output 

variables. To calculate the theoretical values, practical model descriptions are used for fluid behavior, 

valve dynamics, pressure build-up in hydraulic capacities, and volume flow through the valves. 

Combined with sensor data and control values, this results in two parity equations for the valve 

positions (A2, B2, see Figure 1), eight for the cylinder velocities (A1 to A5, B1 to B5, except A2, 

B2) and one for the volume flow to be supplied by the pump (S1). The majority of parity equations 

have fixed, very local balance limits and are entirely defined by the associated measured and 

calculated values. These equations are therefore also called local parity equations. Equations A5, B5 
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and S1 contain set points from the machine control, which depend on the state of the overall system. 

Thus, these equations are termed global parity equations. 

A threshold check controls the resulting residuals. Because the modeling is as simple and practical as 

possible, deviations between calculated and measured values are inevitable. If the residuals exceed 

the acceptable threshold for a prolonged duration of time, the mathematical model deviates 

significantly from the actual system process. In this case, a faulty state is to be assumed and an error 

symptom is generated. This symptom is used for error detection. 

As shown in [4], model-based fault detection generates at least one symptom for up to 70% of the 

imprinted fault cases, dependent on the operating point and as displayed in Figure 2. However, a 

significant percentage of the errors remain undetected. To evaluate the effectiveness of fault 

detection, it is necessary to assess the potential danger of any detected or undetected errors. For this 

purpose, it is suitable to consider the position deviations of the cylinder due to the error in comparison 

to the fault-free state. The histograms illustrate these position deviations ∆𝑥𝑐𝑦𝑙 2 seconds after the 

fault occurs. In the case of an undetected fault (symptomless), the movement of the cylinder generally 

deviates only slightly from its fault-free state. However, if a fault is detected, serious and dangerous 

changes in movement may occur. The undetected faults therefore do not lead to a dangerous situation, 

while all dangerous faults are detected. This leads to Diagnostic Coverage values of up to 

DCavg=99 % for the safety evaluation process. 

   

Figure 2: Amount of detected faults and their impact on the cylinder position for different operating points. 

To confirm the results of the simulative variant study, various fault scenarios are reproduced on the 

test rig. For this purpose, the detection algorithms are transferred to the test rig controller 

(HY-TTC 580). To ensure consistency, the test rig demonstrator autonomously executes the reference 

cycle of the simulation study. A Fault Insertion Unit enables the time-controlled emulation of 

component faults so that the practical tests match the simulated conditions as closely as possible. 
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Figure 3: a) Error of the cylinder velocity sensor at operating point I, 

b) Error of the switching valve Vsv,BT at operating point II. 
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Figure 3 shows the comparison of simulated and measured behavior for two fault scenarios. The fault 

detection of two parity equations for a malfunctioning cylinder velocity sensor is displayed in 

Figure 3 a). The absolute measured value is greater than the actual velocity. The parity equations A1 

and B1 calculate a velocity the cylinder should achieve within their balance limit, the corresponding 

valve section and cylinder chamber. The measured velocity signal acts as a reference value for both 

equations. Due to inaccuracies in the model and measurement deviations, the calculated velocity is 

subject to an uncertainty (𝑟𝑙𝑖𝑚𝑖𝑡). When an error occurs, the measured value exceeds the acceptable 

tolerance range. If the deviation remains over for a certain period of time, the fault detection identifies 

the presence of a faulty condition. Since the tolerance range was exceeded by both A1 and B1, both 

parity equations produce an error symptom. Simulation and measurement match qualitatively and 

quantitatively very well. 

Another example is shown in Figure 3 b). During the lifting of the boom, the valve Vsv,BT is opened 

in a faulty manner. As a result, the load-holding cylinder side is relieved against the reservoir and the 

attachment drops to the ground. The faulty valve is outside the balance limits of the local parity 

equation B3, which is mainly determined by valve flow characteristic of Vprop,B. Therefore, there is 

no error in the scope of the parity equation. The figure clearly shows that equation B3 accurately 

computes the motion resulting from the error. The global parity equation B5, on the other hand, 

detects the fault immediately after it occurs. Only B5, which uses the set volume flow through valve 

Vprop,B for calculation, produces an error symptom. Again, measurement and simulation match very 

well. In the absence of any error reaction measure, the boom cylinder reaches its end position in the 

simulation while its motion is constrained by the floor during the laboratory test. 

