
2
General Description

i3-MARKET leverages on blockchain technologies (e.g. Hyperledger and
Ethereum) to build a trusted, interoperable, and decentralized substrate
(backplane) allowing to create a federated data market where data spaces
and marketplaces are able to trade data assets among each other. The i3-
MARKET is mostly a set of independent subsystems with a self-contained
functionality such as the identity and access management system, the seman-
tic engine subsystem, data access subsystem, etc. Most of these subsystems
have broken down their functionality into atomic and loosely coupled com-
ponents exposing their functionality through a REST API, which yields a
microservice-based nature to the i3-MARKET system

2.1 Deployment and Operational Concepts

Help to choose the right technologies to be used:
Choosing the right technologies for software deployments can be a complex
process, but here are some general guidelines to help you make informed
decisions:

2.1.1 Consider the requirements of the software

The first step in choosing the right technologies for a deployment is to
consider the requirements of the software being deployed. This includes
factors such as the operating system, the programming language used, the
database management system, and any dependencies or third-party libraries
required.

2.1.2 Evaluate the deployment environment

The deployment environment will also play a key role in determining the
appropriate technologies to be used. Consider factors such as the hardware

3



4 General Description

and software infrastructure, the network configuration, and the security
requirements.

2.1.3 Consider automation and orchestration

Automation and orchestration tools can help to streamline the deployment
process and minimize the risk of errors or inconsistencies. Consider using
tools such as Ansible, Chef, or Puppet to automate the deployment process.

2.1.4 Evaluate containerization options

Containerization technologies such as Docker and Kubernetes can help to
simplify the deployment process and make it more portable across differ-
ent environments. Consider using containerization technologies to deploy
software in a consistent and repeatable way.

2.1.5 Consider monitoring and reporting tools

Monitoring and reporting tools can help to ensure that the software is per-
forming as expected and can alert teams to potential issues before they
become critical. Consider using tools such as Nagios, Prometheus, or Grafana
to monitor and report on key metrics.

2.2 Deployment Specification

The i3-MARKET architecture specification is based on the 4 + 1 architectural
view model approach. One of these views, physical view, is the scope of this
document. Physical view depicts the system from a system engineer’s point
of view. It concerns the topology of software components on the physical
layer as well as the physical connections between these components. This
view is also known as the deployment view. UML diagrams used to represent
the physical view must include the deployment diagram.

Considering this in the i3-MARKET context, the deployment specifi-
cation should define execution architecture of systems that represent the
assignment (deployment) of software artifacts (i3-MARKET building blocks)
to deployment targets (usually nodes).

Nodes represent either hardware devices or software execution environ-
ments. They could be connected through communication paths to create net-
work systems of arbitrary complexity. Artifacts represent concrete elements
in the physical architecture.



2.3 Terminology 5

Once the deployment has been provided, a complementary specification
would be necessary to define how to deploy software within the i3-MARKET
ecosystem. In the context of i3-MARKET, we will be referring to this
specification as management operative specification.

Finally, an end-user operative specification is provided, defining the
interaction with i3-MARKET from a stakeholder point of view.

2.3 Terminology

The key terms behind i3-MARKET deployment terminology are the
following:

Artifact:
As it is described in [1], an artifact is a classifier that represents some physical
entity, a piece of information that is used or is produced by a software
development process, or by deployment and operation of a system. Artifact
is a source of a deployment to a node. A particular instance (or “copy”) of
an artifact is deployed to a node instance. The most common artifacts are as
follows:

• Source files
• Executable files
• Database tables
• Scripts
• DLL files
• User manuals or documentation
• Output files

Artifacts are deployed on the nodes. They can provide physical manifes-
tation for any UML element. Generally, they manifest components. Artifacts
are labelled with the stereotype <<artifact>>, and it may have an artifact
icon on the top right corner.

Each artifact has a filename in its specification that indicates the physical
location of the artifact. An artifact can contain another artifact. It may be
dependent on one another.

Artifacts have properties and behaviour that manipulate them.

Node:
As it is introduced in [2], a node is a computational resource upon which
artifacts are deployed for execution. A node is a physical thing that can
execute one or more artifacts. A node may vary in its size depending on the
size of the project.



6 General Description

Node is an essential UML element that describes the execution of code
and the communication between various entities of a system. It is denoted by
a 3D box with the node name written inside of it. Nodes help to convey the
hardware that is used to deploy the software.

An association between nodes represents a communication path from
which information is exchanged in any direction.

