
6
SDKs and WEB-RI

6.1 Approach

The SDK global approach for i3-MARKET is based on the provision of
four main pillars: (a) SDK-generator, (b) SDK-core, (c) SDK reference
implementation or SDK-RI, and, finally, (d) Web-RI.

The layered SDK approach defined here is the mechanism that allows
to adapt and extend existing data marketplaces to interface with the i3-
MARKET Backplane.

Specifically, the layers that are part of the proposed solution for the SDK
and shown in Figure 6.1 are the following:

• SDK-core: This layer aims to simplify the i3-MARKET SDK build-
ing process by generating client stubs for any i3-MARKET backend
endpoint/API, defined with the OpenAPI (formerly known as Swagger)
specification. In this way, therefore, the development team can better
focus on the implementation and adoption of these backend endpoints
or APIs.

• SDK-reference implementation (SDK-RI): This layer aims to identify
and provide a set of common services to be implemented for consuming
available Backplane functionalities.

• SDK-execution patterns (SDK-EP): It is including the atomic func-
tions that make use of Backplane API (via SDK) adding some business
logic.

• Web-RI: It is supporting the front-end or GUI integrating the common
services provided by the SDK-RI and that can be reused and customized
as part of the pilot specification and implementation defined in the
context of WP5.

79

80 SDKs and WEB-RI

SDK Web -RI

SDK RI (+SDK EP)

SDK Core

Figure 6.1 SDK layered approach.

6.2 SDK-Core Specification

General objectives:

The three main objectives identified are the following:

(a) Backplane API SDK
(b) Enhanced Backplane API SDK
(c) Automatically build Backplane API SDK

Considering the objectives, the following updates in terms of capabilities
have been provided for the i3-MARKET FINAL release.

(a) Backplane API SDK. Addressing fully following modules:

• User-centric authentication SDK
• Cloud Wallet SDK module
• Data access SDK module
• Standard payments SDK module
• Tokenization SDK module
• Smart contracts SDK module
• Notifications SDK module
• Rating SDK module

(b) Enhanced Backplane API SDK
(c) Automatically build Backplane API SDK

6.2 SDK-Core Specification 81

Context:

The updated context in terms of interactions with other SW pieces in the
i3-MARKET ecosystem is shown in Figure 6.2.

Figure 6.2 SDK-core interactions.

As a reminder, the i3-MARKET SDK-core interacts with:

i. Backplane API, allowing stakeholder’s developers to create software
(App Client) based on the (Backplane) API, in an easy and efficient way.

ii. Cloud Wallet to guarantee the security on the interactions between the
stakeholders and i3-MARKET Backplane.

iii. App Client, allowing to be part of the i3-MARKET ecosystem.

Big picture:

The SDK-core is supported as a main pillar for the SDK-generator, which is
one of the outcomes of i3-MARKET solutions.

The main updates on SDK-generator are the following:

(a) Update on the openapi-generator client due to issues detected managing
keywords oneOf, anyOf, and allOf in some of the OAS files supported
by i3-MARKET backend services.

82 SDKs and WEB-RI

(b) Update on the openapi-generator setup. The concrete setup used in last
version was: openapi-generator-cli generate -g javascript –additional-
properties=groupId={{ ARTIFACT_GROUP_ID }},artifactId={{ ARTI-
FACT_NAME }},artifactVersion={{ ARTIFACT_VERSION }},
modelPackage=com.i3m.model.data-access,apiPackage=com.i3m.api.
data-acess, prependFormOrBodyParameters=true, hideGenerationTimes-
tamp=true -o /tmp/oas/javascript -i http://xx.xx.x.xxx:yyyy/repository/i3m-
raw/i3m-raw/files/dataaccessapi.json –generate-alias-as-model –skip-
validate-spec"

This is the same setup for SDK-core Java version but using “java” for the
option “- g”.

6.2.1 SDK-core implementation

As introduced, the SDK-core is built using SDK-generator REST API
and an Ansible playbook in charge of generating all the client stub for
Backplane API (semantic engine, notification manager, and smart contract
manager), OIDC, VC, and data access API encapsulated into the SDK-core
Java/JavaScript library.

6.2.2 Core technology

The SDK-core implementation is based on the usage of SDK-generator, and
it is described in detail in the following subsections.

The SDK-core is supported by means of (a) the SDK-generator REST
API and (b) an Ansible playbook in charge of generating:

1) an SDK-core Java artifact that contains client stub for Backplane API
(semantic engine, notification manager, and smart contract manager),
OIDC (OpenID Connect), VC (Verifiable Credentials), and data access
API;

2) an SDK-core JavaScript artifact that contains client stub for Back-
plane API (semantic engine, notification manager, and smart contract
manager), OIDC, VC, and data access API.

SDK-generator:

The SDK-generator is the main pillar of the SDK-core. The SDK-generator
is based on SDK as a service approach. SDK-generator aims to automatically
generate the client stubs needed to interact and consume all the functionalities

6.2 SDK-Core Specification 83

exposed in a REST API. The SDK as a service approach is shown in
Figure 6.3.

Figure 6.3 SDK-generator approach.

The workflow behind SDK-generator is based on the provision of a
programming language specification next to an OAS file and making use of
the OpenAPI generator1 server, which is able to produce as output SDK client
stubs next to associated documentation about how to use it.

The languages supported by the SDK-generator are shown in Figure 6.4.

Figure 6.4 SDK-generator supported programming languages.

1 OpenAPI generator: https://github.com/OpenAPITools/openapi-generator

84 SDKs and WEB-RI

Continuous integration and delivery:

The SDK-core artifact is automatically provided by means of a CI/CD
pipeline based on Ansible AWX. A conceptual view of SDK-core pipeline
is shown in Figure 6.5.

Figure 6.5 SDK-core CI/CD pipeline.

As initial step in the pipeline, the SDK-core artifact is triggering the
compilation and deployment of a new version of the SDK-generator once
a commit into master branch of SDK-generator project happens. As a second
step (represented as a green area in Figure 6.6), the generation and publishing
of a new version of the SDK-core artifact is triggering each time a new version
of the Backplane API is deployed. The CI/CD behind Backplane API includes
a triggering to SDK-core pipeline. In this way, SDK-core covers a set of tasks
mainly in charge of generating SDK-core artifacts for Java and JavaScript

Create oas temp directory

Get access token for accesing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for
BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for OIDC

Make an API call to SDK-Generator to generate SDK client stub for VC

Make an API call to SDK-Generator to generate SDK client stub for
DATA_ACCESS

Upload oas-javascript artifacts to Nexus

Send an email notification to inform about new version available

Figure 6.6 SDK-core playbook internal workflow.

6.3 SDK Reference Implementation (SDK-RI) 85

versions taking a set of relevant OAS files associated with the following
artifacts:

• Backplane API (including semantic engine, notification manager, and
smart contract manager)

• OIDC API
• Verifiable Credentials API
• Data access API

Concretely, the Ansible playbook is used to automatize the process of
generation of the SDK-core client stub.

The internal workflow covered by the SDK-core playbook is shown in
Figure 6.6.

Finally, the pipeline includes a couple of tasks in charge of publishing the
generated Java and JavaScript versions of SDK-core into i3-MARKET Nexus
repository.

SDK-core installation:

SDK-core is a Java/JavaScript library that is installed by simply importing
from i3-MARKET Nexus repository.

6.3 SDK Reference Implementation (SDK-RI)

The SDK-RI implementation is based on Java and Swagger framework, and
the following subsections are focusing on the SDK-RI specifications. SDK-RI
is a web app deployed within Jetty and encapsulated in a Docker container.

The SDK-RI has been updated in terms of common services as per the
following (see Figure 6.7):

i) Notification manager common services: The functionalities related with
notification services and queues are listed in Figure 6.7.

Figure 6.7 Services and queues common services.

86 SDKs and WEB-RI

ii) Alerts common services: The functionalities related with alerts are listed
in Figure 6.8.

Figure 6.8 Alerts common services.

iii) Conflict resolution common services: This is listed in Figure 6.9.

Figure 6.9 Conflict resolution common services.

iv) Contracts common services: The functionalities related with smart
contracts management are listed in Figure 6.10.

Figure 6.10 Contracts common services.

6.3 SDK Reference Implementation (SDK-RI) 87

v) Credential common services: The functionalities related with authenti-
cation, identities, and credentials are listed in Figure 6.11.

Figure 6.11 Credentials common services.

vi) Exchange common services: The functionalities related with data
exchange are listed in Figure 6.12.

Figure 6.12 Exchange common services.

vii) Notification common services: The functionalities related with notifica-
tions are listed in Figure 6.13.

Figure 6.13 Notification common services.

88 SDKs and WEB-RI

viii) Offering management common services: The functionalities related with
data offering management are listed in Figure 6.14.

Figure 6.14 Offering common services.

ix) Pricing managing common services: The functionalities related with
pricing managing are listed in Figure 6.15.

6.4 WEB-RI 89

Figure 6.15 Pricing common services.

x) Token managing common services: The functionalities related with
token management are listed in Figure 6.16.

Figure 6.16 Token common services.

As an initial stage, the SDK-RI imports the last version of the SDK-
core published in i3-MARKET Nexus maven repository as a library. It is
precisely in this part where the way to generate the Java version of the
imported SDK-core library has been slightly updated. As a second stage, once
a commit is done into master branch of SDK-RI Git project, a compilation and
deployment of a new version is automatically launched.

90 SDKs and WEB-RI

6.4 WEB-RI

The Web-RI is a GUI web interface that allows the users to interact with
the functionalities provided by i3-MARKET Backplane solutions on top of
the SDK-RI. It can be reused and customized as part of each pilot spec-
ification and deployment integration as a reference implementation of the
backbone data marketplace to facilitate stakeholder needs that want to reuse
i3-MARKET artifacts and functionalities.

6.4.1 Purpose

The WEB-RI proposes itself as a reference for the implementation of a user
interface to allow human users to use and interact with the functionalities
provided by i3-MARKET. The WEB-RI has three main objectives, which
are:

• As a management tool, to allow i3-MARKET developers to test their
functionalities in the context of a user usage.

• As a marketing team, allowing the promotion and demonstration of i3-
MARKET functionalities using a generic approach and language that
can be easily translated to the available data marketplaces used by
different domains.

• As a reference implementation, providing functional examples of
how the i3-MARKET SDKs can be used to implement/integrate i3-
MARKET functionalities into a data marketplace. As a reference imple-
mentation, WEB-RI is also a useful tool to help i3-MARKET pilots
on the implementation of their use-case scenarios and on testing of
Backplane technologies by providing specifications and code that can
be used.

In Figure 6.17, the architecture of WEB-RI is represented.
A consumer or a provider can access WEB-RI2 via internet browser and

proceed with the authentication for which the wallet3 must be installed and
running on his personal computer. The authentication process is executed on
WEB-RI frontend by calling the OIDC service, which will call the wallet to
perform the authentication itself.

The WEB-RI frontend is connected to a backend, which has two main
functions: manage user sessions and have a way to interact with the function-
alities provided by i3-MARKET.

2 https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-web-ri
3 https://gitlab.com/i3-MARKET-V3-public-repository/sp3-scgbssw-i3mwalletmonorepo

6.4 WEB-RI 91

Figure 6.17 WEB-RI architecture.

To manage the user sessions, the WEB-RI backend saves the user session
in a session storage called connect-mongo4.

To interact with the functionalities provided by i3-MARKET, a library
was implemented, called Connector-RI5. This connector has all the meth-
ods needed to call the respective APIs from the SDK-RI, which have the
functionalities to interact with the i3-MARKET Backplane. This allows to
have a clean and simple WEB-RI backend where it is only needed to call the
respective methods from the connector.

Sitemap:

In Figure 6.18, the sitemap of WEB-RI is represented.
WEB-RI is composed of several pages, which are Authentication, Home-

page, Offerings, Search, and Notifications.

4 https://github.com/jdesboeufs/connect-mongo
5 https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-connector-ri

92 SDKs and WEB-RI

Figure 6.18 WEB-RI sitemap.

In the Authentication page, the user has the possibility to register a
new provider or consumer and log in with some existing user registered in
WEB-RI.

The Homepage is the main page of WEB-RI, which has a navigation bar
that allows the user to navigate to the other available pages. Also, there are
statistics related with the number of offerings and providers.

The Offerings page is only visible to a provider, where he can manage the
offerings registered by him and register new ones.

The Search page is visible either to a provider or a consumer. The only
difference is that a consumer has the possibility to create a purchase request
for the offering he searched.

In the Notifications page, a provider can receive a purchase request for
some of its offerings and he can accept (and create the agreement) or reject it.
A consumer can sign the agreement if it was accepted before by the provider.

6.5 IMPLEMENTATION

In the following subsections, some screenshots of each page are presented,
and an explanation of its content is given.

6.6 Navigation: 93

Register:

Figure 6.19 shows the WEB-RI register page.

Figure 6.19 WEB-RI registration page.

Before the WEB-RI page is opened for the first time, the user must
have the wallet running on his personal computer. When the user opens
the WEB-RI initial page, he will see the page for registering a new user.
He must select the desired role (consumer or provider) and username –
Figure 6.20.

After that, the user must confirm the addition of the new user in the wallet;
see Figure 6.20.

Login:

Figure 6.21 shows the WEB-RI login page.
With a user is registered in the wallet, it is possible to authenticate

in WEB-RI. The user must select the role (consumer or provider) he
wants to use to login in the system. After having selected the role in the
login page, the user must confirm the authentication in the wallet; see
Figure 6.22.

94 SDKs and WEB-RI

Figure 6.20 WEB-RI register with wallet.

Figure 6.21 WEB-RI login page.

6.6 Navigation: 95

Figure 6.22 WEB-RI login with wallet.

6.6 Navigation:

With successful login, the user accesses the WEB-RI homepage. This page
has a navigation bar, which is different to each role. The provider has access
to offerings, search, and notifications pages and account options; instead, the
consumer has access to same pages but not to the offerings page.

In Figure 6.23, the navigation bar for a provider is presented.

Figure 6.23 WEB-RI navigation (provider).

96 SDKs and WEB-RI

Figure 6.24 presents the navigation bar for a consumer.

Figure 6.24 WEB-RI navigation (consumer).

Homepage:

In Figure 6.25, the WEB-RI home page is presented.

Figure 6.25 WEB-RI home page.

Besides the navigation bar, the WEB-RI home page has also the infor-
mation about the logo and details about the user logged-in (username and
role).

As main information, WEB-RI also shows the total number of providers
and active offerings available in the whole marketplace ecosystem. Also, it is
possible to see the total number of active offerings filtered by each category.

6.6 Navigation: 97

Offerings:

As mentioned before, the provider has access to the offerings page. The next
subsections will describe each page related to the offerings.

Offering list:

Figure 6.26 shows the page with the list of offerings of a provider.

Figure 6.26 WEB-RI offerings page.

In this page, the provider sees the list of the offerings that were registered
by him. Each offering is displayed in a react-bootstrap card6 with some
information like title, description, number of contracts, and state (active,
inactive, to be deleted, or deleted).

Also, the provider has the option to register a new offering, which will be
described in the following sections.

Offering details:

Figure 6.27 represents the page with the details of an offering.

6 https://react-bootstrap.github.io/components/cards/

98 SDKs and WEB-RI

Figure 6.27 WEB-RI offering details page.

When a specific offering card is selected, it will open a new page with the
details of the offering. Here, a user can see all the information related with
that offering.

Since there is too much information to be displayed in a single page,
a react-bootstrap accordion7 was used to display information like dataset,
contract parameters, and pricing model. This information is collapsed by
default but can be expanded as well.

This page can be seen by a provider (through offerings page) or consumer
(with search). If the user is a provider, he has options to activate, update, or
delete the offering (in the top right corner of the site, next to the offering
state). Instead, if he is a consumer, he has a button called “Buy Offering”,
which allows to initiate the process of creating a data purchase request.

Offering registration:

Figure 6.28 represents the page to register a new offering or update an existing
one.

7 https://react-bootstrap.github.io/components/accordion/

6.6 Navigation: 99

Figure 6.28 WEB-RI offering registration page.

The provider can register a new offering or update an existing one (but
only the offerings registered by him). This page shown in Figure 6.29 is used
for both purposes; the only difference is, when updating an offering, all the
fields are already filled.

Since there is a lot of information associated with an offering, a react-
bootstrap tab8 was used on this page. With the help of the tabs, all fields were
grouped by categories, which are general, dataset, pricing model, and contract
parameters.

Also, inside each tab, some accordions were used to better display all the
input fields to the user.

Offering purchase request:

Figure 6.29 represents the page where a consumer can initiate the process of
buying a new offering.

8 https://react-bootstrap.github.io/components/tabs/

100 SDKs and WEB-RI

Figure 6.29 WEB-RI offering purchase page.

6.6 Navigation: 101

After the consumer selects the “Buy Offering” button in offering details
page, a new page will be displayed with the contract template for that
offering. In this page, the consumer must fill in the dynamic parameters of
the template and then click on the “Data Purchase Request” button to proceed
with the process of buying an offering.

Search:

Figure 6.30 represents the page where a user (provider or consumer) can
search for offerings.

Figure 6.30 WEB-RI search page.

In the search page, the user (consumer or provider) can search for active
offerings available in the whole marketplace ecosystem. He can search offer-
ings by category, provider, or free text. As mentioned in the image above, the
search is executed by entering a free text and returns the offerings that match
the search criteria.

Notifications:

Figure 6.31 represents the page where a user can see his notifications.

102 SDKs and WEB-RI

Figure 6.31 WEB-RI notifications page.

This page has all notifications associated with the user who is logged-in
in WEB-RI.

If the provider is logged-in, he can receive notifications about a purchase
request regarding some of his offerings. In this case, if he accepts the pro-
posal, a new page will be displayed where the provider can create a new
agreement. But he also can reject the proposal by sending some comments
justifying the rejection of the proposal (this will be sent as a notification to
the respective consumer).

If the consumer is logged-in, he can receive notifications about data
purchase requests that were rejected by the provider or about proposals that
were accepted and then he must sign the agreement.

Account:

This option, represented by a person icon in navigation bar, shows some
options in a dropdown. One of those options allows the user to log off from
WEB-RI.

