
1 
 

OPTIMAL SPEED TRAJECTORY OF ELECTRIC WHEEL LOADERS 
AIMING AT EXTENDING BATTERY LIFETIME 

Haoxiang Zhang1, Qi Zhang1, Jiajia Wang1, Yihan Qiao1, Feng Wang1*, Bing Xu1 

1School of Mechanical Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 
310027, P. R. China  
* Corresponding author: E-mail address: dieter@zju.edu.cn 

ABSTRACT 

The electrification of wheel loaders is considered a leading trend due to its advantage of zero-carbon 
emissions. However, the inevitable phenomenon of battery degradation has led to increased battery 
usage and maintenance costs. This study first extends the battery lifetime by optimizing the speed 
trajectory based on the typical loading cycle of the wheel loader. The optimal control problem is 
formulated by systematically modelling the wheel loader's powertrain and using a precise semi-
empirical battery aging model. To reduce computational costs, the modified optimal control problem 
includes a weighted penalty on travel time. A combined algorithm of dynamic programming and 
Brent’s method (DP-BM) is introduced to provide a numerical solution to the optimization problem 
with a reduced computational burden. Simulation results demonstrate that the optimized trajectory 
can decrease the average power consumption of the battery and reduce the number of full equivalent 
cycles, resulting in a 4.48% improvement in the average battery lifetime compared to the typical 
trajectory. Furthermore, the proposed approach significantly reduces computation time compared to 
the conventional dynamic programming method, with an average reduction of 95%.  
Keywords: Speed trajectory optimization, Dynamic programming, Brent’s method, Battery lifetime, 
Electric wheel loader

1. INSTRUCTION 

The electric wheel loader has been gradually rolling out in recent years due to its advantage of 
zero-carbon emission. However, the inevitable battery degradation phenomenon influences the 
battery lifetime and hinders the widespread application of the electric wheel loader. The high load 
and high inertia characteristics of the electric wheel loader result in a high average discharge 
current, exacerbating battery degradation. Additionally, the wheel loader is usually designed for 
a single application such as loading material, meaning that the driving path is relatively short and 
fixed. The high repetition of the duty cycle causes the battery to charge and discharge frequently, 
which further accelerates battery degradation. 
Aiming at extending battery lifetime, this paper attempts to find the optimal speed profile of 
electric wheel loaders in the typical loading cycle. The optimization problem can be defined as 
follows: given the target route and duration time of the vehicle, calculate the speed at each 
moment to form a velocity trajectory, aiming at maximizing the battery lifetime.  
Currently, there is no work for either wheel loaders or on-road vehicles on extending battery 
lifetime through speed trajectory optimization. However, some studies around speed optimization 
focus on minimizing energy consumption, which can provide references to this paper. Mello and 
Bauer optimize speed trajectories between stops for electric vehicles by considering real-world 
constraints such as following distance to the next vehicle and jerk 1. Wu et al. 2 address similar 
issues and focus on avoiding stops in arterial corridors considering the impact of the presence of 
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intersection queues in both temporal and spatial dimensions for an electric vehicle. In addition, 
some works focus on the speed profile of trams 3, 4. The specific operating scenario gives the 
optimization problem extra constraints such as precise green signal time windows.  
Numerical methods in dealing with trajectory optimization problem greatly affect the calculation 
efficiency and accuracy. Dynamic programming has been widely and extensively used because 
it can find a global optimum even for nonlinear systems with nonlinear constraints. However, it 
is difficult to obtain an accurate solution within an acceptable time. Since the operating distance 
and duration vary for each loading cycle, the optimization problem must be addressed frequently, 
which puts forward higher requirements on the algorithm’s efficiency. The conventional dynamic 
programming algorithm takes substantial computation time and must be improved. 
The contribution of this study is to extend battery lifetime of an electric wheel loader through 
speed trajectory optimization. To achieve this target, dynamic programming method is employed 
to give a numerical and optimal speed-versus-time trajectory that satisfies the given constraints. 
In order to reduce the computational cost, the optimal control problem is modified such that a 
weighted penalty on travel time is included. Brent’s method is first used to calculate the weighted 

penalty (achieve time constraint in the cost function). The dynamic programming combining 
Brent’s method (DP-BM) proposed in this paper provides a very useful tool that can calculate the 
global optimal speed trajectory with a reduced computational burden. The significant saving of 
operation time provides the possibility for the application of trajectory optimization in real 
working cycles. 

