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ABSTRACT 

In this paper, a novel method to estimate and predict the condition of an open circuit piston pump is 

presented. We introduce the concept of the ‘Pump health index’ which can assess the health of the 

pump in real time and use it to estimate the remaining useful life of the pump. The solution is agnostic 

to pump size, make, and application duty cycle. The solution has been tested with different levels of 

degradation that were simulated on the physical pump. The algorithms were implemented on multiple 

embedded platforms to illustrate the agnostic nature of the developed technology. 

 

Keywords: Open circuit axial piston pump, pump health index, edge computing, predictive 
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1. INTRODUCTION  

Piston pumps – the heart of any hydraulic application is critical to various industrial and mobile 

applications. Condition monitoring of piston pumps has been a key area of industrial research for 

many years. A detailed customer profile and value chain analysis is shown in Figure 1, which 

indicates that health monitoring solution for piston pumps offers incentive for each stakeholder in the 

value chain. 

 

Figure 1: Market potential and customer profile for solution (*All the images are copyrighted to their respective owners) 



2 

 

1.1. Objectives and scope 

Piston pumps find applications in mission-critical areas like marine engines, tunnel boring machines, 

steel manufacturing, and discrete manufacturing to name a few. Piston pumps operate under adverse 

environments and can operate without any discernible change in performance under incipient fault 

conditions. However, with continual operation, the fault condition deteriorates and can cause major 

disruption and downtime [1]. Any downtime on these machines incurs huge losses to the customers. 

The customer challenges related to these machines could be:  

1. Revenue loss due to pump failures: As the pump is the heart of any hydraulic system, 

failure related to the pump causes non-operation of the machine and hence loss of revenue. 

2. Operational cost increase: As customers do not have a mechanism to access pump health 

status, they may continue using the same pump irrespective of its degradation status. Due 

to the usage of a degraded pump, the amount of energy consumed is higher than a new 

pump, for the same amount of useful work. Hence operational cost increases due to the 

usage of degraded pump. 

3. Unplanned system stoppage: Continual operation of degraded pumps can result in pump 

failures, causing severe downtime for the entire machine. The unplanned system stoppage 

is a huge challenge for customers. 

To overcome these challenges, some of the existing strategies are 1. backup & redundancies, 2. 

periodic maintenance, and 3. reactive maintenance. All these strategies would be costly and would not 

solve the problem completely. Hence there is an unmet need to provide real-time health indications 

for a critical component like a pump. 

The objective of the paper is to develop a technology that analyses fundamental signatures from 

hydraulic pumps and provide insights for continuous monitoring of pump performance as shown in 

Figure 2. For this solution, key signatures from a pump are captured through sensors and their real-

time analysis is carried out on a controller. The processed output of the algorithms is in the form of 

Pump Health Index (PHI), shown as the hypothetical curve with respect to operating hours. The PHI 

is estimated till current time and using the previously computed values, a forecast is performed. 

 

Figure 2: Pump health monitoring solution with the indicated health index  

1.2. Literature review and state of art 

Most methods estimate volumetric efficiency using outlet flow. However, measuring the main flow 

affects the output of the pump. Multiple papers have proposed methods that use pressure [2] and 

vibrations [3] signals to derive fault features. Some of the previous works from Danfoss also show 

promising results [4]–[6], where grey box modeling is used to predict system performance in the form 

of motor speed. This work evaluates the pump performance as a standalone product when rotary or 

linear velocity is not available. Recent advances in machine learning (ML) have been widely used for 

detecting the defects of piston pumps [7]. As the evolution of ML techniques is rooted in domains 

other than industrial applications (like computer science), application-specific tuning and capturing 
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application-specific domain knowledge is not warranted. An attempt to integrate the knowledge into 

neural networks has been made by Kulkarni and Guha [8]. Most of the ML algorithms require 

specialized embedded hardware for their implementation. Machine learning-based methods assume 

the generalizability of the trained models as fault class data are not always present for the pump under 

test. Apart from the development of these advanced techniques, their deployment strategies 

concerning computational architectures are also critical. A recent review of condition monitoring of 

axial piston pumps for mobile applications can be found in [9].  

Many researchers have evaluated computational architectures from various perspectives [10], [11]. 

