
3
Backplane API Gateway

3.1 Objectives

The Backplane gateway system is the building block in charge of offering
to all participants and marketplaces access to the Backplane system. The
goal of the Backplane API is therefore twofold: on the one hand, it serves
an integrated API endpoint for all the i3-MARKET services offered by i3-
MARKET and implemented in the respective building blocks. On the other
hand, it provides secure mechanisms for preventing not-allowed accesses.

In terms of internal connections with other i3-MARKET building blocks,
Backplane gateway system has secure communication with the rest of sub-
systems to integrate their services into the Backplane API, in order to provide
secure access to authorized clients.

The Backplane API is the set of endpoints exposed by the gateway. It
comprises all the publicly available endpoints of the subsystems integrated
with the Backplane, as well as a few other endpoints, belonging to the
Backplane itself, used in the authentication/authorization flows.

The API follows the OpenApi Specification 3.01. Furthermore, the end-
points corresponding to each subsystem are generated automatically based
on the subsystem’s own OpenApi specification, using the service integrator
engine, written in Dart.

In Figure 3.1, there is an overview of the overall Backplane gateway
architecture. It shows how the Backplane router incorporates all subsystem
endpoints; so it can redirect each query to the corresponding subsystem,
applying an authentication layer above to avoid unauthorized requests. Users
can access to the Backplane gateway via the Backplane API, which publishes
all available subsystems together with their endpoints, being totally agnostic
of its implementation and how to access the subsystem directly.

1https://swagger.io/specification/

19

20 Backplane API Gateway

Figure 3.1 Backplane gateway architecture.

The Backplane gateway exposes all subsystem endpoints through a single
Backplane API. This simplifies the user interaction with the system; further-
more, it provides an auto-generated documentation that follows the OpenApi
specification (OAS).

3.2 Solution Design/Blocks

3.2.1 Authentication and authorization

In the current Backplane API gateway implementation, OAuth 2.02 authen-
tication flow is used. Combined together with OpenID Connect (OIDC)3,
that provides a simple identity layer on top. Using OAuth Authorization
Code flow (see Figure 3.2), a JWT token is generated at the end of the
login flow, which, later, can be used in subsequent queries to authen-
ticate clients against subsystem endpoints, using the Backplane API as
gateway.

2https://oauth.net/2/
3https://openid.net/connect/

3.2 Solution Design/Blocks 21

3.2.1.1 Authentication
Clients are expected to request their JWT token through a given login
endpoint, to further request secured endpoints using those credentials.

Thanks to the OpenID Connect identity layer, scopes and claims can be
used. Each endpoint can declare a set of scopes, which will be later used
to ensure that the requesting user has enough privileges, in a claim-based
authorization fashion.

Figure 3.2 Backplane authentication flow overview.

There is a description of each connection considered during the authenti-
cation flow described in Figure 3.2:

1. Login browser redirect: When a user requests a Backplane authenti-
cated endpoint without providing the required credentials, it is redirected
to the identity provider authorization page (OIDC provider).

2. Auth grant issue: In case login succeeds, an authorization grant is
issued and provided to the client.

3. JWT request: The client requests an access token, providing the Auth
grant code.

4. Generate JWT: Now, the Backplane generates an access token JWT,
adding the user claims that are requested to our identity provider.

22 Backplane API Gateway

5. Request endpoint: The client uses the previously generated JWT to
authenticate their requests to the Backplane.

6. Redirect request: In case the user has enough privileges to access
the requested endpoint, checking the endpoint scope and user claims,
the Backplane will redirect the query to the corresponding subsystem
endpoint.

3.2.1.2 Authorization
After performing the whole authentication flow, clients will end up with two
JWT tokens:

• access_token: Contains the subject id, together with the scope.
• id_token: Contains information about the user itself, including the
Verifiable Credentials associated with the corresponding claims, based
on the user profile.

Clients are expecting to provide those tokens in the header part when
querying a secured endpoint. Figure 3.3 illustrates the authorization flow.

Figure 3.3 Backplane authorization flow overview.

