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ABSTRACT 

The frictional behavior of pneumatic seals determines functionality in various fluid power switching 

applications. Understanding the complex relationship between friction and component properties is 

challenging. Experimental descriptions are often infeasible due to time and cost constraints. 

Therefore, an elastohydrodynamic lubrication (EHL) simulation model, the ifas-DDS, was 

implemented to calculate the friction in translational pneumatic seals [1]. While the EHL simulation 

provides an accurate solution to the underlying partial differential equations, it is computationally 

expensive. An approach to obtain an accelerated solution is the use of neural networks (NN). 

However, their main disadvantage is that they do not necessarily embed the physical mechanism 

underlying a particular dataset. In recent years, a new form of NN has emerged, the  

physics-informed neural network (PINN), which is imposed with physical laws, increasing the 

algorithm’s accuracy. This approach offers several possibilities, e.g., extrapolation and more robust 

training. In this paper, a variation of the Reynolds equation, implemented in the ifas-DDS, is solved 

with a PINN. The complete hydrodynamic PINN (HD-PINN) framework is presented and 

compared to the ifas-DDS afterward. The results show the possibility of the HD-PINN framework 

for modeling the EHL with high speed, less to no accuracy loss, and minimal tuning effort. 

Keywords: Tribology, Physics-informed neural networks; Elastohydrodynamic simulation; 

Pneumatic sealing; Physics-informed machine learning 

1. INTRODUCTION 

Lubricated contacts are part of many fluid power components. They occur e.g., in seals of hydraulic 

cylinders and pneumatic valves or functionally critical contacts to contacts in pumps. Since they 

often have a crucial influence on the performance and efficiency of the respective components, it is 

important to comprehensively understand all phenomena within these contacts by physically 

motivated models. However, obtaining an analytical solution for the complex phenomena in 

lubricated contacts is often impossible without making several simplifications. Furthermore, 

characterizing this through experiments is often unfeasible due to their time-consuming and 

expensive nature. 

Consequently, the behavior of lubricated contacts is modeled using an elastohydrodynamic 

lubrication (EHL) simulation, representing the acting phenomena through the Reynolds equation, 

and defining the pressure distribution within the tribological contact. One example of a validated 

EHL simulation model is the ifas-DDS, which was implemented at ifas to calculate the frictional 

behavior of reciprocating pneumatic seals. This is achieved by solving the Reynolds equation to 

obtain the hydrodynamic pressure within the contact and a FEM calculation for the seal’s 

deformation. The EHL yields good agreement with experimental data, shown in Figure 1, but 

requires a long computation time for a rather short-term process, due to the complexity of the partial 

differential equations and their numerical solution [2]. A straightforward method to reduce 



2 

 

computation time is to enhance computational power. However, this may not always be feasible and 

may even become more challenging as the simulation grows in complexity. This is especially true 

when a component with multiple contacts or even a system consisting of multiple of these 

components is to be considered. In that case, the computation time of current EHL simulation 

models makes these simulations almost impossible to apply. 

 

Figure 1: Comparison of measured (filtered and unfiltered) and simulated friction force. Left: Without 

moving over the control edge. Right: Moving over the control edge. [2] 

A novel approach to accelerate the computational process of simulations has emerged in recent 

years: the physics-informed neural network (PINN). Traditional neural networks require a shorter 

computation time regarding most iterative solver of distributed parameter simulations. However, 

they lack an understanding of the physical laws governing a specific dataset. In typical regression 

tasks, the objective of a neural network is to minimize the deviation between the predicted output 

and the true output. However, tuning the network's parameters to achieve this goal may only be 

valid within the provided data range. In contrast, PINNs incorporate the underlying physical laws of 

the investigated simulation, providing a more universal and accelerated solution for complex 

simulation models.  

 

This contribution introduces a framework for developing and parametrizing a PINN to speed up the 

computation of pressure distribution in EHL models. For this, the framework's various components 

are described and the advantages regarding a successful implementation of PINNs are highlighted. 