Generally, a node has two stereotypes as follows:

• << device>>: It is a node that represents a physical machine capable
of performing computations. A device can be a router or a server PC. It
is represented using a node with stereotype <<device>>. In the UML
model, you can also nest one or more devices within each other.

• << execution environment >>: It is a node that represents an
environment in which software is going to execute. For example, Java
applications are executed in Java virtual machine (JVM). JVM is con-
sidered as an execution environment for Java applications. We can nest
an execution environment into a device node. You can nest more than
one execution environments in a single device node.

The following sections report on the deployment strategy and the status
reached at the closure of the final release.

2.4 i3-MARKET Artifacts Overview

In the context of i3-MARKET, several artifacts have been developed, inte-
grated, and deployed. These artifacts have been built on top of a set of
third-party and open-source frameworks, which have been analysed and
deployed as tech-bed for the construction of the i3-MARKET backplane. For
the final release, the third-party artifacts included on i3-MARKET are:

◦ Hyperledger Besu: The blockchain framework.
◦ CockroachDB: Distributed database deployed on each node. Admin
Interface only accessible through node 1.

◦ RocksDB: Decentralized storage included with the blockchain network
(ledger).

◦ Loopback4: Framework supporting i3-MARKET backplane API.

Regarding the project-internal conceptual artifacts, i3-MARKET has
developed an extensive artifacts portfolio, mainly provided in WP3 and WP4,
for supporting the integration, registration, discovery, and transfer of reliable
trade of data. A detailed list of these artifacts (including artifact ID, artifact
name, artifact dependencies, and their status for the final release) can be seen
in Table 2.1.



2.4 i3-MARKET Artifacts Overview 7

Table 2.1 i3M proprietary conceptual artifacts.
Artifact

ID
Artifact Dependencies Final release use Notes

A1 Blockchain
framework

Decentralized
storage

Deployed and used Blockchain framework.
Deployed on each node.

A2 CockroachDB
(distributed
storage)

Deployed and used Distributed database
deployed on each node.

A3 Decentralized
storage

Blockchain
framework

Deployed and used Included with the
blockchain framework.

A4 User-centric
authentication

Deployed and used Each instance/pilot has its
own OIDC and VC service.

A5 Service-centric
authentication

Deployed and used Each instance/pilot has its
own Keycloak service.

A6 HWWallet In progress
A7 Software Wallet Cloud Wallet

Client, Backplane
API (Cloud Wallet

server and
user-centric

authentication),
data access SDK,
and i3-MARKET

SDK

Deployed and used

A8 Smart contract
manager

SLA/SLE smart
contract

Deployed and used

A9 SLA/SLE smart
contract

Deployed and used

A10 Conflict resolution SCM and DS Deployed and used Integrated with Besu, smart
contract manager and
decentralized storage.
Each instance/pilot has its

own service.
A11 Explicit user

consent
Backplane API
(smart contract

manager,
distributed ledger,
and distributed

storage)

Deployed and used Integrated with the smart
contract manager.

A12 Auditable
accounting

Deployed and used

A13 Standard payment Backplane API
(auditable

accounting, conflict
resolution, smart
contract, and

SLA/SLE smart
contract)

Deployed and used Library to be integrated and
deployed in data access

SDK and data access API.
Library for the
i3-MARKET

non-repudiation protocol
that helps

generate/verifying the
necessary proofs and the
received block of data.

A14 Tokenization Backplane API
(user-centric
authentication,

smart contract, and
SLA/SLE smart

contract)

Deployed and used



8 General Description

Table 2.1 Continued.
Artifact

ID
Artifact Dependencies Final release use Notes

A15 Micro payment Deployed Integrated into the
Tokenizer. Low chance to
be used by i3-MARKET
because for data payments
is used fiat money and the
Tokenizer and the token are

just for the fees.
A17 Data access API Deployed and used Each node has its own

endpoint.
A18 Semantic data manager

(triple store)
Deployed and used

A19 Semantic models Deployed and used It is not software
component.