1. Secured endpoint query: Clients are expected to include the
access_token and id_token headers when requesting a Backplane
authenticated endpoint.

3.2 Solution Design/Blocks 23

2. Retrieve JWKS4: The OIDC uses token asynchronous validation; so
the Backplane just needs to retrieve the JWKS, an array of public
cryptographic keys, in order to validate each token in offline mode using
EdDSA5, a public-key cryptography signature algorithm.

3. Validate tokens: The Backplane internally validates the tokens’ sig-
nature and verifies that the user has the required claims to access the
endpoint.

4. Query: The query is redirected to the subsystem, together with the
id_token header, containing a JWT token that describes the requester.

3.2.2 Subsystem implementation

While subsystems do not need to worry about authentication, they need to
indicate in their OAS specification which of their endpoints are protected and
which are not. To mark an endpoint as protected, it must include:

• JWT security reference: The endpoint specification must show that
JWT is used as a means of authentication. This is done by adding de JWT
schema to the security field, specifying if needed the claims required to
access the endpoint.

“security”: [
 {
 “jwt”: [“consumer”]
 }

]

Then, clients must define the security schema as an ApiKey, expected to
be presented in the header id_token:

• JWT security schema: Add the following security schema to the
subsystem OpenApi specification (OAS):

"securitySchemes":{
 "jwt":{
 "type": "apiKey",
 "in": "header",
 "name": "id_token"
 }
},

4JSON Web Key Sets (https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-
key-sets).

5https://www.rfc-editor.org/rfc/rfc8032

24 Backplane API Gateway

Note: There is no need to define the access_token explained before, as it
is only being used by the Backplane itself; so, subsystems can ignore it.

With the above-stated OAS modifications, the service integrator engine
will add the required authorization mechanism to each endpoint, automati-
cally, during Backplane deployment pipeline, as described in Section 3.2.5.

3.2.3 Data flows

When a service is integrated into the Backplane, it means that its resources
can be accessed through the Backplane itself. So, when a client application
accesses to a resource into the Backplane, it will redirect the request to the
final resource path, specified in the resource provider OAS file.

Thanks to this approach, the client is agnostic of the final location of the
required service, being all handled by the Backplane.

The Backplane establishes a communication using JWT authentication
between the Backplane and the service to ensure data protection. This
communication can also be easily secured using certificates HTTPs/TLS.

3.2.4 Service Integration Manager

The service integration manager is one of the key components of the i3-
MARKET Backplane. It ensures the easy integration of any subsystem ser-
vice to the i3-MARKET Backplane, using OpenAPI specification as bridge.

The Manager is written in Dart6 and is the one responsible for external
service integration to the Backplane API; so it is capable of acting as a
gateway for this new service. In Figure 3.4, there is an overview of how the
service integration manager works, proceeding with the following steps:

1. Generate resources: Given a new service OpenAPI specification, it
runs the Loopback CLI OpenAPI generator command7, which generates
the specified controllers and data sources that later will be integrated
into the final Backplane API Docker image.

2. Integrate + Build:As the Loopback CLI just provides a set of skeletons,
some modifications need to be performed to the previously generated
sources, customizing them for our use case. Then, it can be integrated
to the Backplane API base code, building the final Backplane Docker
image, ready to be used for deployment.

6https://dart.dev/
7https://loopback.io/doc/en/lb4/OpenAPI-generator.html

3.2 Solution Design/Blocks 25

Figure 3.4 Service integrator process overview.

3.2.5 Automatic integration mechanism

In order to provide an easy onboarding experience, it is mandatory to
build mechanisms to achieve easy and automated marketplaces and service
integration. In order to achieve these goals, the consortium decided to use
GitLab CI pipelines8 together with Ansible playbooks9, being GitLab respon-
sible of artifact generation and Ansible of the deployment to i3-MARKET
nodes.

3.2.6 Subsystem OAS repository

The integration process begins when an i3-MARKET maintainer validates
a given subsystem OAS (OpenApi specification) and, hence, merges a pull
request into the master branch adding or modifying a definition.