Firstly, the hydrodynamic lubrication (HL) is presented in section 2. Succeeding, an overview of the 

literature regarding PINNs, their application for HL, and their main drawbacks is provided. The 

fourth section of this paper deals with the whole framework. It describes the implemented solutions 

for the common issues encountered in PINNs described in the previous section. In section 5 the 

accuracy of the PINN is compared to the rigid ifas-DDS. In this contribution the deformation of the 

seal is not considered, therefore resulting in a purely HL model. Eventually, the results are 

summarized in section 6. 

2. HYDRODYNAMIC LUBRICATION 

EHL simulations are employed to calculate friction, leakage, and wear characteristics within 

lubricated contacts. These simulations account for the interplay between the lubricant and 

contacting surfaces, involving the computation of surface deformations within the contact area and 

the subsequent build-up of hydrodynamic pressure. 

The ifas-DDS is a simulation model used to describe the interaction between a seal and the adjacent 
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counterface. It takes into consideration the presence of lubricating fluid between the seal and 

counterface. The deformation of the seal is determined through the utilization of the finite element 

software Abaqus. The HL phenomena are described by the Reynolds equation and integrated in 

Abaqus through user subroutines.  

 

In the scope of this study, the primary emphasis is on solving the Reynolds equation and developing 

the PINN framework. Consequently, the deformation of the two contact partners is not taken into 

consideration. Typically, a seal undergoes deformation under load, leading to modifications in the 

HL behavior. To validate the presented PINN, the simulation model ifas-DDS without deformation 

is employed, herein referred to as rigid ifas-DDS. The ifas-DDS in its original form encompasses an 

extended Reynolds equation using flow factors 𝛷𝜏 and 𝛷𝑝, as described by Patir and Cheng, which 

allows for the consideration of surface topography [1], and an implementation of the Jakobsson-

Floberg-Olsson cavitation model [3] introducing the parameter 𝜃.  
 

The complete Reynolds equation used in the ifas-DDS extending the originally derived equation 

from Osbourne Reynolds in 1886 is given as [4]: 
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3. PHYSICS-INFORMED NEURAL NETWORKS 

As mentioned in the preceding section, the Reynolds equation is typically solved using finite 

volume, element, or difference methods. Recently, machine learning models have found success in 

the field of tribology [5,6]. Notable examples include the application of autoencoders and 

convolutional neural networks for fault detection in tribological systems. Particularly noteworthy is 

the work of Hess and Shang, who developed a convolutional neural network to determine the 

elastohydrodynamic pressure distribution in journal bearings [7]. Machine learning, especially 

neural networks as universal function approximators, has demonstrated significant potential, not 

only for data modeling but also for solving partial differential equations. 

 

The mathematical foundation, demonstrating that a feed-forward neural network with at least one 

hidden layer can approximate any continuous function with arbitrary accuracy, was laid by 

Cybenko in 1989 [8]. In the same year, Hornik extended this to Borel measurable functions [9]. A 

year later, Hyuk, one of the pioneers in the field of physics-informed neural networks, investigated 

the ability to solve differential equations with neural networks [10]. While Hyuk did not use the 

term "physics-informed," the idea and motivation behind his work align with the principles of 

PINNs. The loss function for the neural network under investigation was expanded to incorporate 

the underlying differential equation. 

 

However, this approach was relatively overlooked but saw a resurgence in interest due to progress 

in available computational resources, more advanced ML models, and efficient gradient calculation 

techniques by automatic differentiation. 

 

This revival of physics-inspired machine learning was led by Owhadi, as one of the first in 2014, 

embedding prior knowledge about the desired solution. He suggested reformulating the PDE 

solution problem as a Bayesian inference problem and presented the potential of enhancing the 

algorithm with prior knowledge [11]. Raissi et al. developed a probabilistic ML algorithm for 
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general linear equations using the Gaussian process [12,13]. The Gaussian process is tailored to the 

investigated integro-differential or partial differential equation. This approach was extended by 

Raissi et al. for nonlinear partial differential equations [14,15]. 

A significant milestone for the physics-informed machine learning community was the introduction 

of physics-informed neural networks [16], which Cuomo et al. describe as a mesh-free technique for 

solving PDEs by transforming the problem of directly solving the underlying equation into a loss 

function optimization problem [17]. 

Raissi introduced PINNs as a novel data-driven solver class in a two-part publication in 2017 and 

later in a merged article in 2019, PINNs aim to concurrently minimize the deviation of known 

values such as boundary and initial conditions (supervised losses), and the PDE residual 

(unsupervised), within the investigated computational space [18,19,20].  

 

The first published work on PINNs solving the Reynolds equation was by Almqvist in 2021, 

focusing on the fundamental application of PINNs for the Reynolds equation [21]. More advanced 

algorithms were developed by Zhao et al. and Li et al., dealing with the 2D Reynolds equation for 

linear sliders and gas bearings, respectively [22, 23]. Most recently, Rom became the first to 

develop PINNs for solving the stationary Reynolds equation with the Jakobsson-Floberg-Olsson 

(JFO) cavitation model [24]. Building on this success, Cheng et al. implemented a PINN to solve 

the Reynolds equation with either the JFO or the Swift-Stieber (SS) cavitation model, applying 

three different multi-task learning methods to balance the various loss terms [25]. It’s worth noting 

that most of these publications primarily focus on the PINN itself rather than on a framework for 

developing PINNs to solve HL tasks. Therefore, a significant amount of manual work is still 

required. 

 

In Figure 2 an exemplary hybrid (physics-informed and data-based) PINN is shown [26]. The four 

key elements are the neural network, the automatic differentiation, the losses, and the optimizer. As 

already described, the loss contains more than the difference between actual and predicted output. 

The residual loss term of the PDE is determined by the computation of partial derivatives using 

automatic differentiation [27]. Using the chain rule, the derivatives of the outputs are computed 

with respect to the network inputs, weights, and biases. Typically, the training of PINNs is based on 

the L2-norm (mean squared error, MSE) computed on uniformly sampled collocation points within 

the computational space [26]. In this work, the residual loss of the Reynolds equation is computed 

for uniformly distributed positions of the seal and the adjacent counterface. 

 

Figure 2:  Schematic illustration of a physics-informed neural network. Adapted from [26]. 

In Figure 2 the four different types of loss terms are illustrated: The loss based on the governing 

equation (e.g., Reynolds equation), on the boundary conditions (e.g., pressure at the boundaries of 

the investigated geometry), on the initial conditions (e.g., the initial pressure distribution over the 

whole geometry) and eventually on the available data (provided by the e.g., ifas-DDS).  
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The traditional PINN consists of the three first loss terms, adding the data loss results in a hybrid 

PINN, which is not considered in this work, to investigate the potential of the physics-informed 

idea. These losses are minimized jointly and therefore represent a multi-objective optimization. This 

class of optimization deals with concurrently minimizing a set of more than one, potentially 

conflicting objective [28]. Optimization problems concerning engineering tasks generally require 

trade-offs to synchronously fulfill all terms to the desired degree [29]. The desired solution for 

multi-objective optimization problems can be represented as a set of Pareto optima, which defines a 

feasible solution, where one objective cannot be minimized without worsening another term [30].  

A multi-objective optimization is independent of balancing the different terms [31]. However, the 

non-convex nature of the physical solution space in multi-objective optimization poses challenges 

for finding the globally optimal solution through gradient-based optimization [26]. Moreover, the 

gradients in multi-objective optimization of physical systems can vary greatly. Most optimizer 

adjusts the network parameters using an explicit scheme (the updated parameter is based on the 

current parameter) and can face instability if the optimization steps are too high. For classical neural 

networks, the problem of different magnitudes in the loss gradient occurred rarely, leading to the 

predominant use of explicit schemes instead of implicit ones (considering the updated parameter in 

the update itself) to speed up the training procedure. However, this problem occurs in PINNs and 

generally requires a reduction of the loss update in each step. Unfortunately, a small magnitude can 

trap the optimizer in a local minimum. Therefore, a loss balancing algorithm is implemented for the 

hydrodynamic PINN (HD-PINN) framework and presented in section 4.3. 

 

The training of PINNs involves a great number of design options (hyperparameters), e.g., network 

width, network depth, and learning rate. As mentioned, PINNs solve multi-objective optimization, 

which introduces additional hyperparameters to the whole set due to the need for loss balancing. 