Particularly for PHM (Pump Health Monitoring) solutions, [12] indicated critical points to be 

considered like, data processing and storage capability [13], asset overview, domain knowledge, and 

robustness for estimating the ‘Remaining Useful Life (RUL)’ [14]. This work also proposes 

computational architectures for the effective deployment of condition monitoring solutions. The work 

focuses on the aspects of effective implementation, including the time of response from data 

acquisition to decision-making and computational resources for data processing in real-time.  

Alternatively, residue-based methods can be used to fix a baseline model under the healthy state of 

the pump, but it requires online training of the models on resource-constrained embedded systems. 

The condition monitoring of axial piston pumps has matured in the last two decades from a signal 

processing problem to a data science problem. In [15] spectral analysis and wavelet transformation 

of outlet pressure were used for pump signature analysis. RUL prediction using different leakage 

models was proposed in [16] using case flow measurement and Weiner filter. Low and high Reynolds 

flow losses are estimated as states of the pump model using an extended Kalman filter (EKF) with 

pressure as a measurement for RUL prediction [17]. The use of particle filters for estimating the RUL 

was proposed in [18]. A non-linear unknown input observer using swash-plate angle and outlet 

pressure input was proposed in [19]. However, the lack of correction due to unavailable future data 

leads to linear regression-type estimation with state estimators. The volumetric efficiency can be 

estimated using such a state estimator. However, the prediction method will remain unchanged.  

The relation between oil contamination and the RUL of the pump was established in [20]. Fault 

isolation for different parts of the pump like cylinder, valve plate, slipper, sliding boot, and spring 

wear in the lab environment using vibration signature was demonstrated in [21]. The classification of 

the faults was carried out with a convolutional neural network. However, the absence of adequate and 

publicly available data on the fault classes makes it challenging for the implementation of such 

machine learning-based methods in industrial cases for generalized fault classification. Degradation 

characteristics of port plate pairs extracted from flow by monitoring the volumetric efficiency were 

exhibited in [22]. The use of compressed sensing for fault detection was proposed in [23]. However, 

the spectral estimation of reconstructed, compressively sensed signal is lossy and may lead to loss of 

fault information. The use of Eigenvectors as indicators of pump degradations using a pre-filtered 

vibration signal was demonstrated in [24]. 

Case-flow of an axial open circuit piston pump indicates tribological interface component of wear. 

However, methods based solely on the case flow can’t determine the condition of the pump. Case 

flow is dependent on the pressure, swash-angle, speed, and fluid viscosity of the pump. In this paper, 

we propose a method that considers these factors to determine the condition of the pump. The solution 

is agnostic to pump size, make, and application duty cycle, which has been tested with different levels 

of degradation that were simulated on the physical pump. The prediction has been tested using 

different degradation patterns generated mathematically and from actual pump data. The overall 

estimation error is less than ±2%.  

The estimated PHI values are used for predicting the future health of the pump. Estimating the pump 

health as one unique number has provided the possibility to use a machine learning model, which can 
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be deployed through resource-constrained edge hardware. This unique number (PHI) is fed to the 

prediction model, which gets updated for every new value. This provides the health predictions which 

are updated as per the previous degradation pattern. 

This continuous learning methodology using machine learning models provides not only real-field 

pump degradation but also its variation and prediction to reach certain thresholds set by customers as 

per application needs. To deploy the methodology for customer application, non-linearity should be 

handled carefully. The non-linear behaviour of PHI is taken care through continuous learning 

methodology. An advanced outlier removal method provides the required robustness for actual field 

deployment. 

The estimation and forecast algorithms were implemented on various controllers including Danfoss’s 

Plus+1® MC024™ [25]. The validation has been carried out in two phases. In the first phase, a piston 

pump has been artificially degraded in the lab by artificially wearing the valve plate. In the second 

phase, different tests have been carried out using a wide range of pumps (low to high displacement) 

to validate the algorithms. The overall system is ready to be deployed as a prototype solution at 

customer sites. 

2. METHODOLOGY  

One of the challenges faced by the operator/plant manager is the evaluation of the present health 

status of the pumps and how the performance of the pump might degrade in the future. The proposed 

method works by calculating the PHI in real-time, storing historical data of the PHI, and predicting 

the values of PHI up to a certain interval in the future. The PHI is related to the volumetric efficiency 

of the pump and can be estimated using the leakage flow. However, it is well known that the leakage 

flow is also correlated with the outlet pressure, fluid viscosity, and speed of the pump. To develop an 

index that is only affected by the degradation of the pump we measure the correlated sensors for 

normalization. The overall method is shown in Figure 3. 

 

Figure 3: The algorithmic block diagram 

Assuming the theoretical flow to be 𝑄𝑇ℎ. The main flow is a fraction of 𝑄𝑇ℎ given by 𝑄𝑚 = 𝜂𝑄𝑇ℎ. 

Therefore, the rated case flow or the leakage flow is given by 𝑄𝑐
𝑟𝑎𝑡𝑒𝑑 = (1 − 𝜂)𝑄𝑇ℎ. The case flow 

is directly proportional to the outlet pressure [26]. Therefore,  𝑄𝑐 ∝ 𝑃. Therefore,  

𝑄𝑐

𝑄𝑐
𝑟𝑎𝑡𝑒𝑑 =

𝑃

𝑃𝑟𝑎𝑡𝑒𝑑
 (1) 

𝑄𝑐 = 𝑄𝑐
𝑟𝑎𝑡𝑒𝑑𝑃/𝑃𝑟𝑎𝑡𝑒𝑑. Using the relation of 𝑄𝑐

𝑟𝑎𝑡𝑒𝑑, we get the leakage flow as  

𝑄𝑐 =
𝑃

𝑃𝑟𝑎𝑡𝑒𝑑
(1 − 𝜂)𝑄𝑇ℎ (2) 

Now 𝑄𝑇ℎ = 𝜔𝑑, in which, 𝜔 is the rotational speed per minute of the pump and 𝑑 is the displacement 

in cubic centimeter of the pump. Therefore, 𝑄𝑐 is given as follows: 

 

𝑄𝑐 =
𝑃𝜔𝑑

𝑃𝑟𝑎𝑡𝑒𝑑
(1 − 𝜂). (3) 

The total leakage flow is solely not due to degradation. There is control flow which is represented as 
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a fraction of the theoretical flow given by 𝛽𝑄𝑇ℎ [26]. Hence, 

𝑄𝑐
𝑎𝑐𝑡 =

𝑃

𝑃𝑟𝑎𝑡𝑒𝑑
[𝜔𝑑(1 − 𝜂) − 𝛽𝑄𝑇ℎ] 

(4) 

The quantity 𝛽 can be obtained empirically from initial data or end-of-line testing of the pump. Once 

we obtain the actual case flow due to leakage given by 𝑄𝑐
𝑎𝑐𝑡, we find the relation between the outlet 

pressure and 𝑄𝑐
𝑎𝑐𝑡 for a window of data. The PHI is a function of the slope of the fitted curve for that 

window of the data. 

3. EXPERIMENTAL SETUP 

With the introduction of the novel concept of ‘pump health index’, it is imperative to verify and 

validate the method with situations replicating real-field duty cycles and data. For this purpose, an 

experimental test bed in our facility has been utilized. The experimental test bench schematic with 

Danfoss Plus+1 controller and display is shown in Figure 4. In this setup, the hydraulic pump is driven 

by an electric motor. Different loading conditions on the pump were experimented using relief valves.  

 

Figure 4: Schematic representation of the experimental test bench 

The sensor data is communicated through CAN protocol to the edge hardware from the test-bed 

programmable logic controller (PLC), where the algorithm is deployed. The output of the algorithm 

was displayed on the display. A photograph of the pump, driven by the electric motor is shown in 

Figure 5. Real-field duty cycle is replicated in this setup. Five sensor measurements were captured, 

i.e., pump discharge pressure, case flow, swash angle, fluid temperature, and speed as shown in Figure 

6. 

 

Figure 5: One of the pumps under test 

Pump discharge pressure shows the loading of the pump with respect to time. Real-field dynamic 

duty cycle was achieved, which shows the variation from 20 bar to 210 bar. Case flow values captured 
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in real-time show the variation as indicated in Figure 6. The swash angle sensor shows a variation of 

0 to 18.5 degrees, which is the maximum swash angle for this pump. These variations are as per pump 

controls. Fluid temperature variation is not dynamic in nature, as the same is expected in field 

operations. Hence experiments have been conducted at 50 °C, 75 °C, and 93 °C fluid temperature.  

 

 

 

 

 

Figure 6: Visualization of different recorded signals of the pump. From top: Pressure, Swash-

angle, pump-speed, temperature, and case-flow. 