The test rig results on the one hand validate the results of the variant study and on the other hand 

show the selective behavior of the generated symptoms in case of different faults. This is a 

prerequisite for a proper fault localization. 

4. DEVELOPMENT OF FAULT LOCALIZATION 

The aim of fault localization is the identification (detection) of a faulty component. This first requires 

the detection of a faulty state. As seen before, the fault detection method utilizing eleven parity 

equations and the resulting symptoms provides a solid foundation for achieving this goal. In the 

following, four different approaches for fault localization will be presented. These work in detail… 

1. …on the basis of complete feature matching, 

2. …using decision or fault trees, 

3. …according to the Manhattan distance or 

4. …via learning vector quantization. 

As shown, the parity equations have different error sensitivities due to their different balance limits. 

According to these limits, there are expectations regarding the symptom patterns that occur with 

different faults. Table 1 illustrates the expected symptom patterns for cylinder retraction. 

Table 1: Expected symptom pattern for different fault classes during cylinder retraction 

  Symptom generating parity equation 

Fault description, Error of… Fault class A1 A2 A3 A4 B1 B2 B3 B4 

the proportional valve Vprop,A i-p-A x   x     

the proportional valve Vprop,B i-p-B     x   x 

the position sensor on valve Vprop,A y-p-A-sens  x x      

the position sensor on valve Vprop,B y-p-B-sens      x x  
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the switching valves on the piston side or of the 

tank pressure sensor (no distinction possible) 
pT,AT,AP x        

the switching valves on the rod side or of the 

system pressure sensor (no distinction possible) 
p0,BT,BP     x    

the cylinder pressure sensor on the piston side p-A-sens x  x x     

the cylinder pressure sensor on the rod side p-B-sens     x  x x 

the pressure sensor between the switching 

valves and the proportional valve (piston side) 
p-α-sens   x x     

similar to fault class p-α-sens, but for rod side p-β-sens       x x 

the cylinder velocity sensor v-cyl-sens x  x x x  x x 

The first three approaches take advantage of this knowledge. However, as described above, the global 

parity equations do not have the required selectivity. Consequently, the localisation of these methods 

relies entirely on local parity equations. For this reason, only the local symptom-generating parity 

equations are listed in Table 1. 

4.1. Fault localization based on the complete feature matching 

As shown in Table 1 faults with the same symptom pattern were grouped into a fault class 

(e.g.: pT,AT,AP). The current set of parity equations cannot distinguish between them. To 

differentiate between these faults, an expanded equation base is required. For example, Richter [6] 

and Kramer [7] present a way to directly monitor the state of the switching valves. Each fault class 

has a unique symptom pattern. Therefore, if one of these individual patterns appears due to a faulty 

condition, it can be assumed that the component fault underlying the fault class is responsible. This 

constitutes a basic form of fault localization. All detected fault cases are analyzed for complete feature 

matching, based on the variant study. A confusion matrix presents the result of the fault localization. 

The matrix compares the actual error class (true class) with the class classified by the algorithm 

(predicted class). The matrix's numerical values indicate the frequency of each classification. On the 

matrix diagonal, correctly classified error cases can be identified. 

  

Figure 4: Confusion matrix for a) operating point II and b) operating point V  

with localization by means of complete feature matching. 
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As expected, classification based on full feature expression does not lead to any mislocalizations 

(refer to Figure 4). Nevertheless, the overall localization accuracy is only about 68% and 75%. In 

approximately 30% of the analyzed detected faults, not all parity equations produce an expected 

symptom. This leads to the absence of a complete symptom pattern, making a fault case classification 

impossible (not classified faults). 

