
4
Deployment Guides

This section aims to explain how to deploy software within the i3-MARKET
Backplane instances.

4.1 Artifact Deployment Guides

The target audience are the i3-MARKET project developers who are par-
ticipating in the development and deployment of the i3-MARKET Back-
plane.

The i3-MARKET operative considers four possible deployment scenar-
ios, categorized into manual and automatized deployments. These scenarios
are the following:

• Manual deployment scenario one (MDS1)
• Automatized deployment scenario with Ansible (ADS1)
• Automatized deployment scenario with Ansible and GitHub CI/CD
(ADS2)

• Automatized deployment scenario with Docker Compose (ADS3)

Considering an i3-MARKET user role perspective, the main roles
involved in the different deployment scenarios are:

• i3M root instance admin
• i3M SW developer
• i3M third-party SW admin
• i3M pilot instance admin

Table 4.1 provides the mapping between the i3-MARKET user roles and
the previously listed deployment scenarios.

The following subsections describe in detail each identified deployment
scenario.

43

44 Deployment Guides

Table 4.1 Deployment scenarios and i3M user roles mapping.

Deployment
scenario/user role

 i3M root
instance
admin

i3M SW
developer

i3M third-
party SW
admin

i3M pilot
instance
admin

MDS1
ADS1
ADS2
ADS3

4.2 MDS1: Manual Deployment

The manual deployment scenario one (MDS1) is based on accessing the
physical resources by establishing an SSH connection. Once the physical
resource is accessed, the user proceeds with the SW deployment manually.
An overview of MDS1 is provided in Figure 4.1. The actors involved in
these scenarios are i3M SW developer and i3M third-party SW admin; see
Figure 4.1.

Figure 4.1 MDS1.

4.3 ADS1: Automatized Deployment with Ansible Scenario One 45

4.3 ADS1: Automatized Deployment with Ansible Scenario
One

Automated deployment scenario one (ADS1) is based on the provision of a
set of Ansible playbooks containing deployment recipes. Playbooks are one
of the core features of Ansible and tell Ansible what to execute. They are
like a to-do list for Ansible that contains a list of tasks. Playbooks contain the
steps that the user wants to execute on a concrete physical resource, and they
are run sequentially. From an operative point of view, actors involved in this
scenario must cover the following deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment
instructions using the physical resources specified in Section 4.3.

2) Start an Ansible job by instantiating the playbook template provided in
step 1.

An overview of ADS1 is provided in Figure 4.2. The actors involved in
this scenario are i3M IT admin and i3M third-party SW admin.

Figure 4.2 ADS1.

Finally, Figure 4.3 contains a playbook example showing the main struc-
ture in terms of tags to be included in i3-MARKET playbooks, which are:
name, hosts, vars, and tasks.

46 Deployment Guides

Figure 4.3 Ansible playbook example.

4.4 ADS2: Automated Deployment with Ansible and CI/CD
GitHub Pipelines Two

Automatized deployment scenario two (ADS2) is based on the provision
of CI/CD pipelines with Ansible and GitHub. The only actor involved in
this scenario is i3-MARKET SW developer. The goal to reach in current
deployment scenario should be aligned with i3-MARKET DevOps strategy
and based on the provision of an Ansible Tower CI/CD architecture.

An overview of ADS2 is provided in Figure 4.4. The only actor involved
in this scenario is i3M SW developer.

Figure 4.4 ADS2.

4.5 ADS3: Automated Deployment with Docker Compose 47

The goal to reach in current deployment scenario should be aligned with
i3-MARKET DevOps strategy [3] and based on the provision of an Ansible
Tower CI/CD architecture.

Considering the approach presented in [4], Figure 4.5 illustrates what we
should build to support CI/CD in i3-MARKET using Ansible and GitHub.

Figure 4.5 i3-MARKET CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master
branch so that it always compiles. The only way to do this is to check the
code in another branch (like a function branch), test that code, review the
code, and only merge it with the master once all tests pass. The architecture
above achieves exactly that and does so with a very simplified approach
that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by
the CI process in dev -> test -> production. Using this architecture, one could
use the GitHub versions to store artifacts. GitHub has the ability to trigger a
webhook when the latest version is updated, which in turn could trigger an
Ansible Tower CD workflow.

4.5 ADS3: Automated Deployment with Docker Compose

The last way of automatizing the deployments on i3-MARKET is by means of
Docker Compose1. After the last release of the deployment strategy adopted
by i3-MARKET of having N decentralized i3-MARKET instances + 1 master

1 https://docs.docker.com/compose/

48 Deployment Guides

i3-MARKET instance for centralizing some services, a deployment for sup-
porting the installation of an i3-MARKET instance (a decentralized node) has
been created based on Docker Compose. This Docker Compose is used for
deploying and managing multiple Docker containers, each of them containing
different core and decentralized services developed by i3-MARKET.