The high number of dimensions of these parameters makes it challenging to find the optimal set. 

Therefore, finding the optimal hyperparameter set, yielding the best performance, becomes an 

iterative process. Depending on the specific problem, a single training routine can be time-

consuming, and infeasible for a high number of iterations. Basic approaches such as manual or grid 

search suffer from the curse of dimensionality and might be inefficient [32]. This problem of PINNs 

is addressed by enhancing the HD-PINN framework with a sophisticated and automated 

hyperparameter search and presented in section 4.2 

 

In summary, PINNs offer a promising method for solving HL simulation models by optimizing 

their parameters based on several physics-informed objectives. The following section introduces the 

HD-PINN framework, which includes the investigation of the differential equation, automated 

hyperparameter search, and loss balancing.  

4. METHODOLOGY 

In this section, the HD-PINN framework is presented. First, the investigated Reynolds equation is 

derived, and the PINN input and output are described. Then, the loss calculations for the residual 

loss term of the Reynolds equation and the pressure boundaries are explained briefly. The 

subsequent part deals with the efficient and robust parameter tuning of the framework. The third 

part of this section presents an algorithm for the improvement of the training due to loss balancing. 

4.1. PINN for Solving the Reynolds Equation 

As stated in the previous section, a handful of researchers have investigated the PINN for solving 

the Reynolds equation. The researchers focused primarily on the PINN itself and therefore still had 



6 

 

to manually tune a great number of design options e.g., layer width or depth. 

In this work, the emphasis is on creating an automated HD-PINN framework designed to address 

the common issues and limitations associated with PINNs. It is initially validated using a simplified 

version of the Reynolds equation but can be easily extended to the complete mathematical 

expression with the transient term and the JFO cavitation model. The underlying assumptions are as 

follows: 

 

• Time dependencies are neglected (
 

  
=  0) 

• Cavitation is not considered (𝜃 =  1) 
• The surface is ideally smooth (𝛷𝜏 = 0 𝛷𝑝 = 1) 

 

Therefore, the investigated Reynolds equation holds: 
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The PINN obtains the dynamic viscosity 𝜂 and density of the fluid 𝜌, the height ℎ, and the velocity 

of the counter surface 𝑣 as input and determines the pressure 𝑝 as output. The equation above 

contains partial differentials, which are required to obtain the physics-informed loss term for the 

residual of the Reynolds equation. These values are obtained by automatic differentiation, which 

allows for accurate and efficient function derivation [33]. 

Furthermore, the boundary loss terms, which are Dirichlet boundary conditions for the Reynolds 

equation, consist of two values for the left and right boundary respectively. These are compared to 

the boundary pressure predicted by the PINN and embedded as an MSE term. For PDEs including 

Neumann boundary conditions, automatic differentiation can be used to efficiently determine the 

desired loss function. The physics-informed Reynolds loss is implemented as the following: 

 

 
 𝑅𝑒𝑦  = MSE (
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The MSE of the Reynolds equation compared to zero is calculated as the loss and strongly 

resembles the residual term of common EHD simulations. For the boundary loss the following 

function is implemented: 

 

  BC 𝑙 𝑟  = MSE(𝑝𝐻𝐷−𝑃𝐼𝑁𝑁 𝑙 𝑟  𝑝𝑏 𝑙 𝑟)  (4) 

 

In summary, the PINN loss comprises three terms that do not depend on any specific data provided 

by simulation of experiments. The rigid ifas-DDS primarily serves to acquire a pressure distribution 

for validating the PINN. In the next sections, two main features of the HD-PINN framework are 

presented. These solve the previously explained common drawbacks occurring in the application of 

PINNs. Eventually, the whole training process is described. 

4.2. Hyperparameter Optimization 

Compared to traditional neural networks, PINNs exhibit even more hyperparameters, especially due 

to the already-mentioned loss balancing. Basic approaches for finding optimal parameters often 
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suffer from the curse of dimensionality and are therefore not feasible for the HD-PINN framework. 