2. MATHEMATICAL MODELING OF ELECTRIC WHEEL LOADER  

2.1. System Overview 

The conventional wheel loader generally uses one internal combustion engine that simultaneously 
drives the hydraulic pump and the drive shaft. Taking advantage of the electric motor’s small size 

and flexibility in arrangement, the distributed solution with two independent electric motors that 
separately drive the working hydraulic system and propulsion system is widely used in the electric 
wheel loader. Figure 1 shows the powertrain architecture analyzed in this study. The two systems 
are powered simultaneously by one battery pack, then achieve their respective functions.  

 
Figure 1: Powertrain of the electric wheel loader 

2.2. System Modelling 

Drivetrain 

The time-based longitudinal dynamics of a wheel loader can be described as: 
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where m  is the operating mass of the wheel loader, v  is the wheel loader speed, s  is the position 
of the wheel loader. tF , bF  and rF  are the motor traction force, electrical braking force and 
resistance force respectively. 
The basic resistance force of an operating wheel loader includes the aerodynamic friction, the 
rolling friction, and the thrust force, as given by: 

 21
2r d v thF mg v C A F = + +  (2) 

where   is the rolling friction coefficient, g  is the gravitational acceleration,   is the air 
density, dC  is the aerodynamic drag coefficient, vA  is the frontal area of the vehicle body.  
The relationship between electric motor torque mT  and the motor traction force tF  is: 
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where wr  is the wheel radius, g  is the gear ratio of gearbox, and f  is the final drive ratio. 

Electric motor 

The electric motor power in the steady-state condition, mP , is given by: 

 sgn( )mT
m m m mP T   −
=  (4) 

where m  is the motor speed and m  is the motor efficiency. The motor outputs mechanical 
power if 0mT  and generates electric power if 0mT  .  

Battery 

The battery pack is developed by an equivalent circuit model composed of a voltage source ocU  
and a resistance bR  accounting for Joule losses. The battery current can be derived as: 

 
2 4

2
oc oc b b

b
b

U U R P
i

R
− −

=  (5) 

The battery C-rate is defined as: 
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where bQ  is the capacity of battery and init lossbQ Q Q= − . initQ  is the battery initial capacity at the 
manufactory (nominal capacity) and lossQ  is the total capacity loss. 

The battery SOC accounts for the current battery capacity and its dynamic model is given by:  

 b
b

b
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Q

= −  (7) 

The equivalent voltage source has a nonlinear connection with the battery SOC.  
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3. SPEED TRAJECTORY OPTIMIZATION  

3.1. Typical Loading Trajectory 

The commonly used movement trajectory for wheel loaders to carry material from material pile 
to truck is the V-type loading cycle (V-cycle) 5. The V-cycle consists of six operating phases: 
bucket filling, backward 1, forward 1, dumping, backward 2, and forward 2. The speed trajectory 
optimization in this study focuses on the forward/backward phases, where the short moving in 
bucket filling and dumping phases are not part of the research. In addition, the prerequisite of 
optimizing the speed trajectory for a wheel loader is to determine a moving route. In this study, 
the forward/backward routes are taken as known conditions for optimizing the speed trajectory.  

3.2. Battery Aging Model 

For battery lifetime optimization, the first step is to set up an accurate and useful battery aging 
model. In this study, an accurate semi-empirical model from Naumann’s previous works 6, 7 is 
adopted. The battery degradation contains cycle aging capacity loss cycQ  and calendar aging 
capacity loss calQ :  

 loss cyc calQ Q Q= +  (8) 

The expressions of cycQ  and calQ  are:  
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where ck  and _SOC cyck  are the C-rate influence factor and the SOC influence factor for cycle aging 

capacity loss, c ck aI b= +  and 3
_ (0.4 )SOC cyc bk c SOC d= − + . Tk  and _SOC calk  are the 

temperature influence factor and the battery SOC influence factor for calendar aging capacity 
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_ 0.5SOC cal bk e SOC f= − + . FEC  is the full equivalent 

cycle and defined as the ratio of accumulated charge throughput to the current battery capacity, 
refk  and refT  are the reference aging rate and storage temperature, a , b , c , d , e , f , k  and z  are 

model based parameters and their specific values are referred to reference 6, 7.  

3.3. Problem Formulation 

The aim of the optimal control problem formulated and solved in this study is to minimize the 
loss of battery capacity. The primary step is developing a model that accurately measures battery 
deterioration and incorporates it into the cost function. The concept of severity factor, defined by 
Onori 8, is utilized to quantify the relative aging effect with respect to a nominal operating 
condition. The battery lifetime   with respect to a nominal cycle can be characterized by the total 
full equivalent cycle (total FEC) when the battery reaches its end of life, which is expressed as: 
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where ( )nomI t  is the current profile under nominal conditions. EOL  represents the time when the 
battery life reaches its end, and at this time the battery capacity has dropped 20% from its initial 
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value. Since one FEC stands for a complete discharge process and a complete charge process, the 
total FEC is calculated as Ah-throughput divided by two times of battery capacity. 
Then, the relative aging effects of any other loading cycle the battery is subject to can be reflected 
by the severity factor: 
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where ( , , )I SOC   is the battery lifetime with specific operating conditions given in terms of 
current I , temperature T , and SOC . When the battery is undergoing a more severe load cycle, 
the severity factor is greater than one and a shorter life is expected. 
In order to give the effective lifetime depletion due to charge exchange within the battery, an 
effective battery full equivalent cycle (effective FEC) effFEC  is defined as: 
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where ft  is the operational time. Effective FEC gives the effective lifetime depletion with respect 
to the nominal lifetime defined by  . The battery will reach the end of life when ( )effFEC t =  , 
and the objective of minimizing battery aging is equivalent to minimizing ( )effFEC t . Therefore, 
the cost function to be minimized is defined by: 
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The optimal control problem is subjected to the longitudinal dynamics of the wheel loader. The 
state equations in the time-domain give a direct description of the dynamic system, however, it is 
difficult to represent some distance-dependent parameters, e.g., the speed restriction. In this 
study, the problem of optimizing a speed profile is formulated in the distance domain to make it 
robust. The dynamics of the wheel loader in (1) is rewritten as: 
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where 1x  is the travel time of the wheel loader, 2x  is the wheel loader speed. Thus, the battery 
current bi  with respect to the state variables can be expressed by: 

 sgn( )2 ub
b

b b

P x ui
U U

 −= =  (15) 

where batP  is the battery power.   is the overall efficiency and dri m  =  , where dri  is the 
overall efficiency of drivetrain. 
Finally, the optimal control problem takes the following mathematical form, considering the 
boundary conditions and the physical constraints for states and control inputs: 
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where fs  is the distance traveled. ft  and fs  are bounded, meaning that the vehicle stops at time 

ft  after traveling a given distance, fs . maxv  is the maximum speed of the wheel loader. , mintF  
and , maxtF  are the braking and driving force limits of the wheel loader.  

In order to further reduce the computational cost, the optimal control problem (16) is modified 
such that a weighted penalty on travel time is included as follows: 
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where   is a weighting factor to penalize a travel time. Apparently, this formulation can 
effectively eliminate the state variable 1x  from the optimal control problem. The index of each 
state is changed from time to distance. The desired travel time can be achieved by adjusting the 
weighting penalty factor  . 

3.4. Combined DP-BM Method 

Dynamic Programming is a technique that is applied to the very wide field of optimal control in 
multi-stage decision problems. It solves complex problems by breaking them down into simpler 
subproblems 9. The motivation of using dynamic programming mainly relies on its ability in 
finding the global optimal solution. In this study, dynamic programming is implemented with the 
open-source software DynaProg which was developed by Miretti 10.  
As for the optimization problem shown in (17), the desired operating time should be achieved by 
adjusting the weighting factor  , then finding the best solution by DP. The operating time is 
negatively correlated with the weighting factor, where a large   will force the wheel loader to 
run at a relatively high average speed. Take ( )ft g = as the actual final time, and define 

( ) ( ) df g t = − , where dt  is the target operating time. Therefore, the time constraint is 
transferred to find the single root of ( )f  . 