Many industrial applications run the pump at constant speed, with the possibility of changing speed 

as needed. Hence, PHI algorithms have been tested at constant speed and the same experiment has 

been repeated with variation in speed at 1000 rpm, 1500 rpm, 2200 rpm, and 2900 rpm. Generally 

degraded pump has lower efficiency. To collect the data of degraded pumps, tribological parts were 

degraded and then data was collected. The data is used to estimate and predict the performance of the 

pump. 

4. RESULTS AND DISCUSSIONS 

With the experimental setup described in Section 3, detailed test scenarios have been formulated to 

capture and test the robustness of the solution. The purpose of this testing is to capture the 

performance of the algorithm with real-field scenarios. The different test scenarios with a variety of 

pumps are described below. The actual and estimated PHI has been compared. 



7 

 

a. Piston pump sizes (cc): 250 cc, 90 cc, 66 cc, and 28 cc. 

b. Speed (rpm): Speed variations have been tested from 500 rpm to 2900 rpm.  

c. Temperature (°C): Temperature variations have been captured from 50°C to 93°C.   

 

PHI (Actual): This is the volumetric efficiency of the pump at the rated condition at 50°C. To capture 

this index, volumetric efficiency is calculated, using the main flow measurement of the pump. 

PHI (Estimated): This is the estimated PHI as an output from the developed algorithm, without using 

the main flow. Calculation of estimated PHI is taking place using the actual sensor data with dynamic 

variations with time, like the real field scenario. 

4.1. End-of-line Testing with Production Pumps 

To validate the proposed method statistically, the algorithm was tested on multiple Hydrocraft pumps 

with end-of-line test data. A total of 13 PVX-66 pumps were tested. The maximum error observed 

was 1.808 %. Similar tests were carried out with 85 number of 90 cc PVX-90 pumps and 15 number 

of 250 cc PVX-250 Pumps. The actual versus the estimated PHI are shown in Figure 7. The mean 

percentage error with PVX-250 was found to be 1.54 %. The higher error was expected for end-of-

line test data as this data serves as the baseline for the control flow as discussed in Section 2. 

Table 1: Estimation performance of 66 cc Hydrocraft pump 

Pump # Speed (RPM) Temperature (°C) Estimation Error (%) 

1 1500 44 0.75 

2 1500 44 0.87 

3 1500 40 0.37 

4 1500 40 0.72 

5 1500 44 0.14 

6 1500 40 0.13 

7 1500 40 1.57 

8 1500 40 1.16 

9 1500 44 0.16 

10 1500 40 1.79 

11 1500 44 0.17 

12 1500 44 1.80 

13 1500 44 0.87 
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Figure 7: End-of-line validation of the PHI with Hydrocraft pumps. Left: PVX-90, Right: PVX-250 

4.2. Validation with different speeds and temperature in laboratory condition: 

A total of 12 different data sets have been captured with different testing scenarios of speed and 

temperature. The error between the estimated and actual PHI is less than 2%, as shown in Table 2 to 

demonstrate the robustness of the developed algorithms. 

 

Table 2: Estimation performance of 28 cc pump 

Dataset 
Speed 

(RPM) 

Temperature 

(°C) 

Estimation 

Error (%) 

1 1500 50 1.13 

2 2200 50 0.33 

3 2900 50 0.67 

4 1500 50 1.33 

5 2200 50 0.53 

6 2900 50 0.87 

7 1500 93 1.53 

8 2900 93 0.27 

9 1500 75 1.33 

10 2900 75 0.27 

11 1500 60 1.33 

12 2200 60 0.27 

4.3. Validation with Degraded Pump under Laboratory Conditions: 

The robustness of the solution also needs to be validated for new pumps, as well as for the old pumps. 

Pump degradation is emulated in the lab environment by deliberately removing the material from the 

valve plate. The artificial wearing of the valve plate is carried out using diamond paste & sandpaper. 

The valve plate has been weighed and a pump performance test has been carried out after each 

iteration. Validation of the algorithm is carried out at different levels of pump degradation (D1 – D5) 

with some instances where the pump was run under corner horsepower (CHP) ratings as shown in 
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Figure 8. The validation results with various levels of pump degradation show an estimation error of 

less than 2%. This confirms the solution validity for new as well as degraded pumps.  