4.2. Fault localization using fault trees 

Since a complete symptom pattern is a major limitation for fault localization, other approaches are 

being considered. One of these is the utilisation of fault trees. According to Isermann, error trees 

belong to statistical approaches [8]. This approach uses a series of hierarchical decisions to identify 

possible fault causes. Starting from a root decision node, the presence or absence of particular 

symptoms is checked. Depending on the result, the following decision node is then reached. At the 

end of each decision path are the individual fault classes. A complete feature expression is not 

required, but it improves localization quality. There are various methods to create a fault tree. One 

method is to train the fault tree using the existing data set (variant simulation). An other method is to 

use the expected symptoms (refer to Table 1) to generate an analytical fault tree. The analytical 

approach allows the inclusion of "expert knowledge", such as the combination of criteria as well as 

the prioritization of decision nodes. Figure 5 illustrates the result of the classification based on an 

analytical decision tree. The confusion matrices demonstrate that improved error localization is 

achievable at both operating points, with an increase in overall localization accuracy of between 12 

to 16%. The fault tree assigns a possible fault class to all detected faults. However, it can result in 

some incorrectly localized faults. For example, 16 out of 28 faults of the cylinder velocity sensor are 

localized correctly in operating point II. 

  

Figure 5: Confusion matrix for a) operating point II and b) operating point V  

with localization by means of fault tree. 

The hierarchical structure of a fault tree is a drawback as it strongly prioritizes selected symptoms, 

making the sequence of decisions critical. Correct localization becomes challenging when a highly 

prioritized expected symptom is absent. 
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4.3. Fault localization according to the Manhattan distance (City-block-distance) 

The Manhattan distance is a geometric classification method, where the assignment of individual fault 

classes is based on geometric distance [8]. Each class has a prototype that is specific to its class, 

whose symptom expression is characteristic and representative for this particular class. In this case, 

the prototype aligns with the expected symptom pattern. The closer the distance between a prototype 

and an object to be classified, the higher the likelihood of it belonging to the corresponding class [9]. 

The term Manhattan (or city block) distance originates from the fact that in urban areas, distance 

between two points can only be determined along specific coordinate directions (e.g. streets, lifts). 

The Euclidean distance ("as the crow flies") is not suitable for this. By interpreting the features of 

individual parity equations as directions (A1, A2, ..., B4) and their corresponding symptoms (0,1) as 

distance, this method can be used for fault localization. Neither a fully developed symptom pattern 

nor a hierarchical structuring of the individual symptoms is necessary. In general, distance measures 

offer the possibility of weighting diverse "directions" differently. However, since the equality of all 

symptoms is an advantage over fault trees, this possibility is not used. Nevertheless, a suitable 

weighting is purposeful. By choosing robust threshold values for fault detection, the occurrence of 

unexpected symptoms is hardly possible, while the absence of an expected symptom is probable. For 

this reason, the matching of existing symptoms is weighted more heavily than their absence. 

The geometric classification achieves a very good overall localisation accuracy above 90% for both 

operating points, as shown in Figure 6. Due to the possibility of several prototypes having the 

smallest distance value, a single fault scenario can be assigned to multiple classes. The sum of all 

classifications can therefore exceed the sum of the investigated scenarios. If other potential causes 

are also assigned to a fault in addition to the correct fault class, it is still considered a correctly 

localized fault, since focused troubleshooting in practical use is simplified. 

  

Figure 6: Confusion matrix for a) operating point II and b) operating point V  

with localization by means of Manhattan distance. 
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transfer its results to other system structures. For this reason, this approach will only be briefly 

discussed. LVQ is a prototype-based artificial neural network method for data classification. By an 

optimization, the choice of the prototype characteristics takes place in such a way that the associated 

data points have a minimum, class foreign a maximum distance to the prototype. An object is then 

classified according to the resulting Voronoi regions using the winner-takes-it-all principle. 