To find the root of a function, a hybrid approach called Brent’s method is applied in the study, 
where it does just that by applying a speedy open method wherever possible, but reverting to a 
reliable bracketing method if necessary, thereby is applied in this study, to achieve time constraint 
in the cost function. Brent’s method combines the bisection method, the secant method and IQI, 
where the bisection method is used for increasing the possibilities of convergence, the secant 
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method is used for faster convergence, and the IQI is applied for solving the parabola-typed 
equation. Combining dynamic programming and Brent’s method (DP-BM), the numerical 
solution of the optimal control problem can be obtained. Details of the algorithm is shown with 
pseudo-code.  
 

Pseudo-code of the DP-BM algorithm. 
1: Given a stopping tolerance 0   
2: Given points a  and b such that ( ) ( ) 0f a f b  , make sure ( ) ( )f a f b  so that b  is regarded as 

the better approximate solution. ( )f a and ( )f b  are calculated by using dynamic programming. 
3: A third point c  is initialized by setting c a= . 
4: A flag is initialized by setting flag = Ture. 
5: Repeat until ( ) 0f b =  or ˆ( ) 0f b =  or ˆb b −   

6:  
If a c=  then b̂  is determined by linear (secant) interpolation: ( ) ( )ˆ

( ) ( )
af b bf ab
f b f a

−
=

−
. 

7:  Otherwise a , b , and c  are distinct, and b̂  is determined using inverse quadratic 
interpolation: 

( ) ( ) ( ) ( ) ( ) ( )ˆ
( ( ) ( ))( ( ) ( )) ( ( ) ( ))( ( ) ( )) ( ( ) ( ))( ( ) ( ))

af b f c bf a f c cf a f bb
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8:  
If (condition 1: b̂  is not between 3

4
a b+  and b ) or 

(condition 2: flag = True and 1ˆ
2

b b b c−  − ) or 

(condition 3: flag = False 1ˆ
2

b b c d−  − ) or 

(condition 4: flag = True and b c −  ) or 

(condition 5: flag = False and c d −  ) then 

ˆ
2

a bb +
=  and set flag = True. (Bisection method). 

9:  Otherwise set flag = False. 
10:  Calculate ˆ( )f b  using dynamic programming. 
11:  d c= , c d= . ( d  is assigned for the first time here; it won't be used above on the first iteration 

because the flag is set as True) 
12:  If ˆ( ) ( ) 0f a f b   then ˆb b= , otherwise ˆa b= . 
13:  If ( ) ( )f a f b  then swap ( , )a b . 
14: end repeat 
15: Output the optimal b̂ = . 

4. SIMULATION STUDIES 

4.1. Simulation Parameters 

In the simulation, a typical medium wheel loader with an operating weight of 19000 kg is adopted 
and basic parameters including the drivetrain, the electric motor, the battery, and the working 
hydraulic system are shown in Table 1. The efficiency map of the electric motors is obtained 
from Advisor 2002. The working hydraulic pump efficiency map comes from Eaton and can be 
found in previous work 11. Efficiencies of the other parts of the drivetrain, such as the inverter, 
gearbox, and final drive, are assumed to be constant. 
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Table 1: Basic parameters of the wheel loader 

Property Symbol Value  Unit 
Operating weight  m  19000 kg 
Radius of tire  wr  0.789 m 
Tire rolling friction coefficient    0.06 - 
Drag coefficient dC  0.24 - 
Front area  vA  10 m2 
Gearbox ratio/Final drive ratio g / f  11.6/5.1 - 
Drivetrain efficiency dri  0.95 - 
Electric motor maximum power  _ maxmP  157 kW 
Nominal battery capacity  ocU  618 V 
Battery pack initial resistance  0R  1.9 mΩ 
Battery pack initial capacity initQ  456 Ah 

The calculation environment is MATLAB R2021b with an Intel Core i7-8750H at 2.2GHz and 
16GB of RAM. It should be noted that the accuracy of the global optimal solution of dynamic 
programming depends on the grid number. In the simulation, the distance interval of two adjacent 
stages is set as 0.01m. The grid number of the state variable is 4000 and the grid number of the 
control variable is 1000.  
In addition, typical speed trajectories are extracted and summarized from the real trajectories of 
skilled drivers and used for comparison as baselines. The typical trajectory is constructed by three 
phases: acceleration, constant velocity, and deceleration. In the acceleration phase, the wheel 
loader starts at constant torque, then accelerates at rated power. After reaching its maximum speed 
at low gear, the wheel loader will operate with constant velocity and finally decelerates with a 
constant negative acceleration.  

