
5
Operative Specification

An operational specification provides a comprehensive overview of how the
software is expected to function in various operating conditions. It serves as
a road map for software development and testing and ensures that the final
product meets the user’s requirements and expectations.

5.1 Libraries

The list of the different libraries used to integrate into the i3-MARKET
framework is shown below.

Auditable accounting library:

◦ The auditable accounting component is a service that includes an API
to automate the process of logging and auditing interactions between
components and record the registries in the blockchain. The API of
the auditable accounting is accessed through the Backplane API gate-
way. Additionally, the auditable accounting component can be accessed
directly from any internal component of the platform.

◦ License: MIT.
◦ Source code: https://gitlab.com/i3-market-v3-public-repository/sp3-sc
gbssw-aa-auditableaccounting.

◦ Prerequisites: Node.js, Docker, and Docker Compose.

Wallet client library:

◦ This package defines how to interact with wallets by means of a
typescript interface. Furthermore, it provides a default implementation
called BaseWallet. It uses an interface called KeyWallet to delegate the
complexity of key management to other packages like SW Wallet. Both
interfaces are listed below.

◦ License: Apache License 2.0.

57

58 Operative Specification

◦ Source code: https://gitlab.com/i3-market-v3-public-repository/sp3-sc
gbssw-i3mwalletmonorepo.

◦ Prerequisites: Node.js.

5.2 i3-MARKET APIs

The update compared to R1 in terms of common services is the following:

i) Notification manager common services: The functionalities related with
notification services and queues were the scope of R2 and R3 and are
listed in Figure 5.1.

Figure 5.1 Services and queues common services.

ii) Alerts common services: The functionalities related with alerts were the
scope of R2 and R3 and are listed in Figures 5.2, 5.3, and 5.4.

Figure 5.2 Alerts common services.

iii) Conflict resolution common services:
The functionalities related with contradictory conditions enabled by two
methods as shown in Figure 5.3

5.2 i3-MARKET APIs 59

Figure 5.3 Conflict resolution common services.

Figure 5.4 Contracts common services.

iv) Contracts common services: The functionalities related with smart con-
tracts management were the scope of R2 and R3 and are listed in
Figure 5.5.

v) Credential common services: The functionalities related with authenti-
cation, identities, and credentials were the scope of R2 and R3 and are
listed in 5.5.

vi) Exchange common services: The functionalities related with data
exchange were the scope of R2 and R3 and are listed in Figure 5.6.

60 Operative Specification

Figure 5.5 Contracts common services.

Figure 5.6 Exchange common services.

vii) Notification common services: The functionalities related with notifica-
tions were the scope of R2 and R3 and are listed in Figure 5.7.

Figure 5.7 Notification common services.

viii) Offering management common services: The functionalities related with
data offering management were the scope of R2 and R3 and are listed in
Figure 5.8.

5.2 i3-MARKET APIs 61

Figure 5.8 Offering common services.

ix) Pricing managing common services: The functionalities related with
pricing managing were the scope of R2 and R3 and are listed in
Figure 5.9.

62 Operative Specification

Figure 5.9 Pricing common services.

x) Token managing common services: The functionalities related with
token management were the scope of R2 and R3 and are listed in
Figure 5.10.

Figure 5.10 Tokens common services.

5.3 SDKs

The layered SDK approach defined in the mechanism allows to adapt
and extend existing data marketplaces to interface with the i3-MARKET
Backplane.

5.4 User Interfaces 63

Specifically, the layers that are part of the proposed solution for the SDK
are the following:

• SDK-core: This layer aims to simplify the i3-MARKET SDK build-
ing process by generating client stubs for any i3-MARKET backend
endpoint/API, defined with the OpenAPI (formerly known as Swagger)
specification. In this way, therefore, the development team can better
focus on the implementation and adoption of these backend endpoints
or APIs.

• SDK reference implementation (SDK-RI): This layer aims to identify
and provide a set of common services to be implemented for consuming
available Backplane functionalities.

• SDK-execution patterns (SDK-EP): It is including the atomic func-
tions that make use of Backplane API (via SDK) adding some business
logic.

• SDK Web-RI: It is supporting the frontend or GUI integrating the
common services provided by the SDK-RI and that can be reused and
customized as part of the pilot specification and implementation defined
in the context of WP5.