Consequently, only one fault class is assigned to each fault scenario. Numerous LVQ algorithms are 

available in literature. The "Generalised Relevance LVQ" algorithm described in [10], [11] was 

utilised in this work. This method optimizes the features of the prototypes as well as the weighting of 

the symptoms. 

Despite the extensive variant study, only few training data sets are available, if one applies the 

standards of machine learning algorithms. Furthermore, there is no uniform distribution of failure 

scenarios, since some components have a binary fault character (e.g. switching valve is open or 

closed). As a result, the promising LVQ algorithm reaches its limits and only achieves classification 

accuracies within the range of 80%. In addition, there are the well-known challenges in the use of 

machine-learning algorithms, such as transferability of results and overfitting. 

5. TESTING OF FAULT LOCALIZATION ON THE TEST BENCH 

For fault localization on the test bench, the geometric classification method is implemented using the 

Manhattan distance. This consistently continues the knowledge-based approach of model-based fault 

detection and achieves the best localization accuracy in the simulation study. Figure 7 shows the 

detected threshold exceedances as a result of a velocity sensor error. The first symptom is generated 

by parity equation A3 where the status changed from false “f” to true “t”. Other symptoms appear 

subsequently, mainly of equations A1, B1, A4, A5 and B5. If the movement of the boom ends at 

10.5s, the permitted thresholds are no longer exceeded. The parity equations A1 and A4 are the last 

to fall below the thresholds. 

 

Figure 7: Currently detected threshold exceedances of all parity equations in case of a velocity sensor error 

at operating point I (measurement) 

The fault cases are classified based on temporary threshold violations and corresponding symptoms. 
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Figure 8 clearly shows that the fault is mostly classified correctly during the movement phase (the 

classification marker "v-cyl-sens" changes from false to true), although there is no fully developed 

symptom pattern at any time (see Table 1). Only at the beginning and at the end of the movement the 

calculated Manhattan distance indicates another cause of error. Nevertheless, the measurement 

illustrates the effectiveness of fault localization and the validity of the simulatively obtained 

statements in an exemplary manner. 

 

Figure 8: Resulting classification in case of a velocity sensor error at operating point I (measurement) 

Another classification example is displayed in Figure 9, showing a malfunctioning rod-side pressure 

sensor pβ positioned between the proportional and switching valves. This sensor outputs the 

maximum value instead of the real pressure. The machine controller uses the wrong value for valve 

actuation, causing the proportional valve on the drain side to open too wide. The system cannot 

generate the necessary pressure to support the equipment, causing the boom to move too quickly 

towards the ground (see Figure 10 a)). This fault state is reliably detected by parity equations B3 and 

B4 and accurately localized by Manhattan distance. 

  

Figure 9: Classification of error “faulty value of sensor pβ (maximum value)” at operating point V. 
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availability. The correctly localized cause of error enables another option: reconfiguration. 

Reconfiguration describes the upkeep of functionality in the case of failure, through compensating 

the faulty component. IM systems basically offer 2 possibilities for reconfiguration: 

 mode switching 

 alternative control strategies 

Mode switching describes the structural compensation of a fault through alternative flow paths and 

is a characteristic of IM systems. However, the use of alternative control strategies is applicable to all 

appropriate systems. A key requirement for this compensation is usually an extensive sensory set-up. 

When a faulty sensor is identified, a control concept for valve actuation is chosen that does not rely 

on the faulty sensor value. The performance of both concepts can be demonstrated on the test rig. In 

the case of the sensor error pβ, the use of an alternative control strategy is suitable (see Figure 10 b)). 

After the error occurs, the fault cause is accurately identified (see Figure 9) and the control strategy 

is adjusted accordingly. The pressure drop over the proportional valve can no longer be determined 

directly due to the faulty sensor. By using the system pressures in the supply and tank lines and a 

combined resistance model of the switching and proportional valve, adequate valve control is 

nevertheless possible. This ensures that the cylinder's movement remains manageable, preventing 

hazardous movements as well as drive shutdown. 

  

Figure 10: Measured behavior in case of error "faulty value of sensor pβ (maximum value)" 

a) without error detection and b) with error detection and reconfiguration at operating point V. 
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Manhattan distance leads to promising results of up to 92% accuracy. This method can easily be 

transferred to other system structures. However, it turns out that an extension of the parity equation 

set could provide benefits. Particularly, descriptions of component-specific elements enhance the 
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The reconfiguration of correctly localized faulty components can be successfully demonstrated. 

Depending on the fault and reconfiguration possibility, partial or even complete compensation is 

possible. 

The transfer of the investigated algorithms to the real system allows the validation of the results. The 

exemplary verification leads to a good agreement with the results of the simulation study. The test rig 

results therefore confirm the theoretical analyses and conclusions. 
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NOMENCLATURE 

A1…A5 Parity equations or their symptoms on the piston side  

B1…B5 Parity equations or their symptoms on the rod side  

∆𝑥𝑐𝑦𝑙 Deviation of the cylinder position due to an error m 

IM Independent metering (system)  

𝑟𝑙𝑖𝑚𝑖𝑡 Threshold of the parity equation residuals  

S1 Parity equation S1 or its symptom  

𝑡 Time s 

t/f true/false  

Vprop,A/B Proportional valve on the piston / rod side  

VsvBP/BT Switching valve to connect the rod side with pump or reservoir  

VsvAP/AT Switching valve to connect the piston side with pump or reservoir  

𝑥𝑐𝑦𝑙 Cylinder position mm 

𝑥̇𝑐𝑦𝑙 Cylinder velocity m/s 

y/n yes/no  

𝑦𝑝𝑟𝑜𝑝,𝐴/𝐵 Position of proportional valve Vprop,A/B mm 

REFERENCES 

[1] Eaton (2016), Data Sheet, CMA200 Advanced Independent-Metering Mobile Valve. 2016 

[2] Danfoss (2016), Data Sheet. Proportional Valve PVX. 2016 

[3] Beck B., Weber J. (2016), Safety and Reliability of Independent Metering Systems in Mobile 

Machinery. In: 26th European Safety and Reliability Conference, ESREL 2016, Glasgow, Scotland, 

September 25-29, 2016,  

[4] Fischer E., Beck B., Weber J. (2022), Data analysis for the evaluation and design of a model-based 

fault detection based on an independent metering system for mobile hydraulic drives. In: 

13th International Fluid Power Conference, 13. IFK, Aachen, Germany, March 21-23, 2022 



13 

 

[5] Jansson A., Krus P., Palmberg J.-O. (1991), Decoupling of response and pressure level in a hydraulic 

actuator. In: Fluid power systems modelling and control. Fourth Bath International Fluid Power 

Workshop on Systems. Bath, UK, September 18-20, 1991 

[6] Richter S. (2016), Ein Beitrag zur Integration von Maßnahmen der funktionalen Sicherheit in einen 

geregelten elektrohydraulischen Antrieb für stationäre Anwendungen. PhD thesis, TU Dresden, 

Shaker Verlag, Aachen, 2016 

[7] Kramer T., Weber J. (2018) ,Intelligent Condition Monitoring of Bi-stable Process Valves. In: 

11th International Fluid Power Conference, 11. IFK, Aachen, Germany, March 19-21, 2018 

[8] Isermann R. (2006), Fault-Diagnosis Systems. An Introduction from Fault Detection to Fault 

Tolerance. Springer, Berlin Heidelberg, 2006 

[9] Clauß G., Finze F.-R., Partzsch L. (1994), Statistik. Für Soziologen, Pädagogen, Psychologen und 

Mediziner. Band 1, Verlag Harri Deutsch, Thun, Frankfurt am Main, 1994 

[10] Bunte K., Schneider P., Hammer B., et al. (2012), Limited Rank Matrix Learning - Discriminative 

Dimension Reduction and Visualization. In: Neural Networks, Volume 26, 2012 

[11] Schneider P., Biehl M., Hammer B. (2009), Adaptive Relevance Matrices in Learning Vector 

Quantization. In: Neural Computation, Volume 21, 2009 