The lack of validation proofs hinders the i3-MARKET maintainer job,
causing sometimes the approval of OAS files with errors or incompatibilities,
which in the end break the Backplane. At this point, we found the need of
implementing a CI/CD pipeline with a job responsible for validating the
files, together with the correct integration within the Backplane base code,
as described in Figure 3.5, performing the following steps in order:

1. Validate the OAS file: All the OAS files are collected and the API
definition of each one is validated, using the npm swagger-cli10 utility.

8https://docs.gitlab.com/ee/ci/pipelines/
9https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

10https://www.npmjs.com/package/swagger-cli

26 Backplane API Gateway

2. Clone Backplane repository: In this step, we are cloning the Backplane
repository. This is a needed step in order to verify the OAS files are
compatible with the integrator and the Backplane itself.

3. Integrate OAS: In this step, using the latest integrator engine available,
we are integrating all the OAS files into the base Backplane code. In
case some error or incompatibly is reported, the whole pipeline fails and
notifies the i3-MARKET maintainer.

4. Integration test: This step starts a Backplane instance only accessible
locally. Then, using a tool called schemathesis11, we are testing all the
endpoints of the Greeter subsystem12, making sure none of them return
an error 5XX. Note the tool is not testing all the subsystem endpoints,
given the fact that we cannot assume the status of all of them. We found
out that scanning a single known subsystem is enough to detect common
failures.

5. Release new version: At this moment, we could say the OAS files are
safe to be deployed; so, a new tag is being created and pushed into the
Backplane repository. Triggering the Backplane automatic integration
pipeline is explained in the next section.

Figure 3.5 Subsystem OAS automatic integration mechanism overview.

3.2.7 Backplane repository

Validated updates on the subsystem OAS repository trigger the Backplane
automatic integration mechanism, described in Figure 3.6, performing the
following steps in order:

1. Run the service integrator engine: The engine artifact is collected
from the corresponding code repository, and the code components that

11https://github.com/schemathesis/schemathesis
12Mockup of an OAS subsystem, created as an example for the rest of partners.

3.2 Solution Design/Blocks 27

later will be integrated to the final Backplane artifact are generated. The
functionality of the service integrator is fully explained in the previous
section.

2. Check vulnerabilities: In this phase, a vulnerability check using Trivy13

is performed, a vulnerability scanner developed by AquaSecurity14. This
step scans NPM and OS libraries, marking the pipeline as failed in case
any critical vulnerability is found.

3. Integration test: This step verifies the functionality of the fully inte-
grated Backplane, as explained in the section before (subsystem OAS
repository).

4. Build image: Using the code stored in the Backplane repository,
together with the output of the service integrator, a new Docker image
for production deployment is generated and uploaded to the project
registry; so future deployment can easily be performed using Docker.

5. Deploy: The pipeline triggers the deployment Ansible playbooks, which
deploy the Backplane API using the Docker image built previously,
along with the i3-MARKET SDK Docker image.

6. Update the developer portal: In parallel to this process, because a new
OAS has been uploaded to the project, the developer portal must be
updated, triggering the documentation repository pipeline. It generates a
new developer portal artifact and deploys it using GitLab Pages15.

3.2.7.1 Remote images
All production-ready images can be found in the private and public repos-
itories managed by the consortium (GitLab and Nexus). Currently, we are
providing two different image flavours:

• Major.minor.patch: Base Backplane image, which includes the latest
subsystem OAS available at the build instant.

• Major.minor.patch-with-integrator: Built from the base image,
although it also includes the integrator binary under /integrator path.
This image provides a custom entry point that will check the existence
of custom OAS files under /home/node/app/specs. If affirmed, the inte-
grator will integrate those specs into the base Backplane image before

13https://github.com/aquasecurity/trivy
14https://www.aquasec.com/
15https://docs.gitlab.com/ee/user/project/pages/

28 Backplane API Gateway

Figure 3.6 Backplane automatic integration mechanism overview.

running the Backplane; otherwise, the integration phase will be skipped,
and the Backplane will be executed using the latest OAS definitions at
the image compilation instant.