5.4 User Interfaces

To contextualize the i3-MARKET frontend or SDKWeb-RI, it is important to
introduce the SDK global approach and is shown in Figure 5.11. SDK Web-
RI would be the top layer on the layered approach defined as part of the SDK
solution for i3-MARKET.

i3-MARKET Web-RI provides a graphical user interface component,
designed to use the reference implementation (SDK-RI) through a user
interface to validate i3-MARKET functionalities from the user’s point of
view. It will be provided as an open-source component for the i3-MARKET
implementation and for future pilots.

Web-RI can be used also by other market players to easily integrate
with i3-MARKET and even set up a marketplace. Web-RI implements the
following basic workflows:

• Register new data offerings and delete data offerings
• Search for offerings
• Create and sign smart contracts
• Purchase data
• Pay for data

64 Operative Specification

SDK Web -RI

SDK RI
(+SDK EP)

SDK Core

Figure 5.11 Implementation pyramid.

• Transfer data
• Rate data providers

This section aims to explain how an end-user can operate within the i3-
MARKET user interface.

5.5 Install i3M Wallet

Go to repo URL (https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/releases) and download the v2.5.6 version
suitable for your operating system and do the following actions for:

• Windows operating system:

◦ Download and execute wallet-desktop-v2.5.6-x64.exe.
◦ The application is a standalone RAR file. Extract it and execute
the i3M Wallet.exe file.

• MacOS operating system:

◦ Open the dmg file and install the wallet desktop application.

5.7 Creating a Wallet 2/3 65

• Linux operating system:

◦ For Debian-based systems, you can use the deb package:

• # change x.x.x for the version.
• sudo dpkg-i wallet-desktop-x.x.x-amd64.deb.

5.6 Create a Wallet and a Consumer and/or Provider
Identity in the Wallet

The first time a user initiates the application, a dialog asking for a password
appears (see following pictures for more details). The user will have to
introduce this password each time the application starts – see Figure 5.12.

Figure 5.12 Creating a wallet 1/3.

Create a wallet named i3Market, type HD SW Wallet, and i3Market
network – see Figure 5.13.

66 Operative Specification

Figure 5.13 WEB-RI interface.

5.7 Creating a Wallet 2/3

Create a consumer and/or provider identity (right-click over the i3Market
wallet) − Figure 5.14:

Figure 5.14 Creating a wallet 3/3.

5.8 Register a New OIDC Client

Access to your local instance of WEB-RI (i3-MARKET GUI) available
in http://localhost:5300/ and you will be able to see what is shown in
Figure 5.15:

5.8 Register a New OIDC Client 67

Figure 5.15 OIDC client configuration.

Note: The OIDC client configuration is automatically done from the
WEB-RI. Figure 5.16 enables the interaction directly through the SDK-RI
or SDK-core must do it by following the next steps.

No OIDC client registered? Please follow the following steps:

Figure 5.16 Registering an OIDC Client 1/4.

Ask your i3-MARKET admin for your corresponding “i3-MARKET
OpenID Connect Provider API”1 (by default, each instance of i3-MARKET

1And endpoint similar to: https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/g
et_release2_developers_login

68 Operative Specification

has its own provider) endpoint to get an initial token for registering a new
client (authorize green button).

Try logging in and get initialAccessToken as shown in Figure 5.17.

Figure 5.17 Registering an OIDC client 2/4.

Use initialAccessToken as bearerAuth as shown in Figure 5.18.

Figure 5.18 Registering an OIDC client 3/4.

Then here, using the access token as bearerToken (press the lock symbol
to open the form to paste the token) – see Figure 5.19 – and you can register
a new client. Please note that you must add the following information:

• http://localhost:5300/api/credential in redirect_uris field
• http://localhost:5300/auth in post_logout_redirect_uris field

5.8 Register a New OIDC Client 69

Figure 5.19 Registering an OIDC client 4/4.

After successful client registration, you can paste the returned information
in the text area in Figure 5.20.

Figure 5.20 OIDC client registered.

70 Operative Specification

Generate credentials for the consumer/provider identity:

Start the authentication workflow from local WEB-RI instance by following
the steps illustrated in Figures 5.21– 5.28

Provide a username for consumer role:

Figure 5.21 Username screen.

Wallet pairing:

Figure 5.22 Pairing wallet.

5.8 Register a New OIDC Client 71

Select wallet identity:

Figure 5.23 Configuring wallet 1/2.

Add Verifiable Credentials to the wallet:

Figure 5.24 Configuring wallet 2/2.

72 Operative Specification

Login using credentials generated previously:

Figure 5.25 Login in WEB-RI.

Selective disclosure:

Figure 5.26 Selective disclosure.

5.9 SDKs 73

Sign:

Figure 5.27 Signing with the wallet.