This mechanism will allow any marketplace to deploy an i3-MARKET
“pilot environment” in order to be part and interact with the i3-MARKET
ecosystem. Therefore, ADS3 becomes the most useful deployment strat-
egy for supporting i3-MARKET pilots in the deployment of those i3-
MARKET services, which need to be decentralized and installed in the pilot
premises. These services are (see more details in Table 2.6): “backplane”
(Backplane API component), “tokenizer” + “pricing-manager” (Monetization
component), “sdk-ref-impl” (SDK-RI component), “web-ri” + “mongo_web-
ri” (Web-RI), “oidc-provider-app” + “oidc-provider-db” (Service-centric
authentication component), “vc-service” (User-centric authentication com-
ponent), semantic-engine + semantic-engine-db (Semantic engine compo-
nent), data_access (Data access component), auditable-accounting (Auditable
accounting component), besu (Blockchain network pilot node + RocksDB
instance), cockroachdb-node (Distributed storage component), conflict-
resolver-service (Conflict resolution component), rating (Rating component),
and “keycloak” (Security server component).

In terms of the Docker Compose file definition, a set of “.env.component”
files has been created for storing config information relative to the deploy-
ment of each of the services contained in the Docker Compose file. For a first
idea of the compose file, see below in Table 4.2 the header as reference of it.

Table 4.2 i3m-pilots-docker-compose.yml.

version: '3'

services:

 backplane:

 container_name: backplane

 image: "XX.XX.XX.XX:XXXX/backplane:${BACKPLANE_VERSION}"

 restart: unless-stopped

 ports:

 - 3000:3000

 env_file: .env.backplane

 networks:

 - i3m-net

 healthcheck:

 test: "exit 0"

 tokenizer:

4.5 ADS3: Automated Deployment with Docker Compose 49

 image: registry.gitlab.com/i3-market/code/wp3/t3.3/nodejs-tokenization-treasury-api:${TOKENIZER_VERSION}

 container_name: tokenizer

 ports:

 - 3001:3001

 env_file: .env.tokenizer

 restart: unless-stopped

 networks:

 - i3m-net

 depends_on:

 besu:

 condition: service_healthy

 postgres:

 condition: service_healthy

 sdk-ri:

 image: registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:${SDKRI_VERSION}

 container_name: sdk-ref-impl

 restart: unless-stopped

 env_file: .env.sdk-ri

 ports:

 - 8181:8080

 networks:

 - i3m-net

 depends_on:

 backplane:

 condition: service_healthy

 command: java -jar /usr/local/jetty/start.jar

 healthcheck:

 test: "exit 0"

 web-ri:

 image: registry.gitlab.com/i3-market/code/web-ri/web-ri:${WEB_RI_VERSION}

 container_name: web-ri

 ports:

 - 5300:3000

 env_file: .env.web-ri

 restart: unless-stopped

 networks:

 - i3m-net

 depends_on:

 - mongo_web-ri

 healthcheck:

 test: "exit 0"

 mongo_web-ri:

 image: mongo:${MONGO_WEBRI_VERSION}

 container_name: mongo_web-ri

 ports:

50 Deployment Guides

 - 27017:27017

 restart: unless-stopped

 env_file: .env.web-ri

 networks:

 - i3m-net

 command: --quiet --setParameter logLevel=0

Besides installing the decentralized services by means of the Docker
Compose file, the administrator of the pilot infrastructure must install a
wallet.

4.6 Tagging Releases Strategy

i3-MARKET has evolved into a complex system where a large number of
pieces must interact together for a comprehensive and integrated perfor-
mance. Therefore, the different versions released by each single compo-
nent/microservice should be managed and controlled to avoid incompatibili-
ties in the deployments.

A strategy based on tagging and a compatibility matrix has been defined
to deal with the release’s compatibility.

Thus, every version released by a component is formatted as
MAJOR.MINOR.PATCH tag, and each part changes according to the fol-
lowing rules.

We increment:

• MAJOR when breaking backward compatibility;
• MINOR when adding a new feature which does not break compatibility;
• PATCH when fixing a bug without breaking compatibility.

On the other hand, a matrix including the “microservice name”,
“microservice version”, and a vector of dependencies with other components
(and its compatible version) has been defined.

4.7 Deployment Process

At the deployment time, each artifact/service must include in the associated
git project a requirements.txt file providing values in the “USES” columns;
for example, see the requirement.txt for semantic engine in Figure 4.6.

4.7 Deployment Process 51

Figure 4.6 Requirement.txt for semantic engine repository.

4.7.1 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker
applications. It allows you to define the services and their dependencies in
a YAML file and run them with a single command. Docker Compose is
especially useful for complex applications that require multiple containers,
such as web applications that use a database and a web server.