Both image flavours can be pulled using the described versioning format
(major.minor.patch) or the latest tag to get the most recent version.

3.2.8 Final deployment

Final deployment phase, described in Figure 3.7, is orchestrated using a single
Ansible playbook triggered by the GitLab CI pipeline described before. Actu-
ally, during this testing phase, four i3-MARKET nodes are being considered,
each one performing the following tasks:

1. Get config files: Queries against i3-MARKET nexus repository are
being executed in order to obtain the required configuration files for each
node.

2. Get Backplane Docker image: The latest Backplane image is retrieved
from the GitLab Docker image registry used in the artifact construction
phase.

3. Start Backplane container: Now, the running container is replaced,
launching a new one with the latest image, configuring the volumes and
environment variables required.

3.2 Solution Design/Blocks 29

Figure 3.7 Ansible playbook run overview.

3.2.9 Multiple environments support

One of the limitations found in the current Backplane was the lack of support
for multiple environment deployments. Specific OAS files had to be written
for each environment, identical, except for the servers’ annotation, that might
differ based on the environment characteristics. Instead, we found out a way
to support this requirement without having to duplicate OAS definitions.

Right now, we are using the Open API “servers” specification to indicate
all servers providing the stated service, using custom tags to identify the ones
to be used in each environment. For example:

{
 "servers": [
 {
 "url": "http://conflict-resolver-service:3000/",
 "x-tags": ["docker-compose"]
 },
 {
 "url": "http://node1.i3-MARKET.com:8888/",
 "x-tags": ["nodes"]
 },
 {
 "url": "http://node2.i3-MARKET.com:8888/",
 "x-tags": ["nodes"]
 }
],
}

30 Backplane API Gateway

In the previous definition, there are three different nodes providing the
same service. Using the “x-tags,” we can tag each server in order to choose
at start-up time which set of servers has to use the Backplane to redirect the
queries for each service.

The Backplane can filter and choose the most convenient server based
on the SERVER_FILTER_TAGS environment variable definition, a comma
separated list of tags to indicate the servers to use.

Figure 3.8 shows one server that can be used to redirect queries; hence,
in case the previous selector gets multiple server options, a DNS resolution
probe is executed for each hostname to choose the first available option.
Given the heterogeneity of subsystems, the Backplane cannot assure avail-
ability of each server, as it lacks any liveness endpoint definition to test;
furthermore, the Backplane is agnostic of the service functionality that it
provides and its behaviour. Below, there is an example considering only the
nodes tagged with “node,” where node2 is being selected because node1
failed the DNS resolution.

Figure 3.8 Server election process example.

We are aware that this approach is quite naïve, as host DNS availability
does not prove there is a current API working in the server. However, it solves
common issues of multiple environment deployments.

In order to improve the server election mechanism, we would need to
enforce a liveness/readiness endpoint in marketplace definitions, which could
also lead to including algorithms to failback to an alternative server in case
the main one fails.

3.3 Interfaces 31

3.3 Interfaces

Backplane API for the i3-MARKET project:

3.3.1 Developers

GET/OpenIDConnectProvider/release2/developers/login
Obtain a valid initial_access_token for registering a new client

POST/OpenIDConnectProvider/release2/oidc/reg
Registering a new client

3.3.2 OIDC discovery

GET/OpenIDConnectProvider/release2/oidc/.well-known/openid-
configuration
Get OpenID Provider configuration information

3.3.3 OIDC core

GET/OpenIDConnectProvider/release2/oidc/auth
Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks
Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token
Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController

POST/auditableAccounting/calculateMerkleRoot
GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

32 Backplane API Gateway

3.3.5 RegistryController

GET/auditableAccounting/registries/count
PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController

GET/auth/openid/callback
GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service

POST/conflictResolverService/dispute
Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification
Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController

POST/greeter/farewell/body
GET/greeter/farewell/headerParams

GET/greeter/farewell/pathParams/{name}/{age}

GET/greeter/farewell/queryParams

3.3 Interfaces 33

3.3.9 HelloController

GET/greeter/hello/authenticated
GET/greeter/hello/consumer

GET/greeter/hello/provider

GET/greeter/hello/unauthenticated/{name}

3.3.10 OpenApiController

GET/notification-manager-oas/api/v1/health
Version

GET/notification-manager-oas/api/v1/version
Version

3.3.11 Notifications

POST/notification-manager-oas/api/v1/notification/service
Notification service

GET/notification-manager-oas/api/v1/notification/unread
Get unread notifications

GET/notification-manager-
oas/api/v1/notification/user/{user_id}/unread
Get unread notifications by id

GET/notification-manager-oas/api/v1/notification/user/{user_id}
Get notification by Userid

PATCH/notification-manager-
oas/api/v1/notification/{notification_id}/read
Modify notification

PATCH/notification-manager-
oas/api/v1/notification/{notification_id}/unread
Modify notification

GET/notification-manager-oas/api/v1/notification/{notification_id}
Get notification

DELETE/notification-manager-
oas/api/v1/notification/{notification_id}
Delete notification

POST/notification-manager-oas/api/v1/notification
Notification user

GET/notification-manager-oas/api/v1/notification
Get notifications

34 Backplane API Gateway

3.3.12 Queues
PATCH/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}/activate
Switch status queue

PATCH/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}/deactivate
Switch status queue

GET/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}
Get queues by id

DELETE/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}
Delete queue

POST/notification-manager-oas/api/v1/services/{service_id}/queues
Post queues

GET/notification-manager-oas/api/v1/services/{service_id}/queues
Get queues

GET/notification-manager-oas/api/v1/services/{service_id}
Get services by id

DELETE/notification-manager-oas/api/v1/services/{service_id}
Delete service

POST/notification-manager-oas/api/v1/services
Create service

GET/notification-manager-oas/api/v1/services
Get services

3.3.13 Subscriptions

GET/notification-manager-oas/api/v1/users/subscriptions/{category}
Returns a Json containing a list of users subscribed to that category

GET/notification-manager-oas/api/v1/users/subscriptions
Get all user subscriptions

PATCH/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/activate
Activate or deactivate user subscription

PATCH/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/deactivat
e
Activate or deactivate user subscription

GET/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

3.3 Interfaces 35

Get user subscription by user_id and subscription_id

DELETE/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}
Delete subscription by user_id and subscription_id

POST/notification-manager-oas/api/v1/users/{user_id}/subscriptions
Create subscription to category

GET/notification-manager-oas/api/v1/users/{user_id}/subscriptions
Get Subscriptions by Userid

3.3.14 PingController
GET/ping
GET/pingConsumer

GET/pingProvider

GET/pingUser

3.3.15 Cost-controller

GET/pricingManager/fee/getfee
Get I3M fee

PUT/pricingManager/fee/setfee
Set I3M fee

3.3.16 Price-controller
GET/pricingManager/price/checkformulaconfiguration
Check formula and parameter consistency

GET/pricingManager/price/getformulajsonconfiguration
Get configuration using Json format

GET/pricingManager/price/getprice
Get the price of data

PUT/pricingManager/price/setformulaconstant
Set formula constant

PUT/pricingManager/price/setformulajsonconfiguration
Set configuration using Json format

PUT/pricingManager/price/setformulaparameter
Set formula parameter

PUT/pricingManager/price/setformulawithdefaultconfiguration
Set formula with default values for constants and parameters

36 Backplane API Gateway

3.3.17 RatingService
GET/rating/api/agreements/{id}/isRated
Check if an agreement is rated

GET/rating/api/agreements/{id}/rating
Get the rating object of a specified agreement

GET/rating/api/consumers/{pk}/agreements
Get the terminated agreements of the consumer

GET/rating/api/consumers/{did}/ratings
Get the ratings of the consumer

GET/rating/api/providers/{pk}/agreements
Get the terminated agreements of the provider

GET/rating/api/providers/{did}/ratings
Get the ratings of the provider

GET/rating/api/providers/{did}/totalRating
Get the average rating of the provider

GET/rating/api/questions
Get all the questions

POST/rating/api/ratings/{id}/respond
Respond to a rating object

PUT/rating/api/ratings/{id}
Edit an existing Rating

GET/rating/api/ratings/{id}
Get a single rating.

DELETE/rating/api/ratings/{id}
Delete a single rating.

POST/rating/api/ratings
Create a new rating

GET/rating/api/ratings
Get all the ratings

3.3.18 Agreement
GET/sc-manager-oas/check_active_agreements
Check active agreements

POST/sc-manager-oas/check_agreements_by_consumer
Check agreements by consumer

GET/sc-manager-oas/check_agreements_by_data_offering/{offering_id}
Check agreements by data offering

POST/sc-manager-oas/check_agreements_by_provider
Check agreements by provider

3.3 Interfaces 37

POST/sc-manager-
oas/create_agreement_raw_transaction/{sender_address}
Create agreement

POST/sc-manager-oas/deploy_signed_transaction
Deploy signed transaction

PUT/sc-manager-oas/enforce_penalty
Enforce penalty

POST/sc-manager-oas/evaluate_signed_resolution
Verify a signed resolution

GET/sc-manager-oas/get_agreement/{agreement_id}
Get agreement

GET/sc-manager-oas/get_pricing_model/{agreement_id}
Get agreement's pricing model

GET/sc-manager-oas/get_state/{agreement_id}
Get the state of the agreement

POST/sc-manager-oas/propose_penalty
Choose penalty

GET/sc-manager-oas/retrieve_agreements/{consumer_public_key}
Retrieve the active agreements, which start date is reached, based on consumer public key

GET/sc-manager-oas/template/{offering_id}
Request template with static and dynamic parameters

PUT/sc-manager-oas/terminate
Terminate agreement

3.3.19 Explicit user consent
GET/sc-manager-oas/check_consent_status/{dataOfferingId}
Check consent status

POST/sc-manager-oas/deploy_consent_signed_transaction
Deploy consent signed transaction

POST/sc-manager-oas/give_consent
Give consent

PUT/sc-manager-oas/revoke_consent
Revoke consent

3.3.20 Registration-offering
GET/semantic-
engine/api/registration/ActiveOfferingByCategory/{category}
Get a registered active data offerings by category

38 Backplane API Gateway

GET/semantic-
engine/api/registration/ActiveOfferingByProvider/{id}/providerId
Get a registered active data offering by provider

GET/semantic-engine/api/registration/categories-list
Get a list of all categories

GET/semantic-engine/api/registration/contract-
parameter/{offeringId}/offeringId
Get contract parameters by offering id

POST/semantic-engine/api/registration/data-offering
Register a data offering

DELETE/semantic-engine/api/registration/delete-offering/{id}
Delete a data offering

GET/semantic-engine/api/registration/federated-
activeOffering/{id}/providerId
Get a registered active data offering by provider

GET/semantic-engine/api/registration/federated-
activeOffering/{category}
Get a registered active federated data offering by category

GET/semantic-engine/api/registration/federated-contract-
parameter/{id}/offeringId
Get contract parameters by offering id in federated search

GET/semantic-engine/api/registration/federated-
offering/getActiveOfferingByText/{text}/text
Get a registered data offering by text/keyword

GET/semantic-engine/api/registration/federated-
offering/textSearch/text/{text}
Get a registered data offering by text/keyword in federated search

GET/semantic-engine/api/registration/federated-
offering/{id}/offeringId
Get a registered data offering by offering id

GET/semantic-engine/api/registration/federated-offering/{category}
Get a registered data offering by category

GET/semantic-engine/api/registration/federated-offerings-list/on-
Active
Get a list of offerings for active in federated search

GET/semantic-engine/api/registration/federated-offerings-list/on-
SharedNetwork
Get a list of offerings for shared status in federated search

GET/semantic-engine/api/registration/federated-offerings-list
Get a list of offerings

GET/semantic-engine/api/registration/federated-providers-list

3.3 Interfaces 39

Get a list of providers

GET/semantic-
engine/api/registration/getActiveOfferingByText/{text}/text
Get a registered data offering by text/keyword