 

Bayesian optimization [34] offers a solution to this dilemma and has already been successfully 

integrated into PINNs [32]. Bayesian optimization aims to obtain an optimal set of hyperparameters 

with as few training procedures as possible by approximating an unknown loss function  

(PINN losses) with a probabilistic surrogate model (Gaussian Process). After evaluating one set of 

hyperparameters, the next set is chosen based on an acquisition function (expected improvement), 

which aims to achieve a trade-off between exploration and exploitation by comparing the current 

best set to the next chosen set.  

The HD-PINN framework incorporates Bayesian optimization to determine the optimal 

hyperparameters, including the number of layers, layer width, and four parameters relevant to the 

loss balancing task: learning rate, decay rate, temperature factor, and saudade value.  

These parameters will be introduced in the following section. 

4.3. Loss Balancing 

The Bayesian optimizer aims to find the optimal set of hyperparameters for the given task.  

For a given set of hyperparameters, their performance is analyzed by training the PINN for a 

defined number of epochs and eventually evaluating the final sum of losses. During one epoch, the 

PINN determines the pressure distribution based on the provided inputs for a pre-defined number of 

collocation points (ten in this work). With the pressure distribution, the residual loss of the 

Reynolds equation and the loss for the boundary values are determined. 

The loss is further utilized and differentiated with automatic differentiation to calculate the changes 

in the network parameters, including weights and biases. The optimization of these network 

parameters is achieved using the adaptive moment estimation (ADAM) algorithm, a first-order 

gradient-based explicit optimization method for stochastic objective functions [35]. ADAM is 

widely recognized as one of the state-of-the-art optimizers for deep neural networks [36,37]. It is 

computationally efficient with little memory requirements, capable of solving problems of large 

scale, and has been successfully implemented in PINN applications [38].  

 

As stated in section 3, explicit optimizers might face problems due to the heavily varying loss term 

magnitudes. Therefore, a loss balancing scheme according to [26] is added to the HD-PINN 

framework. Bischof proposed an algorithm based on combining three already existing methods and 

adding one novel feature. The four features of the Relative Loss Balancing with Random Lookback 

(ReLoBRaLo) are as follows: 

 

1. The sum of scalings is bound by a softmax function, which is adjusted by the so-called 

temperature factor 𝒯 [39]. 

2. The learning progress is considered by dividing the loss at the current iteration by the loss of 

the last iteration [40]. 

3. Inspired by the Learning Rate Annealing, the scalings are set to higher values initially and 

decay exponentially over the iterations with the decay factor 𝛼. This leads to the utilization 

of loss statistics from more than one training step [41].  

4. A random lookback (defined by the saudade value 𝜌𝑠) is embedded in the exponential decay 

and randomly decides the consider the previous steps’ loss statistics or look back to the 

beginning of the training to compute the scalings [26]. 

 

This novel balancing algorithm adds a significant performance enhancement to the  

HD-PINN framework by tackling the loss scaling problems. Figure 3 illustrates the training 
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progress of the complete HD-PINN framework. The Bayesian optimizer selects parameters, which 

are used for the initialisation of the PINN and the network parameter optimizer. Afterward, the 

actual pressure prediction is done by the PINN and the loss is computed. If the training is not 

finished, the loss is used to update the PINN’s weights and biases, and a new pressure distribution is 

predicted. This loop continues until a certain number of iterations is reached. Afterward, the 

parameter determined by the Bayesian optimizer is updated. 

In the next section, the whole framework is validated for two different scenarios and an illustration 

of the training progress is provided. 

 

Figure 3:  The HD-PINN framework and its training progress. 

5. RESULTS AND DISCUSSION 

The HD-PINN is tested for two test scenarios, shown in Figure 4, a convergent (ℎ = [1, 0.5]), and a 

divergent (ℎ = [0.5, 1]), height profile. The convergent case resembles Almqvist’s work for a linear 

slider with dimensionless film thickness [26]. However, in comparison to that work, the pressure 

boundary is not set to zero (left pressure for the convergent gap 𝑝𝑏 𝑙 = 0.2, for the divergent gap 

𝑝𝑏 𝑙 = 0.7 and right pressure for the convergent gap 𝑝𝑏 𝑟 = 0.7, for the divergent gap 𝑝𝑏 𝑟 = 0.4).  