4.2. Simulation Results under One Typical Distance and Average Speed  

The typical and optimized speed trajectories as well as corresponding characteristics with respect to 
time are shown in Figure 2. At the first half of the trajectory, the optimal trajectory uses tapered 
torque to accelerate the wheel loader. Since the change of torque at low speed has little effect on the 
motor efficiency (Figure 2 (d)), higher torque can improve vehicle speed with the same energy 
consumption. After the wheel loader reaches a high speed, the typical trajectory will keep at this speed 
and then slow down with energy recovery braking, while the optimal trajectory still operates at high 
motor efficiency region first, then coasts in the deceleration process and finally adopts the braking 
action. The braking process of the typical trajectory is much longer than that in the optimized 
trajectory, which makes the motor operate at a low-efficiency region thus aggravating the battery 
burden. In addition, coasting is adopted for the optimized trajectory in the deceleration process and 
this will temporarily reduce battery usage and significantly decrease the accumulated FEC.  

As is depicted in Figure 2 (c) and (f), after driving one complete distance, the optimized trajectory 
can reduce average power and accumulated FEC with 19.9% and 23.8%, respectively. In addition, 
the energy consumption of the optimized trajectory also shows a slight decrease, which is shown in 
Figure 2 (e). This may benefit from the transfer of the electric motor operating points, where the 
inefficient energy recovery during long braking of the typical trajectory is replaced by coasting and 
efficient short-time braking. 
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(a)                                                       (b)                                                     (c)     

          
 (d)                                                             (e)                                                       (f) 

Figure 2: The typical and optimized speed trajectory with respect to time (a) Speed (b) Torque (c) Power 
(d) Electric motor operating points (e) Energy (f) Battery usage equivalent cycle 

Based on the typical and optimized trajectories, a one-day working cycle is designed, which includes 
double 3-h repeated working cycles, double 3-h charging time (around 0.33C), and 12-h rest time. 
The accumulated FEC result is depicted in Figure 3. It can be found that over the 12-h 
charging/discharging process, the FEC is greatly down from 1.36 to 1.25 times, which reduces the 
usage time of the battery with a drop of 8.09%. The decline is smaller than that in one single 
movement shown in Figure 2 (f). This is because the FEC is not only influenced by the discharge 
process but also charge process. And the optimization object in the discharge process does not include 
the working system. In a one-day cycle, as can be seen in Figure 4, the propulsion system takes 51.75% 
of discharge energy and only 25.85% of total energy. In other words, the accumulated FEC of the 
battery can be reduced by 8.1% in a full day’s cycle just from speed trajectory optimization, without 

changing the wheel loader hardware configuration.  

 
Figure 3: Accumulated FEC in one-day work under the typical and optimized trajectories 

 
Figure 4: The FEC proportion of propulsion system in one-day cycle 
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Figure 5: Cycle and calendar aging capacity losses under the typical and optimized trajectories 

Based on the typical and optimized trajectories, a 9-year working period with 365 continuous working 
days in one year is applied in the virtual experiments and simulation results are depicted in Figure 5. 
The total battery capacity loss is decreased by 2.40% after 9 years of continuous operations with the 
optimized trajectory. The two calendar aging curves are very close since the given temperatures as 
well as the time periods are the same, and the battery SOCs are also very close for the two simulations. 
Taking the battery capacity decreases to 80% of the initial capacity as its end of life, the battery pack 
can be used for only 2529 days under the typical trajectory while 2635 days under the optimized 
trajectory, meaning that the battery lifetime can be extended by 4.19%.  

4.3. Simulation Results under Different Distances and Average Speeds  

The speed trajectories and the corresponding variations in battery power for various average 
speeds are shown in Figure 6. As the average speed decreases, the peak power gradually 
decreases and the power curves are getting smooth. The recovery power also decreases with the 
average speed decreases. In addition, all the speed trajectories contain 4 parts: speed up, cruising, 
coasting and deceleration, meaning that such a speed trajectory composition can minimize the 
battery usage frequency and average discharge current. Furthermore, the power curve shows 
fluctuation for the trajectories with low average speed. This is due to the coarse grid of state 
variables in dynamic programming and can be smoother by increasing the grid density.   

     
(a)                                                       (b)                                                      (c) 

     
(d)                                                       (e)                                                      (f) 

Figure 6: Cycle and calendar aging capacity losses under the typical and optimized trajectories 
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Numerous simulations utilizing different distances and average speeds are performed and results 
show that the optimized trajectories reduce accumulated FEC and average power in all tested 
cases, with average savings of 20.90% and 19.24%. Following prolonged continuous operation, 
the battery can be utilized for an average of 2632 days when using the optimized trajectory, 
resulting in a 4.48% extension of the battery’s lifetime.  

The accumulated FEC and average power of the optimal trajectory at different 
average speeds are shown in (a)                                                                                (b)      

Figure 7 (a) and (b), respectively. As average speed increases, the wheel loader must speed up 
and down in a short time, thus both the accumulated FEC and average power show an increasing 
trend, therefore burdening the battery degradation. On the other hand, under the same speed, the 
accumulated FEC shows positively correlated with the distance. This is because a long distance 
consumes more energy, thus increasing the accumulated FEC. The average speed shows small 
differences for wheel loaders with the same driving distance and average speed, due to the similar 
work intensity and tasks.  

            
(a)                                                                                (b)      

Figure 7: Accumulated FEC and average power of the optimal trajectory at different average speeds 

4.4. Comparison of Computational Time 

When dealing with trajectory optimization tasks, the classical optimal control problem usually 
takes travel time and speed as two state variables and distance sequence as the index. The problem 
can be solved by conventional dynamic programming while needing an unacceptable amount of 
time. The DP-BM algorithm is designed to give a rapid numerical solution to the upgraded 
problem with achieving the time constraints.  

 
Figure 8: Comparison of computational time with direct dynamic programming 

Figure 8 illustrates the computational time comparison between the conventional dynamic 
programming method and the proposed DP-BM approach for the identical trajectory optimization 
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problem. The proposed approach demonstrates a significantly reduced computation time 
compared to conventional dynamic programming, with an average reduction of 95%. It should 
be noted that the calculation accuracy and calculation time of dynamic programming are 
contradictory. To further reduce computation time and simultaneously guarantee the accuracy of 
optimal trajectory, the speed trajectories under different driving distances and average speeds can 
be calculated offline and save the results in memory. The wheel loader planning system can 
directly look up the trajectory in the database based on the perceived distance and elapsed time.  

5. CONCLUSIONS 

This paper presents an optimization of the speed trajectory for an electric wheel loader, with the aim 
of extending battery lifetime. The optimization problem is formulated based on the modelling of 
wheel loader's powertrain and battery degradation. To reduce computational costs, a weighted penalty 
on travel time is included in the optimal control problem. An optimization algorithm, DP-BM, is 
developed to calculate the global optimal speed trajectory with a reduced computational burden.  

A set of typical distances and average speeds is selected to provide a detailed characteristic 
description of the optimized trajectory. Numerous simulation experiments are conducted to provide 
an intuitive description of the optimized trajectories. Comparative results demonstrate that with the 
optimized trajectories, the average battery lifetime can be extended by 4.48% after 9 years of 
continuous operations. Moreover, the proposed approach significantly reduces computation time by 
an average of 95% compared to conventional dynamic programming.  

In the future, the effectiveness of the DP-BM algorithm in extending battery lifetime will be verified 
through experiments, and to enhance the algorithm’s robustness. For the existing wheel loader 
equipped with visual perception, the algorithm will be integrated into the vehicle controller, and 
display the optimal speed trajectory of the vehicle through the dashboard or on-board screen to guide 
the driver in manoeuvring the vehicle properly. For future autonomous wheel loaders, it will be 
possible to directly track the speed trajectory output by this algorithm, achieving the maximum 
extension of battery lifetime. 
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