GET/semantic-
engine/api/registration/getOfferingByActiveAndShareDataWithThirdPart
y/{active}/{shareDataWithThirdParty}
Get a registered data offering by active and sharedWithThirdParty status

GET/semantic-
engine/api/registration/getOfferingBySharedAndTransferableAndFreePri
ce/{shared}/{transfer}/{freePrice}
Get a registered data offering by shared and transferable and FreePrice status

GET/semantic-
engine/api/registration/offering/ByTitleAndPricingModelName/{dataOff
eringTitle}/{pricingModelName}
Get a registered data offering by title and pricing model name

GET/semantic-engine/api/registration/offering/offering-template
Download offering template

GET/semantic-engine/api/registration/offering/provider/{providerId}
Get data provider by providerId

GET/semantic-engine/api/registration/offering/{id}/offeringId
Get a registered data offering by offering id

GET/semantic-engine/api/registration/offering/{id}/providerId
Get a registered data offering by provider id

GET/semantic-engine/api/registration/offering/{category}
Get a registered data offering by category

GET/semantic-engine/api/registration/offerings
Get total offering and its list

GET/semantic-engine/api/registration/offerings-list/on-SharedNetwork
Get a list of offerings for shared status

GET/semantic-engine/api/registration/offerings-list/on-active
Get a list of offerings for active

GET/semantic-engine/api/registration/offerings-list
Get a list of offerings

DELETE/semantic-engine/api/registration/provider/{providerId}/delete
Delete a data provider by providerId

GET/semantic-engine/api/registration/providers/{category}/category
Get a list of providers by category

GET/semantic-engine/api/registration/providers-list
Get a list of providers

40 Backplane API Gateway

GET/semantic-engine/api/registration/textSearch/text/{text}
Get a registered data offering by text/keyword

PUT/semantic-engine/api/registration/update-offering
Update already registered offering info

POST/semantic-engine/api/registration
Register provider info

3.3.21 TokenizerController

POST/tokenization/api/v1/operations/clearing
Retrieve the transaction object to start the marketplace clearing operation

POST/tokenization/api/v1/operations/exchange-in
Retrieve the transaction object to perform an exchangeIn.

POST/tokenization/api/v1/operations/exchange-out
Retrieve the transaction object to perform an exchangeOut

POST/tokenization/api/v1/operations/fee-payment
Generate the fee payment transaction object

POST/tokenization/api/v1/operations/set-paid
Generate the payment transaction object

GET/tokenization/api/v1/operations
Get list of operations

GET/tokenization/api/v1/treasury/balances/{address}
Get the balance for a specific account

POST/tokenization/api/v1/treasury/community-wallet
Alter the community wallet address and the related community fee

GET/tokenization/api/v1/treasury/marketplaces/{address}
Get the index of a registered marketplace

POST/tokenization/api/v1/treasury/marketplaces
Register a marketplace

GET/tokenization/api/v1/treasury/token-transfers/{transferId}
Get the token transfer given a TransferId

POST/tokenization/api/v1/treasury/transactions/deploy-signed-
transaction
Deploy a signed transaction

GET/tokenization/api/v1/treasury/transactions/{transactionHash}
Get the receipt of a transaction given a TransactionHash

3.3 Interfaces 41

3.3.22 Credential

GET/verifiableCredentials/release2/vc/credential/issue/{credential}/
callbackUrl/{callbackUrl}
Create a new credential with Veramo framework and store it in the wallet (full flow)

GET/verifiableCredentials/release2/vc/credential/issue/{did}/{creden
tial}
Generate a new credential with Veramo framework for a specific DID

POST/verifiableCredentials/release2/vc/credential/revoke
Revoke a credential by JWT

POST/verifiableCredentials/release2/vc/credential/verify
Verify a credential by JWT

GET/verifiableCredentials/release2/vc/credential
Get the credential list

3.3.23 Issuer

GET/verifiableCredentials/release2/vc/issuer/subscribe
Subscribe this issuer in the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/unsubscribe
Unsubscribe this issuer from the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/verify
Verify the subscription status of the issuer

