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ABSTRACT 

This paper presents a mechanical compensator for hydraulic pressure pulsations induced by a pump 

or motor. The compensator is based on the combination of pump or motor mass moment of inertia 

and the torsional compliance of the adjacent coupling. According to the displacement volume, angular 

deflections of the resulting oscillator correspond to volumes which can compensate for geometric or 

dynamic pulsations at the natural frequency of the oscillator. Two design concepts are suggested for 

the coupling. Three models are set up for various configurations of the overall system, accounting for 

limited inertia of an electric motor and the influence of an outlet pipeline. Model parameters are 

determined for a 32 ccm radial piston pump and a 250 ccm axial piston pump. Torsional damping 

from viscous friction is roughly estimated and considered by different levels. At the pump outlet, 

frequency response functions between flow rate excitation and pressure response are calculated. The 

results show that the compensation effect is relevant for both pumps and particularly robust with 

respect to resonances in the hydraulic system. 
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1. INTRODUCTION 

The periodic operation of hydraulic pumps and motors usually leads to a pulsating flow which 

depends on the kinematics of the working principle. Moreover, the precompression of displacement 

chambers need not match the pressure at the outlet and periodic impulsive flow rates can result from 

this effect. The overall flow rate pulsation of the machine excites pressure pulsations in the attached 

hydraulic system. This results in structural vibrations and noise, and may even lead to cavitation. 

Various countermeasures have been suggested, at the cost of efficiency or additional components [1]. 

In structural mechanics, vibration compensators are supposed to counteract harmonic forces by 

natural vibrations at the same frequency. In hydraulic systems, such compensators can be understood 

to counteract harmonic flow rates by their natural vibrations. A Helmholtz resonator [2], for instance, 

extracts harmonic flow rates in its attachment point. Its natural frequency is defined by the inertia of 

the attachment pipe and the compliance of the resonator chamber. 

For practical inclusion in hydraulic systems, more compact compensators are required [3]. A special 

solution is described and investigated in [4]. Compared to a Helmholtz resonator, the inertia of the 

fluid in the attachment pipe is replaced by a lumped mechanical mass, while the resonator chamber 

provides a hydraulic spring. 

In this paper a flow rate pulsation compensator realised by the inertia of the machine rotor and the 

torsional compliance of its coupling is proposed [5]. The compensator constitutes a torsional 

oscillator which counteracts the pulsating flow from the machine into the hydraulic system. This 
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requires a lightly damped coupling with a torsional stiffness selected to match the natural frequency 

of rotor and coupling with the pulsation frequency. The ratio between flow rate pulsation and angular 

velocity amplitudes is given by the displacement volume of the machine. By appropriate angular 

movements, the machine is supposed to compensate its own pulsation. Contrary to separate devices 

like Helmholtz resonators, pulsation compensation takes place in the displacement chamber itself, 

which is the source of flow rate pulsation. Moreover, maximum compactness is achieved. 

The novel compensator concept promises a reduction of pressure pulsations in hydraulic systems at 

the expense of a tailored torsional stiffness of the coupling attached to pump or motor. Alternatively, 

the concept offers more freedom in the design of the machine itself as it may be exchanged against 

other measures for pulsation reduction (e.g. the number of pistons). 

Nevertheless, the practical realisation of the novel compensator faces several challenges. Hydraulic 

damping is always present and reduces the effectiveness of pulsation compensation. A broadband 

effect will only be achieved for certain relations between machine and coupling properties. In order 

to investigate the feasibility of the concept, a frequency domain study is carried out for two pumps of 

different type and size. In particular, viscous friction in sealing gaps is quantified, torsional vibrations 

of the entire pump drivetrain are modelled, and the dynamic behaviour of a transmission line is taken 

into account. 

2. SYSTEM CONFIGURATION 

 

Figure 1: Schematic of overall system 

As one out of many application examples, Figure 1 shows the schematic of an open circuit 

transmission with a variable displacement pump and a fixed displacement motor. The pump is driven 

by an electric motor at constant speed, with which it is connected by a coupling. Compared to the 

pump, the electric motor’s mass moment of inertia will be several times higher so that the first 

torsional natural frequency of the drivetrain can be approximated from the inertia of the pump rotor 

and the torsional stiffness of the coupling. 