 

Figure 4: Left: Convergent height profile Right: Divergent height profile. 

The PINN is tuned by the Bayesian optimizer for 30 trials and eventually, the best-estimated 

parameters are used for the actual training process (200 training iterations). The validation data is 

obtained by the rigid ifas-DDS. It is noteworthy that the convergent height profile required the 

maximum number of iterations (1000) to obtain the residues set in the ifas-DDS.  

 

First, the convergent height profile is presented. In Figure 5 the pressure distribution and the loss 

progression are illustrated. The HD-PINN predicts the pressure with high accuracy, with a 

maximum deviation of around 1 %. The residual loss of the Reynolds equation and the boundary 

loss decrease drastically over 200 epochs, with minor fluctuations in the boundary term and none in 
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the Reynolds term. 

For the divergent case, an even higher accuracy of the pressure distribution (deviation of less than  

1 %) can be observed in Figure 6. Similar to the first case, the Reynolds-based loss remains stable 

without any fluctuations, while the boundary loss term exhibits more volatility. 

 

Figure 5: Left: Pressure distribution of HD-PINN vs. rigid ifas-DDS for the convergent gap. Right: The 

loss trajectories for the convergent gap. 

 

Figure 6: Left: Pressure distribution of HD-PINN vs. rigid ifas-DDS for the divergent gap. Right: The loss 

trajectories for the divergent gap. 

To obtain a visual representation of the learning process of the PINN four different pressure 

distributions after different epochs (1, 10, 30, 40) are illustrated in Figure 7. Like the boundary loss 

trajectories, the pressure boundary values are met first and already precisely predicted after ten 

epochs. An accurate prediction is achieved after 40 epochs, which illustrates the fast-learning ability 

of the PINNs and suggests decreasing the whole 200 epochs to reduce the training time in future 

research.  

6. SUMMARY AND CONCLUSION 

This contribution introduces an automated HD-PINN framework for predicting pressure build-up in 

sealing contacts within a housing, described by the Reynolds equation. It starts by presenting the 

concept of physics-informed neural networks and their advantages. Then, it addresses the common 

drawbacks of PINNs and describes various components implemented in this work to mitigate these 

issues.  

The incorporation of the Bayesian optimizer and the loss balancing algorithm reduces the amount of 

manual tuning of the hyperparameters and scaling the loss terms. 
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The validation of the framework, utilizing a variant of the Reynolds boundary equation with a 

fixed height profile demonstrates the PINNs’ ability to model lubricated contacts with high 

speed and, notably, with minimal accuracy loss compared to traditional HL simulations. 

Future steps involve integrating the missing terms of the Reynolds equation to obtain an accelerated 

solution for the complete rigid ifas-DDS, which encompasses transient behavior and cavitation. 

Additionally, an extended set of inputs will be defined to characterize the investigated geometry, 

broadening the PINN's range of validity to accommodate various geometries rather than being 

specific to just one. Furthermore, a second model will be developed to account for sealing 

deformation and thereby address the entire EHL in the ifas-DDS. 

 

Figure 7: Pressure distribution of the HD-PINN after 1, 10, 30, and 40 epochs for the divergent gap. 
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NOMENCLATURE 

e Epoch - 

ℎ Dimensionless height profile - 

ℓ Loss - 

𝑙𝑟 Learning Rate - 

𝑁𝑙 Number of hidden network layers - 

40

1 10

30
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𝑡 Dimensionless time - 

p Dimensionless pressure - 

𝑝𝑏 𝑙 𝑟 Dimensionless left and right boundary pressure - 

𝑅𝑞 Root of the mean squared roughness - 

𝑣 Velocity of the counter surface - 

𝑥 Dimensionless position - 

𝛼 Decay - 

𝜂 Dimensionless dynamic viscosity - 

𝜃 Dimensionless cavitation - 

𝜌 Dimensionless density - 

𝜌
𝑠
 Saudade value - 

𝛷𝑝 Flow factor - 

𝛷𝜏 Shear flow factor - 

𝒯 Temperature factor - 

∂

∂𝑥
 

Partial derivative regarding the position and time - 

∂

∂𝑡
 

Partial derivative regarding the time - 
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