8

SDK-RI Specification

8.1 Objectives

The SDK reference implementation, or SDK-RI, has these specific objectives:

e Provide the mechanisms in terms of SW pieces for testing the i3-
MARKET Backplane services/artifacts.

e Follow the approach SDK-RI as a service: SDK-RI will be a set of
services needed for simulating an i3-MARKET-ized data marketplace
behaviour.

e SDK-RI will let the pilots check this reference implementation as a
guide/example for developing their own integration with i3-MARKET.

e Context: SDK-RI contextualization was already introduced in section 6.2
as part of the SDK-core.

8.2 Technical Requirements

The current subsection contains a set of SDK requirements that have been
collected for releases 2 and 3; meanwhile, the other ones are the result of
deepening in the last iterations of SDK elicitation process.

8.3 SDK Reference Implementation

The SDK-RI implementation is based on Java and Swagger framework, and
the next subsections are focusing on the update provided during R2 and R3
developments. The SDK-RI was first released as a web app deployed within
Jetty and encapsulated in a Docker container then later in R2 and R3 updated
with Java and Swagger.

113

114 SDK-RI Specification

8.4 Core Technology

In an initial stage of SDK-RI implementation, the technology options pre-
sented in Figure 8.1 — Implementation technologies for SDK-RI — were
considered:

1) Node.js m

2) Node.s + Express
(REST API)

Ansible Playbook i3M SDK 3)]ava + call to RP
(deployemt) Dockerfile o .l
] e 4) Java + RPM +

Swagger + Tomcat
(REST API) =

p——— k
1

- OPEN

sl

Figure 8.1 SDK-RI Implementation Technologies Used.

To sum up, the candidate technologies to support the implementation of
SDK-RI were the following:

e Node.js

e Node.js + Express

e Java + RPM

e Java + Swagger + Tomcat

Finally, option 4 was selected but substituting Jetty for Tomcat as web
application server. Therefore, we can conclude by saying that SDK-RI is a
web app deployed within Jetty and encapsulated in a Docker container.

8.5 Continuous Integration and Deployment

The SDK-RI artifact is automatically provided by means of a CI/CD pipeline
based on Ansible AWX. A conceptual view of SDK-core pipeline is shown
in Figure 8.2 — SDK-RI pipeline.

As initial stage, the SDK-RI is imported as a library in the last version
of the SDK-core published in i3-MARKET Nexus maven repository. As a
second stage, once a commit is done into the master branch of SDK-RI
GitLab project, a compilation and deployment of a new version of SDK-RI is
carried out.

8.5 Continuous Integration and Deployment 115

U Java maven o
: Yy & cocker m
@ cren — t f=—+ — P
‘ SDERI f::;:' Playbock for deploying
project SDE-RI container

Figure 8.2 SDK-RI pipeline based on Ansible AWX.

SDK-RI installation:
The setup instructions and Docker-based deployment of SDK-RI is covered
in detail in the following subsections.

Setup:
Clone the repository and download the dependencies:
git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation. git

Running the SDK-RI with Docker:
Use Docker to run the SDK-RI. To do so, follow the same setup instructions
as above.

Then, just build your SDK-RI project nd run it using the jetty images as
follow:

SDK-RI container is built over a Jetty image and the SdkRefIMpl war file
is deployed into Jetty.

Finally, just go to http:/$deploy_host/SdkRefImpl for accessing SDK-RI
REST APL

Configuring and using SDK-RI
To configure SDK-RI instance, the following steps should be covered:

e The marketplace will have all the common services exposed in an SDK-
RI/endpoint.

Each marketplace end-user, which pursues making use of the SDK-RI,
should configure the SDK-RI by means of:

e pointing to the Backplane endpoint(s) hosted in a concrete i3-MARKET
node (i.e., Backplane API nodel, OpenID Connect Provider API nodel,
Verifying and Credential service API nodel);

e pointing to the wallet endpoint hosted locally.

This configuration should be defined in the SDK-RI properties file placed
at ‘‘src/resources/sdk_ri_config.properties’’.

116 SDK-RI Specification

The internal workflow covered by the SDK-core/RI playbook is shown in
Figure 8.3.

Annex B (SDK-core/RI playbook) contains the last version of Ansible
playbook that supports the generation of the SDK-core/RI for the final release
(or R3).

Create oas temp directory

Get access token for accessing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for DATA_ACCESS

Set java 8 as default jym

Delete authorizations unmodifiableMap in ApiClient

Delete defaults authorizations in ApiClient

Add global import of fasterxml to avoid compilation issues with JsonTypelnfo,
JsonSubTypes

Mvn package sdk-core artifact

Create temp directory

Extract jar file with Java classes

Extract jar file with Java docs

Extract jar file with Java sources

Add all classes and docs into a single JAR file

Upload SDK-Core artifacts to Nexus

Send an email notification to inform about new version available

"
I

Figure 8.3 SDK-core/RI playbook internal workflow.