In the hydraulic system, the pump excites pressure pulsations at a fundamental frequency depending 

on rotational speed and number of displacement chambers, which are usually accompanied by several 

higher harmonics. In principle, all torsional natural modes of the pump drivetrain could be used for 

pulsation compensation. The corresponding natural frequencies must match the pump harmonics to 

be compensated. In order to compensate a single pulsation frequency, the torsional stiffness of the 

coupling is chosen for an appropriate match with the first natural frequency of the pump drivetrain. 

Coupling design should avoid any torsional damping since the torsional oscillator includes 

unavoidable viscous damping at the pump rotor. Depending on the type of pump, the rotor’s mass 

moment of inertia may vary. In particular, this is the case for radial piston pumps, where a mean value 

will be used for compensator design. Of course, the system which is driven by the hydraulic motor 

could also be equipped with an appropriate coupling to realise another compensator. 
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3. COUPLING CONFIGURATONS 

The compensator coupling requires a relatively low torsional stiffness in the absence of damping, as 

opposed to conventional couplings of comparable size. Therefore, two different concepts are 

suggested with individual advantages of each. 

 

Figure 2: Coil spring concept 

Figure 2 shows a concept where two coupling halves engage in such a way that four tangential coil 

springs can be arranged in between, which define the torsional stiffness of the coupling. This concept 

is favoured by the fact that it covers a wide range of stiffness while broken springs are easily 

exchanged. 

The concept in Figure 3 uses a radial arrangement of flat rectangular beams, whose tangential 

deflection under torque defines the torsional stiffness. The beams are connected to an inner and an 

outer ring, all of which can be manufactured as an integral part. The outer ring is held in the carrier 

flange by a shrink fit, while the inner ring may be connected to the pump shaft by a key. This concept 

seems compact enough to be integrated in a pump housing and could also be cascaded for the 

compensation of several pulsation frequencies. An example for two pulsation frequencies is shown 

in Figure 4. For such an arrangement, it may be necessary to adapt the intermediate flange inertia to 

obtain feasible values of both torsional stiffnesses. 

 

Figure 3: Beam concept 
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Figure 4: Cascaded beam concept 

 

4. FREQUENCY DOMAIN MODEL 

 

Figure 5: Schematic of system with fixed boundary condition at electric motor end and hydraulic system 

with throttle towards tank 

A first numeric assessment of the novel compensator concept is made by frequency domain models 

of the systems in Figure 5, Figure 6, and Figure 7. To demonstrate the compensation effect with a 

minimum number of components, Figure 5 includes a coupling with a fixed boundary condition at 

the electric motor end, a pump rotor, the inevitable hydraulic capacity at the pump outlet, and a throttle 

towards tank. Due to viscous fluid friction, torsional damping acts on the pump rotor. With the 

torsional stiffness 𝑘𝑇 of the coupling, the mass moment of inertia 𝐼𝑃 of the pump rotor, the torsional 

damping constant 𝑐𝑇, the hydraulic capacity 𝐶𝐻, the hydraulic resistance 𝑅, and the displacement 

volume 𝑉𝑃 of the pump, the time domain model reads 
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where 𝑞 is the flow rate excitation into the hydraulic capacity 𝐶𝐻, 𝑝 is the pressure in this capacity, 

and 𝜑𝑃 is the rotation angle of the pump. Equation (1) represents a linear two-degree-of-freedom 

model with asymmetric system matrices due to hydraulic-mechanical interaction. The second order 

mechanical subsystem describes an oscillator, while the hydraulic subsystem is only first order. The 

corresponding frequency domain model reads 
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where capital letters for excitation and states denote the respective Laplace transforms, and 𝜔 is the 

angular frequency. 

 

Figure 6: Schematic of system with electric motor and hydraulic system with throttle towards tank 

Compared to Figure 5, Figure 6 also accounts for the electric motor’s limited mass moment of inertia 

𝐼𝑀. The corresponding model also includes the Laplace transformed rotation angle 𝛷𝑀 of the electric 

motor and reads 
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where 𝑇𝑀 denotes the Laplace transform of any torque from the electric motor. 

 

 

Figure 7: Schematic of system with electric motor and hydraulic system with pipeline towards constant 

pressure boundary condition 

To account for resonances in the hydraulic subsystem, the throttle is replaced by a pipeline from the 

hydraulic capacity to a constant pressure boundary condition. This configuration is shown in 

Figure 7. Using the pipeline description for dynamic laminar flow as developed in [6], the system 

model reads 
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𝑆12 = −
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J0(i𝑟√i𝜔/𝜈)

J2(i𝑟√i𝜔/𝜈)
, (6) 

where J0 and J2 are Bessel functions of first kind, 𝑙, 𝑟, and 𝐴 denote pipeline length, radius, and cross-

sectional area, respectively, 𝐸 is the bulk modulus, 𝜌 the mass density, and 𝜈 denotes the kinematic 

viscosity of the fluid. 

The torsional stiffness of the coupling is calculated in order to match the pulsation frequency 𝑓𝑃 with 

the torsional natural frequency of the pump drivetrain. This results in 

𝑘𝑇 =
(2𝜋𝑓𝑃)2

1
𝐼𝑀

+
1
𝐼𝑃

. (7) 

A torsional damping constant 𝑐𝑇𝐺 is estimated for different types of sealing gap with gap height ℎ. A 

cylindrical sealing gap appears at the inner radius 𝑟𝑖 of the radial piston pump rotor. The relative 

motion of gap walls due to the angular velocity �̇�𝑃 of the rotor causes a uniform shear stress 

𝜏𝑅 = 𝜈𝜌
𝑟𝑖�̇�𝑃

ℎ
, (8) 

resulting in a shear torque 

𝑇𝜏𝑅 = 2𝜋𝑟𝑖
2𝑙𝑃 𝜏𝑅 (9) 

over the rotor length 𝑙𝑃 and a torsional damping constant 
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ℎ
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Between axial piston pump rotor and valve plate, the sealing gap assumes the form of a disc with 

inner radius 𝑟𝑖 and outer radius 𝑟𝑎. The shear stress 

𝜏𝐴 = 𝜈𝜌
𝑥�̇�𝑃

ℎ
 (11) 

depends on the intermediate radius 𝑥 and causes the shear torque 

𝑇𝜏𝐴 = ∫ 2𝜋𝑥2𝜏𝐴𝑑𝑥

𝑟𝑎

𝑟𝑖

. (12) 

In this case, the torsional damping constant becomes 

𝑐𝑇𝐺𝐴 =
𝑇𝜏𝐴

�̇�𝑃
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𝜋

2
𝜈𝜌
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4 − 𝑟𝑖

4

ℎ
 . (13) 

Accounting for comparable viscous damping from the slippers, the overall torsional damping constant 

becomes 𝑐𝑇 = 2𝑐𝑇𝐺 . 
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For a medium size radial piston pump driven by a servo motor and a large axial piston pump driven 

by an induction motor, model parameters are shown in Table 1.  

Table 1: Model parameters 

 Radial piston pump Axial piston pump 

𝐼𝑀 0.018 kg m2  2.55 kg m2 

𝐼𝑃 0.0061 kg m2 0.0959 kg m2 

𝑉𝑃 32 cm3 250 cm3 

𝑙𝑃 40 mm  

𝑟𝑖 20 mm 30 mm 

𝑟𝑎  70 mm 

ℎ 0.04 mm 0.03 mm 

𝑧 7 9 

𝑛 25 Hz 25 Hz 

𝑓𝑃 𝑧𝑛 𝑧𝑛 

𝑉𝑑 𝑉𝑃 𝑉𝑃/2 

𝐸 1400 MPa 1400 MPa 

𝐶𝐻 𝑉𝑑/𝐸 𝑉𝑑/𝐸 

𝑅 1011 Pa m-3 s 1010 Pa m-3 s 

𝜌 860 kg m-3 860 kg m-3 

𝜈 40 mm2 s-1 40 mm2 s-1 

𝑙 1.1 m … 2.1 m 0.7 m … 1.7 m 

𝑟 7.5 mm 16 mm 

𝐴 𝑟2𝜋 𝑟2𝜋 

  

5. RESULTS AND DISCUSSION 

The following figures show frequency response functions between flow rate excitation and pressure 

response in the hydraulic capacity at the pump outlet. Different curves are shown for systems with 

and without compensator. To account for parameter uncertainty and damping mechanisms not 

included in the model, a damping constant of 10 𝑐𝑇 is used for a compensator with light damping, 

while 100 𝑐𝑇 is used for a compensator with high damping. 

From the model in Figure 5, the frequency response functions in Figure 8 and Figure 9 have been 

obtained for radial piston pump and axial piston pump, respectively. The compensator causes a local 

antiresonance (151 Hz for the radial piston pump and 221 Hz for the axial piston pump), which is 

followed by a resonance (166 Hz for the radial piston pump and 232 Hz for the axial piston pump). 

Both antiresonance and resonance are more pronounced for light damping. At excitation frequencies 

around the antiresonance, pressure response is reduced by the compensator. The contrary happens 

around the resonance, whose excitation should be avoided. To use the compensation effect, the 

pulsation frequency of the pump should match the antiresonance. Since the torsional stiffness of the 

coupling is determined from Eq. (7) and the model in Figure 5 does not account for the electric 

motor’s limited mass moment of inertia, the model must be refined to obtain the intended match. 
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Figure 8: 𝑃(i𝜔)/𝑄(i𝜔), radial piston pump, pump inertia, capacity and resistance at the outlet, 1: without 

compensation, 2: light damping compensator, 3: high damping compensator 

 

 

Figure 9: 𝑃(i𝜔)/𝑄(i𝜔), axial piston pump, pump inertia, capacity and resistance at the outlet, 1: without 

compensation, 2: light damping compensator, 3: high damping compensator 
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Figure 10: 𝑃(i𝜔)/𝑄(i𝜔), radial piston pump, motor inertia, pump inertia, capacity and resistance at the 

outlet, 1: without compensation, 2: light damping compensator, 3: high damping compensator 

 

 

Figure 11:  𝑃(i𝜔)/𝑄(i𝜔), axial piston pump, motor inertia, pump inertia, capacity and resistance at the 

outlet, 1: without compensation, 2: light damping compensator, 3: high damping compensator 
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Figure 12:  𝑃(i𝜔)/𝑄(i𝜔), radial piston pump, motor inertia, pump inertia, capacity and pipeline at the 

outlet, red curves: different pipeline lengths without compensation, blue curves: different 

pipeline lengths with high damping compensator 

 

 

Figure 13: 𝑃(i𝜔)/𝑄(i𝜔), axial piston pump, motor inertia, pump inertia, capacity and pipeline at the outlet, 

red curves: different pipeline lengths without compensation, blue curves: different pipeline 

lengths with high damping compensator 
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Figure 10 and Figure 11 result from the model in Figure 6. Accounting for the motor inertia, another 

resonance emerges (33 Hz for the radial piston pump and 13 Hz for the axial piston pump). The radial 

piston pump antiresonance shifts up to 175 Hz. For the axial piston pump, the electric motor’s mass 

moment of inertia is higher in relation, resulting in an antiresonance shift up to 225 Hz. In both cases, 

one can see that the entire pump drivetrain dynamics is essential for the antiresonance frequency, 

which now matches the pulsation frequency of the respective pump. 

Figure 12 and Figure 13 refer to the model in Figure 7. For radial piston pump outlet pipeline 

lengths from 1.1 m to 2.1 m in steps of 0.1 m, Figure 12 shows frequency response functions with 

and without the high damping compensator. In Figure 13 such frequency response functions are 

shown for axial piston pump outlet pipeline lengths from 0.7 m to 1.7 m in steps of 0.1 m. One can 

see that the compensation effect is largely independent of the outlet pipeline resonance frequency. 

The benefit of the compensator becomes most apparent where the intended antiresonance coincides 

with the original outlet pipeline resonance. At the cost of two side resonances, the intended 

antiresonance remains. 