The Docker Compose file defines the services, networks, and volumes
for the application. Each service is defined with its own Docker image,
command, environment variables, ports, and volumes. Dependencies between
services can be specified using network connections, and shared volumes can
be defined to allow data to be shared between containers.

Docker Compose can be used to orchestrate the deployment of containers
in a local development environment or in a production environment. It can
be used with Docker Swarm to deploy multi-node applications, and it can be
integrated with other tools such as Jenkins or GitLab CI/CD for continuous
integration and continuous deployment.

Using Docker Compose can provide many benefits for your Docker-based
applications, including the following.

1) Simplified deployment: Docker Compose makes it easy to deploy
multi-container applications with a single command.

52 Deployment Guides

2) Improved scalability: By defining services and their dependencies,
Docker Compose allows you to scale individual components of your
application as needed.

3) Consistent environments: Docker Compose ensures that all services in
your application run in a consistent environment, regardless of the host
system.

4) Easy testing: Docker Compose makes it easy to spin up test environ-
ments with the same configuration as your production environment.

5) Better collaboration: By defining the application configuration in a
YAML file, Docker Compose makes it easy to share and collaborate on
configurations with other team members.

Docker Compose is a powerful tool for defining and deploying multi-
container Docker applications. It simplifies the deployment process and
allows you to scale your applications with ease, while also ensuring con-
sistency across environments and enabling collaboration between team
members.

4.7.2 Technical Requirements

The technical requirements for using Docker Compose include:

1) Docker Engine: Docker Compose requires Docker Engine to be
installed and running on the host system. Docker Engine is a container
runtime that allows you to build, run, and manage Docker containers.

2) YAML file: Docker Compose uses a YAML file to define the services,
networks, and volumes for the application. The YAML file should be
named docker-compose.yml and should be located in the root directory
of the application.

3) Docker images: Docker Compose uses Docker images to create con-
tainers for each service in the application. Docker images can be
obtained from Docker Hub, a public registry of Docker images, or from
a private registry.

4) Network connections: Services in the application may need to commu-
nicate with each other over the network. Docker Compose uses Docker
networks to create isolated network environments for each application.

5) Volumes: Docker Compose allows you to define volumes to share data
between containers and persist data beyond the life of a container.
Volumes can be defined as local host directories or as named volumes.

4.7 Deployment Process 53

6) Environment variables: Docker Compose allows you to define envi-
ronment variables for each service in the application. Environment
variables can be used to configure the behaviour of the container at
runtime.

7) Compose CLI: Docker Compose can be run from the command line
using the Compose CLI. The Compose CLI allows you to start, stop,
and manage Docker Compose applications.

Docker Compose requires a basic understanding of Docker and con-
tainerization concepts, as well as familiarity with YAML syntax. It is
recommended to have a solid understanding of Docker Engine before using
Docker Compose, as it relies heavily on Docker Engine functionality.

4.7.3 Specification and configurations

The specification and configurations of Docker Compose are defined in
a YAML file named “docker-compose.yml”. This file consists of several
sections that define the services, networks, and volumes for the application.

1) Version: The version section specifies the version of the Compose file
format to use. The latest version is version 3.9, but earlier versions may
be used depending on the Docker Engine version being used.

2) Services: The services section defines the individual services that
make up the application. Each service is defined as a separate block,
with its own image, environment variables, ports, volumes, and other
configuration options.

3) Networks: The networks section defines the networks that the services
use to communicate with each other. By default, Docker Compose
creates a network for the application, but additional networks can be
defined as needed.

4) Volumes: The volumes section defines the volumes that are used by
the services to store persistent data. Volumes can be defined as named
volumes or as host directories.

5) Environment variables: The environment section defines environment
variables that are passed to the services. Environment variables can be
used to configure the behaviour of the container at runtime.

6) Deploy: The deploy section specifies additional deployment options for
the services, such as the number of replicas, placement constraints, and
resource limits.

54 Deployment Guides

7) External services: The external_services section is used to define ser-
vices that are provided by external sources, such as a load balancer or a
database that is not part of the Docker Compose application.

These sections can be further configured with various options, such as
image pull policies, container restart policies, logging options, and more.

4.7.4 Deployment

This Docker Compose is used for deploying and managing multiple docker
containers, each of them containing different core and decentralized ser-
vices developed by i3-MARKET. Therefore, ADS3 becomes the most useful
deployment strategy for supporting i3-MARKET pilots in the deployment of
those i3-MARKET services, which need to be decentralized and installed in
the pilot premises. It is a practical guide that makes use of the automated
deployment based on Docker Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the
following command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

4.7 Deployment Process 55

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers
under the “i3m-instance” as shown in the following image:

