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ABSTRACT 

Hydraulic hybrid powertrain is widely investigated for its high power density of hydraulic power 

system. In designing a hybrid vehicle, finding the combined optimality of component sizing and 

energy management is essential for minimizing vehicle costs and maximizing energy efficiency. 

Simultaneous optimization framework is an effective and important method due to its computational 

efficiency and resolution. In this paper a convex programming-based system parameter optimization 

framework is proposed for hydraulic hybrid vehicle. This technique allows simultaneous optimization 

of component sizing and energy management by converting it into a convex problem. To illustrate 

this, the system optimization problem in a parallel electric hydraulic hybrid wheel loader is posed 

over a fixed loading cycle. The Pareto front of PEHH system parameter optimization problem is 

obtained. The HM size is the main factor of system performance trade-off between battery aging and 

energy consumption. PEHH can reduce the battery capacity loss in a loading cycle by 26.4% 

compared to the pure electric drive with a 13.0% increase of energy consumption. With the same grid 

number of 7, the CP-based simultaneous method consumes 99% less computing time than DP-based 

bi-level method and provides the optimal solution with 1.5% less battery capacity loss. 

Keywords: System parameter optimization, wheel loader, electric hydraulic hybrid system, convex 

programming 

1. INTRODUCTION 

The electrification of mobile machines is becoming a well-established trend. The electric construction 

equipment market is expected to grow to $19.9 billion in 2027 at a compound annual growth rate of 

more than 21% according to The Business Research Company. In 2023, China's sales of electric 

loaders reached 3595 units, accounting for 3.5% of the total sales of wheel loaders.  

Parallel electric hydraulic hybrid powertrain (PEHH) is a promising substitute for pure electric drive 

and has been widely investigated [1]. The electric hydraulic hybrid powertrain provides hydraulic 

launching and braking to release battery current stress. For on-road vehicles like city bus, the energy 

saving of PEHH can reach up to 50% in the best scenario [2]. PEHH has also been applied on mobile 

machines such as wheel loaders [3], excavators [4] and forklifts [5], improving their energy efficiency 

and battery lifetime. 

System parameter optimization has been an important topic in the field of hybrid vehicle [6]. Unlike 

the non-hybrid vehicles, system parameter optimization of hybrid powertrain should include the 

optimization of energy management strategy (EMS). There are four methods for the combined plant 

and controller optimization problem and global optimum can only be guaranteed with bi-level and 
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simultaneous strategies.  

In the bi-level optimization method, the possible component sizes are enumerated in the outer loop, 

and the optimal energy management is assessed in the inner loop [7]. By comparison, simultaneous 

method is an effective and important method due to its computational efficiency and resolution. A 

simultaneous optimization method is using an adjustable rule-based strategy and optimize the strategy 

design parameters and system parameters simultaneously [8]. However, for complex problems, the 

rule-based strategy is not close enough to the global optimum. 

Another simultaneous optimization method is the convex programming. By modelling the combined 

plant and controller optimization problem as a convex programming problem, the optimal control 

variable sequence and the optimal system parameters are obtained simultaneously with a convex 

optimization solver [9]. This method is adopted extensively in electric hybrid systems, but has not 

been performed on hydraulic hybrid systems [10] 

In this paper, a system parameter optimization method based on convex programming is proposed for 

PEHH mobile machines. The design problem of a PEHH wheel loader is used to demonstrate the 

optimization method. The rest of this paper is organized as follows. Section 2 introduces the PEHH 

wheel loader. Section 3 illustrates the optimization problem formulation. Section 4 introduces the 

framework of the proposed optimization method. Section 5 shows the results of the optimization 

study. The last section is the conclusion and outlook. 

2. PARALLEL ELECTRIC HYDRAULIC HYBRID WHEEL LOADER 

The PEHH wheel loader schematic is shown in Figure 1. The working and other functions are not 

considered here for simplicity. In the electric wheel loader, these functions are electrically decoupled 

from drivetrain and are not of the interest of this study. The main energy source is a battery pack, 

powering the electric motor through an inverter. High-pressure and low-pressure hydraulic 

accumulators and a variable hydraulic motor are added to provide hydraulic auxiliary power. The 

electric motor (EM) and hydraulic motor (HM) are mechanically coupled via gears. 

 

Figure 1: PEHH wheel loader schematic 

Generally, the system parameters to be optimized in PEHH wheel loader includes: gear ratio, EM 

size, hydraulic motor geometric displacement, accumulator size and pre-charge pressure. The 

transmission ratio is not changed to make use of the original drive train. The main wheel loader 

parameters are shown in Table 1. 
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Table 1: Parameters of the wheel loader  

Wheel loader parameter Value Unit 

Operating weight 19000 kg 

Load weight 5500 kg 

Maximum speed 40 km/h 

3. PROBLEM FORMULATION 

In this section, the problem formulation and modelling details are introduced. The PEHH is expected 

to provide the same driving performance as the pure electric drive with smaller EM, less energy 

consumption and longer battery lifetime. The problem constitutes an objective function and constrains. 

The variables to be optimized are the state vector and the sizing factor for components. The control 

input variable 𝑢 includes the control inputs of length 𝑁. These variables are explained in more detail 

at the end of this section. 

3.1. Driving cycle 

In the optimization problem, a given driving pattern is required to find the optimal component sizes 

and the energy management variables. The V loading cycle is a typical driving cycle for wheel loaders 

that can reflect real-life driving. In this study, the EM propel torque 𝑇𝑙𝑜𝑎𝑑(𝑘) and speed 𝜔𝐸𝑀 of an 

electric wheel loader during a V loading cycle are used as the input of the optimization problem. The 

driving cycle is divided into 𝑁 discrete instants with a time difference of 𝛥𝑇. 

3.2. Modelling 

In this section the models of the powertrain and its components are presented. Since the models are 

used for convex programming, they all guarantee convexity. Quasi-static models are therefore 

approximated with nonlinear convex functions and some variable change is also used.  

Powertrain 

The EM and HM are mechanically linked to the drive train in the studied PEHH and can propel the 

wheels. Having the required EM speed 𝜔𝐸𝑀(𝑘) and propel torque 𝑇𝑙𝑜𝑎𝑑(𝑘), the powertrain model is 

described by torque balance equations, given as 

𝑇𝐸𝑀(𝑘)𝜔𝐸𝑀(𝑘) + 𝑇𝐻𝑀(𝑘)𝜔𝐻𝑀(𝑘) = 𝑇𝑙𝑜𝑎𝑑(𝑘)𝜔𝐸𝑀(𝑘)  (1) 

where 𝑇𝑝(𝑘) and 𝜔𝐸𝑀(𝑘) is given by loading cycle data, 𝑇𝐸𝑀(k) is EM torque, 𝑇𝐻𝑀(𝑘) is HM torque 

and 𝜔𝐻𝑀(𝑘) is HM speed calculated as 𝜔𝐻𝑀 = 𝑖𝐺𝜔𝐸𝑀, where 𝑖𝐺 is gear ratio.  

Battery 

The battery capacity is determined by required operation time and is not optimized in this study. It’s 

modelled as an open circuit voltage 𝑉𝑜𝑐 in series with a constant internal resistance 𝑅. The open circuit 

voltage is approximated to be constant in the allowed state of charge operating region. The terminal 

power, 𝑃𝑏𝑎𝑡, and the battery current, 𝐼𝑏𝑎𝑡, are calculated as 

𝑃𝑏𝑎𝑡(𝑘) = 𝐼𝑏𝑎𝑡(𝑘)𝑉𝑂𝐶(𝑘) − 𝐼𝑏𝑎𝑡
2 (𝑘)𝑅 (2) 

The battery current 𝐼𝑏𝑎𝑡 is chosen to be positive when charging. The electric energy consumption of 

battery 𝐸𝑐𝑜𝑛𝑠 is calculated by integrating battery power. 

The battery cycle aging capacity loss model is adopted from [11]. It is related to the battery full 
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equivalent cycle 𝐹𝐸𝐶, the battery state of charge 𝑆𝑂𝐶 and the battery current 𝐼𝑏𝑎𝑡. During a loading 

cycle, 𝐹𝐸𝐶 and 𝑆𝑂𝐶 are approximated to be constant. The battery cycle aging capacity loss 𝑄𝑎𝑔 in 

percentage is given by 

𝑄𝑎𝑔 =∑𝛥𝐹𝐸𝐶(𝑘) (𝑎(
|𝐼𝑏𝑎𝑡(𝑘)|

𝑄𝑏
) + 𝑏) (𝑐(0.4 − 𝑆𝑂𝐶)3 + 𝑑)

𝐹𝐸𝐶−0.5

2
 

𝑁

𝑘=1

 

𝛥𝐹𝐸𝐶(𝑘) =
1

3600

1

2𝑄𝑏

𝐼𝑏𝑎𝑡(𝑘 − 1) + 𝐼𝑏𝑎𝑡(𝑘)

2
𝛥𝑇 

(3) 

where 𝑄𝑏 is the battery capacity in Ah, 𝑎, 𝑏, 𝑐, 𝑑 is constant model coefficients. 

EM 

The EM model with the inverter is described by a power loss map, 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠,𝑏𝑎𝑠𝑒, where the losses are 

measured at steady-state for different torque-speed combinations. The power losses for each EM 

speed are approximated by a second-order polynomial in torque. To vary the size of the EM, the 

torque limits and losses are scaled linearly by scaling factor 𝑠𝐸𝑀. In this way the losses of the scaled 

EM are calculated at each time instant as 

𝑃𝐸𝑀,𝑙𝑜𝑠𝑠(𝑘) = 𝑐1(𝑘)
𝑇𝐸𝑀
2 (𝑘)

𝑠𝐸𝑀
+ 𝑐2(𝑘)|𝑇𝐸𝑀(𝑘)| + 𝑐3(𝑘)𝑠𝐸𝑀  (4) 

where the coefficients 𝑐1 ≥ 0 , 𝑐2  and 𝑐3  are functions of 𝜔𝐸𝑀(𝑘) and are calculated using least 

squares method for a number of grid points of 𝜔𝐸𝑀. For speed values not belonging to the grid nodes, 

the coefficients are obtained by linear interpolation. The accuracy of the approximation are high and 

are discussed in detail in [9]. The maximum EM torque at each time instant 𝑇𝑚𝑎𝑥(𝑘) is obtained by 

interpolation and considered as constrains to EM torque 𝑇𝑒. 

The electric power load of EM, 𝑃𝐸𝑀, is given by 

𝑃𝐸𝑀(𝑘) = 𝜔𝐸𝑀(𝑘)𝑇𝐸𝑀(𝑘) + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠(𝑘) (5) 

The electric power load of hydraulic working functions 𝑃𝐻𝑊 is not considered here and can be easily 

included in the problem by considering 𝑃𝑏𝑎𝑡(𝑘) = 𝑃𝐸𝑀(𝑘) + 𝑃𝐻𝑊(𝑘).  

HM 

The HM torque, 𝑇𝐻𝑀 , and the HM flow rate 𝑄𝐻𝑀  are functions of geometric displacement 𝐷 , 

displacement fraction 𝑥𝐻𝑀 , pressure differential 𝑝𝐻𝑀  and angular speed 𝜔𝐻𝑀  of HM. A modified 

version of Wilson’s model [12] for variable-displacement pump-motor is used here. 

To preserve the problem convexity1, the variable change 𝑇𝑥𝑝𝐷(𝑘) = 𝑥𝐻𝑀(𝑘)𝑝𝐻𝑀(𝑘)𝐷 and 𝑇𝑝𝐷(𝑘) =

𝑝𝐻𝑀(𝑘)𝐷 are introduced. The equations (6) and (7) are rewritten as 

𝑇𝐻𝑀(𝑘) = 𝑇𝑥𝑝𝐷(𝑘) + 𝐾𝜔𝜔𝐻𝑀(𝑘)𝐷 + 𝐾𝑝𝑇𝑝𝐷(𝑘) + 𝑇0𝐷  (6) 

𝑃𝐻𝑀,𝐻𝑦𝑑𝑟(𝑘) = 𝑝𝐻𝑀(𝑘)𝑄𝐻𝑀(𝑘) = 𝑇𝑥𝑝𝐷(𝑘)𝜔𝐻𝑀(𝑘) − 𝑘𝑠(𝑘)
𝑇𝑝𝐷
2 (𝑘)

𝐷
− 𝑞0𝑇𝑝𝐷(𝑘)  (7) 

where 𝑃𝐻𝑀,𝐻𝑦𝑑𝑟  is the hydraulic power of HM, 𝑘𝑠  is calculated by 𝑘𝑠 = 𝑎 + 𝑏𝜔𝐻𝑀 + 𝑐𝜔𝐻𝑀
2 , The 

coefficients 𝑎, 𝑏, 𝑐, 𝐾𝑤, 𝐾𝑝, 𝑇0, 𝑞0 are calculated using least squares method with a number of grid 

points of 𝜔𝐻𝑀 , 𝑝𝐻𝑀  and 𝑥𝐻𝑀 . The accuracy of the approximation is discussed in the simulation 

section. The HM displacement  𝑥𝐻𝑀 is chosen to be positive when motoring. 

It is worth noting that even when HM has no power output, there are still losses due to leakage and 

                                                
1 𝑓(𝑥, 𝑦) = 𝑥 ∗ 𝑦 is neither convex or concave. 
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friction. For example, the volumetric efficiency of HM is negative if the pump leakage is greater than 

the theoretical pumping flow rate.  

Hydraulic accumulator 

The low-pressure hydraulic accumulator pressure is constant, equal to atmospheric pressure. For the 

high-pressure accumulator, the accumulator pressure  𝑝𝐻𝐴 is approximated as an affine function to 

simplify the problem and preserve problem convexity, given by: 

𝑝𝐻𝐴(𝑘) = 𝑘𝐻𝐴𝐸𝐻𝐴(𝑘) + 𝑝0 (8) 

𝑇𝑝𝐷(𝑘) = 𝑝𝐻𝑀(𝑘)𝐷 = 𝐾𝐻𝐴𝐸𝐻𝐴(𝑘) + 𝐵  (9) 

The coefficient 𝑘𝐻𝐴, 𝐾𝐻𝐴 = 𝑘𝐻𝐴𝐷 and 𝐵 = 𝑝0𝐷 are related to the accumulator parameter 𝑝0 and 𝑉0 

and used as a sizing factor. The accuracy of the approximation is discussed in the simulation section. 

The energy stored in the high-pressure accumulator 𝐸𝐻𝐴 are given by 

𝐸𝐻𝐴(𝑘) = 𝐸𝐻𝐴(𝑘 − 1) +
𝑃𝐻𝐴,𝐻𝑦𝑑𝑟(𝑘 − 1) + 𝑃𝐻𝐴,𝐻𝑦𝑑𝑟(𝑘)

2
𝛥𝑇 (10) 

For charge sustaining of hydraulic accumulator, the initial 𝐸𝐻𝐴 is required to be no higher than the 

final 𝐸𝐻𝐴.  

4. OPTIMIZATION FRAMEWORK 

The framework schematic of the proposed optimization method is shown in Figure 2. With some 

approximation and variable change, some component sizing factors can be integrated in the convex 

problem including HM geometric displacement 𝐷 , EM scaling factor sEM  and accumulator pre-

charge pressure 𝑝0 . Other sizing factors such as gear ratio 𝑖𝑔  and accumulator volume 𝑉0 , are 

optimized in the outer loop. 

 

Figure 2: Framework schematic of the proposed optimization method 

4.1. Objective function 

The objective of the optimization contains two indexes, energy consumption and battery aging. Pareto 

front stands for a set of solutions where one of the objectives cannot be improved without sacrificing 

another one. In this paper, the Pareto optimal solutions are obtained by minimizing battery capacity 

loss under different maximum energy consumption constrains. 

Loop 1: Objective

Loop 2: Sizing factors

Convex problem

• Energy consumption      
• Battery aging    

• Gear ratio   

• Accumulator sizing factor    

• HM full displacement  

• EM scaling factor    
• Accumulator pre-charge pressure  

• Control inputs      ,   ( )

• State variables     ,   ,     ,     ,    ,   ( )
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4.2. Sizing factors 

Some sizing factors are hard to be integrated in the convex programming problem. To address this, 

an outer loop is added to enumerate the possible solution of these factors. In this study, the sizing 

factor loop include two index, Gear ratio 𝑖𝐺  and Accumulator sizing factor 𝐾𝐻𝐴. A number of 2-

dimension vectors are generated and enumerated. The convex programming problem is solved for 

each sizing factor. 

4.3. Convex optimization 

Combing eq. (1)-(10). Most of the equations preserve the problem convexity since they include only 

affine functions, except (2), (3), (4) and (7). The original equalities are relaxed to inequations (10a) -

(10d) to preserve the problem convexity. Because these inequities include convex non-linear term, 

including absolute value function and quadratic-over-linear function. The optimal solution will satisfy 

(10a) -(10d) with equality as it is optimal for energy consumption and capacity loss. When the 

equality of these inequality does not hold, there are some extra energy loss or battery capacity loss in 

the system [9]. Therefore, it will be optimal for the non-relaxed problem as well. The convex 

programming problem is formulated as follow, the variables to be optimized are in bold font: 

𝑚𝑖𝑛    

 𝒖 𝒋  𝒕 𝒕 : 
𝑇𝑙𝑜𝑎𝑑(𝑘)𝜔𝐸𝑀(𝑘) =    (𝑘)𝜔𝐸𝑀(𝑘) +    (𝑘)𝜔𝐻𝑀(𝑘) 

   (𝑘) =     (𝑘) + 𝐾𝜔𝜔𝐻𝑀(𝑘) + 𝐾𝑝   (𝑘) + 𝑇0  

   ,    (𝑘) ≥     (𝑘)𝜔𝐻𝑀(𝑘) − 𝑘𝑠(𝑘)
𝑇𝑝𝐷
2 (𝑘)

𝐷
− 𝑞0𝑇𝑝𝐷(𝑘)                                               (a) 

   (𝑘) =    (𝑘 − 1) +
   ,    (𝑘 − 1) +    ,    (𝑘)

2
Δ𝑇 

   (𝑘) = 𝐾𝐻𝐴   (𝑘) + 𝐵 

   (𝑘) ≥ 𝑐1(𝑘)
   
𝟐 (𝑘)

   
+ 𝑐2(𝑘)|   (𝑘)| + 𝑐3(𝑘)   +𝜔𝐸𝑀(𝑘)   (𝑘)                (b) 

   (𝑘) ≤    𝒕(𝑘)𝑉𝑂𝐶(𝑘) −    𝒕
𝟐 (𝑘)𝑅                                                                                  (c) 

     = ∑   𝒕(𝑘)𝑉𝑂𝐶(𝑘)Δ𝑇

𝑁

𝑘=1

 

   ≥ ∑𝜟𝑭 𝑪(𝑘) (𝑎 (
|   𝒕(𝑘)|

𝑄𝑏
) + 𝑏) (𝑐(0.4 − 𝑆𝑂𝐶)3 + 𝑑)

𝐹𝐸𝐶−0.5

2

𝑁

𝑘=1

          (d) 

𝜟𝑭 𝑪(𝑘) =
1

3600

1

2𝑄𝑏

   𝒕(𝑘 − 1) +    𝒕(𝑘)

2
𝛥𝑇 

     (𝑘) ≤ 𝐸𝑚𝑎𝑥 

|  (𝑘)| ≤ 𝑇𝑚𝑎𝑥(𝑘)    
   ∈ [0, 𝑠𝐸𝑀,𝑚𝑎𝑥] 

   (𝑘) ∈ [𝑝0𝐷, 𝑝𝑚𝑎𝑥𝐷] 

 ∈ [𝐷𝑚𝑖𝑛 , 𝐷𝑚𝑎𝑥] 

(11) 

5. OPTIMIZATION STUDY 

In this section, the accuracy of model approximation is first discussed. The Pareto front is then 

obtained with given optimization framework. The influence of component sizing factors on 

powertrain performance and the optimal energy management under different optimization objective 

are also analysed. Comparison between the computing time of the proposed convex optimization 

method and the bi-level method is carried out to check its computational efficiency. 
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5.1. Driving cycle and model parameters 

The loading cycle used in the study is obtained via field test as shown in Figure 3. The loading time 

is 30.7 seconds long and the maximum vehicle speed is about 12 km/h. The EM propel torque is 

provided by EM and HM in the PEHH powertrain. 

 

Figure 3: EM speed and propel torque during a loading cycle  

The HM efficiency data includes mechanical and volumetric efficiency. The hydraulic pump/motor 

model coefficients are obtained by fitting the efficiency test data of a variable-displacement pump. 

The efficiency map obtained after model fitting and the original efficiency map are shown in Figure 

4. The efficiency test data is measured with displacement fraction of 𝑥 = −1,−0.8, −0.6, −0.4, −0.2, 

and only the data of 𝑥 = −1 𝑎𝑛𝑑 𝑥 = −0.2 is shown here due to page limit. As shown, the fitted 

efficiency map is a set of ellipse curve and is close to the original test data. 

  

Figure 4: Original and fitted HM mechanical, volumetric and total efficiency map. (a) 𝑥 = −1. (b) 𝑥 = −0.2 

The HM efficiency in pumping and motoring mode is shown in Figure 5. The maximum efficiency 

of HM is about 90%.  
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Figure 5: Fitted HM efficiency map with different displacement fraction. (a) pump mode. (b) motor mode 

Under the hydraulic accumulator isothermal model, the curve of gas pressure versus volume is an 

inverse proportional function curve. Within a limited pressure range, the inverse proportional function 

curve can be approximated with an affine function. The error of pressure of model approximation can 

affect the maximum torque and power loss of HM, but the error is smaller than 1.0 MPa and its impact 

on system performance can be ignored. 

 

Figure 6: Hydraulic accumulator isothermal model and approximation 

The EM and HM model coefficients are obtained by fitting actual machine test data. The EM used in 

this study is an 80-kW permanent magnet synchronous motor with a maximum speed of 3300 rpm. 

The efficiency and power loss map obtained after model fitting are shown in Figure 7. 

 
Figure 7: EM efficiency map and loss map. 
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5.2. System parameter optimization results 

The Pareto front and Pareto optimal points for the PEHH parameter design solutions is shown in 

Figure 8. In the 𝐸𝑐𝑜𝑛𝑠 − 𝑄𝑎𝑔 space, each point corresponds to one system parameter solution. The 

left boundary in the dashed line of all possible points is the Pareto front consist of different Pareto 

optimal points with different HM displacement. Among six selected designs, solution with largest 

displacement 𝐷 = 149 𝑐𝑚3/𝑟𝑒𝑣  has the lowest battery capacity loss and highest energy 

consumption, 1.93 × 10−6 % and 1721.3 kJ, respectively. Solution with lowest HM displacement 

𝐷 = 20 𝑐𝑚3/𝑟𝑒𝑣  has the highest battery capacity loss and lowest energy consumption, 

2.52 × 10−6 % and 1549.2 kJ, respectively.  

Compared to the electric drive solution (2.62 × 10−6 % and 1522.9 kJ), the energy consumption of 

PEHH is always higher while the battery capacity loss can be reduced by 26.4%. The reason is that 

HM leads to more leakage and friction loss but the battery charging and discharging is reduced with 

hydraulic power assist. Solution #3 provides a relatively good trade-off between battery aging and 

energy consumption, reducing the battery capacity loss by 17% with only 5% more energy 

consumption. More precise trade-off requires weighted calculation of capacity losses and energy 

consumption targets, considering battery price and electricity price. 

 
Figure 8: Pareto front and Pareto optimal points for the system design solutions. (a) Solution distribution. (b) 

System performances of Pareto front 

The component energy losses and component sizing factors of Pareto optimal solutions with different 

energy consumption is shown in Table 2. The EM energy loss is reduced while the HM loss increases 

in PEHH. Firstly, when the weight of battery aging in the objective increases, the optimal HM 

geometric displacement increases accordingly and the EM size decreases. Therefore, the hydraulic 

hybrid ratio is the main factor of system performance trade-off. 

Table 2: Performances and system parameters of the Pareto optimal solutions 

Solution 
Energy 

consumption 
(kJ) 

Battery 
capacity 
loss (%) 

HM 
displacement 

(cm3/rev) 

EM 
maximum 

torque (Nm) 

Accumulator 
volume (L) 

Gear 
ratio 

Pre-charge 
pressure 
(MPa) 

Initial 
pressure 
(MPa) 

#1 1721.3 1.93×106 149 1554 19.9 0.9 13.5 32 

#2 1699.6 1.95×106 141 1558 20.9 0.9 13.5 32 

#3 1649.5 2.03×106 108 1656 16.0 0.9 13.5 32 

#4 1599.4 2.18×106 79 1735 10.6 0.8 13.5 32 

#5 1549.2 2.42×106 26 1827 4.4 0.9 13.5 32 

#6 1545.1 2.52×106 20 1848 6.4 0.7 13.5 27 

Electric 
Drive 

1522.9 2.62×106 N/A 1900 N/A N/A N/A N/A 
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The total optimization time of the proposed method varies with the number of sizing factors. As 

shown in Figure 9, for the typical bi-level optimization method based on dynamic programming (DP), 

the sizing factors are enumerated with six loops. With a grid number of 𝑁, the DP problem needs to 

be solved for 𝑁6 times. While the convex programming problem is solved for 𝑁2 times with two 

loops. This provides smaller computational burden and high discrete resolution.  

 
Figure 9: Comparison between the proposed simultaneous and DP-based bi-level optimization methods. 

The DP-based bi-level method and CP-based simultaneous method were implemented and were run 

on a computer equipped with an i5-6500 CPU. Both the CP-based and DP-based methods adopts 

Latin hypercube sampling for the system parameter selection loop. For CP problem (11), we used 

CVX, a package for specifying and solving convex programs [13, 14]. For DP problem, a standard 

DP solver, DynaProg, is used to solve the optimal energy management problem [15].  

The mean computing time is 3.5 seconds for each convex programming problem and 0.14 second for 

each DP problem. Considering the enumeration number, when 𝑁 ≥ 3, the convex programming 

method shows computational superiority. As shown in Figure 10, The computing time of DP-based 

bi-level method increases much faster than CP-based simultaneous method. With the same grid 

number of 7, the CP-based simultaneous method consumes 99% less computing time than DP-based 

bi-level method and provides the optimal solution with 1.5% less battery capacity loss (1.93×106% 

and 1.96×106%). 

 
Figure 10: Comparison between CP-based simultaneous method and DP-based bi-level method 

 (a) Pareto optimal solutions (b) Computing time. 

Bi-level method 
based on DP

2 loops

𝐸 = 𝑂(𝑁2)

6 loops

𝐸 = 𝑂(𝑁6)

𝐸: Number of Enumeration

𝑁: Discrete resolution

CP: Convex programming

DP: Dynamic programming

Simultaneous method 
based on CP
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6. CONCLUSION AND OUTLOOK 

In this paper a system parameter optimization framework based on convex programming is proposed. 

It is applied on a parallel electric hydraulic hybrid wheel loader for the simultaneous optimization of 

its component sizing and energy management.  

(1) PEHH extends battery life at the cost of energy consumption. The Pareto front of PEHH system 

parameter optimization problem is obtained. The HM size is the main factor of system 

performance trade-off between battery aging and energy consumption. 

(2) PEHH can reduce the battery capacity loss in a loading cycle by 26.4% compared to the pure 

electric drive with a 13.0% increase of energy consumption.  

(3) The convex programming method have superiority in terms of computational burden and digital 

resolution over the bi-level method. With the same grid number of 7, the CP-based simultaneous 

method consumes 99% less computing time than DP-based bi-level method and provides the 

optimal solution with 1.5% less battery capacity loss.  

In the future, several aspects need to be studied. First, more application of this method can be studied 

such as series hydraulic hybrid powertrain and diesel-hydraulic hybrid powertrain. Secondly, an 

attractive topic is to incorporate the optimal vehicle speed and life cycle cost into the optimization 

framework, which will generate more valuable insights. 
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