6. CONCLUSION AND OUTLOOK 

For hydraulic pumps and motors, a novel pulsation compensation device has been suggested. With a 

suitable coupling, the drivetrain of the hydraulic machine forms a lightly damped torsional oscillator 

whose natural vibrations compensate flow rate excitations occurring in the displacement chamber. 

The device can be realized by merely defining the torsional properties of the coupling. Two possible 

coupling design concepts have been indicated. For a medium size radial piston pump and a large axial 

piston pump, frequency domain models show significant attenuation of pressure pulsation at a fixed 

excitation frequency and high robustness with respect to response characteristics of the hydraulic 

system at the pump outlet. 

 

In a next step, laboratory tests shall be carried out with a compensator tailored to the radial piston 

pump. Coupling design shall be detailed to allow for sufficient torsional compliance despite strength 

requirements. Under excitation from the pump itself, pressure response shall be compared between 

setups with compensator and standard coupling, respectively. In both cases, different hydraulic 

networks will be installed at the pump outlet. As the flow rate excitation from the pump cannot be 

measured, similar experiments with external valve excitation shall be carried out to enable direct 

comparisons with frequency domain models. If experimental results come near the predicted 

behaviour, the novel compensator offers effective pulsation reduction at little cost for many 

displacement machine applications at constant rotational speed. 

NOMENCLATURE 

A Pipeline cross-sectional area m2 

𝐶𝐻 Hydraulic capacity m3 Pa-1 

𝑐𝑇 Torsional damping constant N m s rad-1 

𝐸 Bulk modulus Pa 

𝑓𝑃 Pulsation frequency Hz 

ℎ Gap height m 

𝐼𝑀 Electric motor mass moment of inertia kg m2 

𝐼𝑃 Pump mass moment of inertia kg m2 

𝑘𝑇 Torsional stiffness N m rad-1 

𝑙 Length of pipeline m 

𝑙𝑃 Length of pump rotor m 
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𝑛 Rotation frequency Hz 

𝑝 Pressure at pump outlet Pa 

𝑃 Laplace transformed pressure at pump outlet Pa 

𝑞 Flow rate at pump outlet m3 s-1 

𝑄 Laplace transformed flow rate at pump outlet m3 s-1 

𝑟 Radius of pipeline m 

𝑅 Resistance Pa m-3 s 

𝑟𝑎 Outer radius of pump rotor m 

𝑟𝑖 Inner radius of pump rotor m 

𝑇𝑀 Laplace transformed electric motor torque N m 

𝑇𝜏 Shear torque N m 

𝑉𝑑 Dead volume at pump outlet m3 

𝑉𝑃 Displacement volume m3 

𝑥 Intermediate radius m 

𝑧 Number of pistons - 

𝜈 Kinematic viscosity m2 s-1 

𝜌 Fluid density kg m-3 

𝜏 Shear stress Pa 

𝛷𝑀 Laplace transformed rotation angle of electric 

motor 

rad 

�̇�𝑃 Angular velocity of pump rad s-1 

𝜑𝑃 Rotation angle of pump rad 

𝛷𝑃 Laplace transformed rotation angle of pump rad 

𝜔 angular frequency rad s-1 

REFERENCES 

[1] Harrison AM, Edge KA (2000) Reduction of axial piston pump pressure ripple. Proceedings of the 

Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 214(1):53-

63 

[2] Ingard U (1953) On the theory and design of acoustic resonators. Journal of the Acoustical Society 

of America 25(6):1037-1061 

[3] Mikota J (2002) Contributions to the development of compact and tuneable vibration compensatros 

for hydraulic systems. Dissertation, Johannes Kepler University Linz 

[4] Mikota J, Reiter H (2003) Development of a compact and tuneable vibration compensator for 

hydraulic systems. International Journal of Fluid Power 4(1):17-31 

[5] Mikota G (2022) Vorrichtung zur Reduktion von Druckpulsationen in einem Hydrauliksystem. 

Austrian Patent Application A 50695/2022, 9 Sept 2022 

[6] D’Souza AF, Oldenburger R (1964) Dynamic Response of Fluid Lines. Transactions of the ASME 

– Journal of Basic Engineering 86:589-598 