Access finally to the GUI of Web-RI:

Figure 5.28 Accessing WEB-RI.

74 Operative Specification

5.9 SDKs

Technical requirements:

The current subsection contains a set of SDK requirements that have been
collected for releases 2 and 3. Most of them have been extracted from D2.5
[3]; meanwhile, the other ones are the result of deepening in the last iterations
of SDK elicitation process.

SDK-core:

The SDK-core is built using SDK-generator REST API and an Ansible
playbook in charge of generating all the client stubs for Backplane API
(semantic engine, notification manager, and smart contract manager), OIDC,
VC, and Data Access API encapsulated into the SDK-core Java/JavaScript
library.

SDK-core specification:

Backplane API SDK: The main goal of the SDK is boasting the Backplane
API to create applications for the i3-MARKET platform. It will assist the
data marketplaces and stakeholder developers with a set of tools, examples,
and documentation, which will reduce the developing effort to be part of the
i3-MARKET ecosystem. The Backplane API SDK content is divided into
different logical modules, which correspond to each of the i3-MARKET
modules integrated in the Backplane API. In the following, the different
modules identified for the first version of the requirement specification can
be seen:

◦ User-centric authentication SDK
◦ Cloud Wallet SDK module
◦ Data access SDK module
◦ Standard payments SDK module
◦ Tokenization SDK module

Enhanced Backplane API SDK: For some cases, the SDK will complete
the Backplane API services with its own logic to support the developers in
the use of the i3-MARKET capabilities. These will be done through a set of
workflows.

Automatically build Backplane API SDK: In addition to the inner
SDK functionality, i3-MARKET will provide mechanisms to automatically
build the SDK component and it will be offered in different programming
languages.

5.9 SDKs 75

SDK-core implementations:

The SDK-core implementation is based on the usage of SDK-generator, and
it is described in detail in the following subsections.

Core technology:

The SDK-core is supported by means of (a) the SDK-generator REST API
and (b) an Ansible playbook in charge of generating:

• An SDK-core Java artifact that contains client stub for Backplane API
(semantic engine, notification manager, and smart contract manager),
OIDC (OpenID Connect), VC (Verifiable Credentials), and data access
API.

• An SDK-core JavaScript artifact contains client stub for Backplane API
(semantic engine, notification manager, and smart contract manager),
OIDC, VC, and data access API.

SDK-generator:

The SDK-generator is the main pillar of the SDK-core. The SDK-generator
is based on SDK as a service approach. SDK-generator aims to automatically
generate the client stubs needed to interact and consume all the functional-
ities exposed in a REST API. The SDK as a service approach is shown in
Figure 5.29.

Figure 5.29 SDK-generator approach.

76 Operative Specification

The workflow behind SDK-generator is based on the provision of a
programming language specification next to an OAS file and making use of
the OpenAPI generator server, which is able to produce as output SDK client
stubs next to associated documentation about how to use it.

The languages supported by the SDK-generator are shown in Figure 5.30
as part of the SDK as a service configuration.

Figure 5.30 SDK generator supported programming languages.

Continuous integration and delivery:

The SDK-core artifact is automatically provided by means of a CI/CD
pipeline based on Ansible AWX. A conceptual view of SDK-core pipeline
is shown in Figure 5.31.

Figure 5.31 SDK-core CI/CD pipeline.

As initial step in the pipeline, the SDK-core artifact is triggering the
compilation and deployment of a new version of the SDK-generator once

5.9 SDKs 77

a commitment into master branch of SDK-generator project happens. As a
second step (represented as green area in Figure 5.31 - SDK-core CI/CD
pipeline), the generation and publishing of a new version of the SDK-core
artifact is triggered by using a new version of backplane API which is
deployed each time the SDK-core artifact is triggered. The CI/CD behind
backplane API includes a triggering to the SDK-core pipeline. In this way,
SDK-core covers a set of tasks mainly in charge of generating SDK-core
artifacts for Java and JavaScript versions taking a set of relevant OAS files
associated with the following artifacts:

• Backplane API (including semantic engine, notification manager, and
smart contract manager)

• OIDC API
• Verifiable Credentials API
• Data access API

Finally, the pipeline includes a couple of tasks in charge of publishing the
generated Java and JavaScript versions of SDK-core into i3-MARKET Nexus
repository.

SDK-core installation:

SDK-core is a Java/JavaScript library that is installed by simply importing
from i3-MARKET official Nexus repository.

SDK reference implementation (SDK-RI):

The current section reports on SDK-reference implementation specification,
its implementation, and, finally, its deployment and installation.