 
Figure 8: The PHI estimation performance for different test cases  

4.4. Hydrocraft Piston Pump Health Prediction 

Once the PHI is estimated, the values are stored and are used for predicting the next ‘m’ PHIs. The 

stored PHIs are modeled parametrically, and the next ‘m’ values are predicted using this model. With 

every incremental instance, a new PHI is obtained. The predicted PHIs are updated accordingly. The 

remaining useful life is estimated for the predicted PHI, once it approaches the set threshold. 

The PHI is calculated every second. As a result, the model fitting, and the prediction are accomplished 

at the same rate at which the PHI is calculated. However, the horizon of the forecasting algorithm is 

dependent on the number of samples to be predicted in the future. The accuracy of the forecast is also 

dependent on the predicted terms. The accuracy decreases with increasing predicted samples. The 

predictive algorithms are evaluated using historical data. The scheme to test the algorithms is 

demonstrated in Figure 9. 

 
Figure 9: Predictive algorithm evaluation schema 

The performance of the predictive algorithm was validated for two horizons (35 days and 150 days) 

using the data from a 66 cc Hydrocraft pump which was recorded for a long duration. The prediction 

accuracies for two horizons are shown in Figure 10 and Figure 11, respectively. The mean errors are 

0.69% and 1.14%, respectively. The error increases with increasing the prediction horizon. 
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Figure 10: Prediction of PHI for 35 days compared 

to actual PHI (Mean percentage error = 0.69%) 

 
Figure 11: Prediction of PHI for 150 days compared 

to actual PHI (Mean percentage error = 1.14%) 

5. EMBEDDED SYSTEM DEVELOPMENT AND CLOUD ARCHITECTURES 

The advent of Industry 4.0 is enabling industries to migrate to IoT-based cloud infrastructures. 

Deriving actionable inferences from sensor data with estimation and prediction capabilities drive the 

success of Industry 4.0. However, these solutions require cloud connectivity to enable easier 

implementation of algorithms and hence add complexity, cost, data insecurity, and latency. For a real-

time application, edge hardware is still the preferred mode due to the lower latency of data transfer 

and the possibility of real-time computation. However, edge computation limits the usage of a 

plethora of advanced algorithms that can be implemented on cloud-based servers. 

To leverage the real-time and on-premises computation capability of edge hardware, we use classical 

algorithms. However, the PLC coders support the IEC 61131 international standard. As a result, the 

available predictive model was not usable. Furthermore, due to the limited available computational 

resources of such devices, the developed algorithms needed to be fast and efficient. The developed 

algorithms were implemented on different embedded controllers. The implementation framework 

with the Danfoss Plus+1® MC024TM controller is shown in Figure 12. For this implementation, we 

acquired data from the PLC of an existing test stand at our facility using a controller area network 

(CAN). The controller computes the current value of the PHI, along with its forecast after 30 days 

and 150 days. The current value along with the predicted values are then sent to Danfoss Plus+1® 

DP730 display for visualization.  

 

 
Figure 12: Implementation of the algorithm on Danfoss controller 

6. CONCLUSIONS AND FUTURE SCOPES 

In this article, we present a system for estimating and predicting the health of open-circuit piston 

pumps. The developed algorithms are suited for embedded applications that have constraints in terms 

of both space and computational capability. The concept of PHI is introduced in this work, which can 

indicate the comprehensive health of the pump. The verification of the proposed algorithms has been 
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carried out in the lab by recreating the real-field scenarios. Exhaustive validation testing was carried 

out to demonstrate the efficacy of the method. The error of the algorithms is below the 2% limit for 

all the tests. 

With the recent technological advancements, there is scope for improvement of the accuracy further 

using advanced time-series and machine learning tools. The PHI is unique and can be computed in 

real-time. It can also predict the future health state of the pump. Additionally, it is also envisaged to 

develop algorithms that can identify the defects of piston pumps. This solution would play a critical 

role in reducing the total cost of ownership and enable benefits from predictive maintenance. 
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NOTATIONS  

Variable Description Units 

𝑄𝑇ℎ Theoretical flow [m3min−1] 

𝑄𝑚 Main flow [m3min−1] 

𝑄𝑐 Leakage flow [m3min−1] 

𝜂 PHI [1] 

𝑃 Pressure [bar] 

𝑃𝑟𝑎𝑡𝑒𝑑 Rated pressure [bar] 

𝜔 Speed [min−1] 

𝑑 Displacement [cm3] 

𝛽 Coefficient of control flow [1] 
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