A20 Semantic engine Backplane API
(user IDs) and
decentralized

storage

Deployed and used This component includes
- Semantic model
management

- Offering and discovery
Each instance/pilot has

their own engine
A21 Backplane API All Deployed and used Each node has its own

endpoint
A22 i3-MARKET

SDK-generator
Deployed and used Endpoint at node 1

Deployed as Docker
container through Ansible

A26 SDK-RI (reference
implementation)

All Deployed and used Each marketplace has its
own SDK-RI

A27 SDK-core SDK-generatore
All

Deployed and used Available at Nexus

A29 Secure server (Keycloak) Deployed Available at Nexus
Integration with

user-centric authentication
component in progress

A30 Notification manager SDK-RI and
SDK-core

Deployed and used

A31 Rating Deployed and used

Finally, in the context of CI/CD, a set of tools has been used for the
automation and monitoring of the artifacts deployed on i3-MARKET. These
tools are listed in the deliverable D4.7 and in the sections below.

2.5 Deployment Architecture View

The i3-MARKET deployment view is depicted in the picture below. Four
nodes constituted the i3-MARKET R1 cluster. On each node, it will be
deployed a Backplane gateway system and an instance of all the rest i3-
MARKET main building blocks (trust, security, and privacy system, storage
system, and data access system) giving backend support to the Backplane
gateway system. In addition to that, node 4 will host all the components
related with the semantic engine building block.



2.6 i3-MARKET Network Infrastructure 9

F
ig
ur
e
2.
1

i3
M

ec
os
ys
te
m

de
pl
oy
m
en
td

ia
gr
am

.



10 General Description

2.6 i3-MARKET Network Infrastructure

Figure 2.1 shows the deployment diagram associated with the i3-MARKET
network for the last release. It can be appreciated that the deployment strategy
has evolved from the M18 centralized infrastructure (where a single and
centralized i3-MARKET instance gave support to all demonstrators) to a
“hybrid” decentralized infrastructure (where each of the pilot’s demonstrator
that joined the i3-MARKET ecosystem has its own i3-MARKET instance). It
is important to highlight the “hybrid” nature of the network because a master
instance is maintaining, among other reasons, some centralized services such
as the central Besu node, the notification manager, etc., and CI/CD tools
needed for the setup of the network.

Therefore, in this landscape, it can be appreciated the existence of
marketplaces, which are simple instances (yellow boxes) and the cen-
tral/master instances (green boxes). The most significant relationship among
the instances is the connection between each of the Besu nodes themselves
and their connection with the Besu central node.

It is important to mention that the number of nodes used for each of the
i3-MARKET pilot instances and the maintenance of these nodes is up to the
pilots’ criteria and responsibility. Thus, the node’s layout that appears on each
of the instances, depicted for hosting the i3-MARKET artifacts, Figures 2.1
and 2.2, is just an example and does not have to be the real picture of the
instances deployment.

2.7 Software Stack

For the final release, two types of software environments (understood as a set
of artifacts) can be found in i3-MARKET, which are aligned with the infras-
tructures presented in the previous section. On one hand, the marketplace-side
software stack (i3-MARKET pilot environment) and, on the other hand, the
stack landscape deployed in the centralized cluster (i3-MARKET master
environment), which acts as a master for the rest of marketplaces, adhere
to the i3-MARKET network.

A four-layer stack has been defined for i3-MARKET (Figure 2.3): at the
lowest layer, there is the Cloud provisioning and management layer. On top
of that, a DevOps software layer is placed for assembling all the software
used for the CI/CD process. Then, a third-party software layer is in charge of
giving support to the i3M Core Artifacts, which can be found at the top level
of the stack.



2.7 Software Stack 11

F
ig
ur
e
2.
2

i3
M

ec
os
ys
te
m

de
pl
oy
m
en
td

ia
gr
am

.



12 General Description

i3M Core 
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure 2.3 i3M SW stack four layers.

Depending on the environment to be deployed, it might deploy one
layer or another. More details on the specific software deployed on each
environment are given in the following sub-sections.

2.8 i3-MARKET Master Environment

The i3-MARKET centralized software stack, represented in Figure 2.4, is
focused on providing the minimum and centralized services for erecting an
i3-MARKET network; these are the “Cloud provisioning and management”
layer, the “DevOps software” layer, master nodes of the “Third-party soft-
ware” layer, and the centralized i3-MARKET artifacts provided in the “i3M
centralized services” layer.

Cloud provisioning and management layer oversees providing and man-
aging all physical nodes that the i3-MARKET common infrastructure is
composed of. For the management of physical resources in a homogeneous
way, an Ansible Tower1 instance is deployed for the administration of said
physical resources, thus having their management centralized from Ansible.
On the other hand, for the monitoring and registering of the status of the
i3-MARKET central services, Zabbix is deployed as part of the central

1 Ansible Tower: https://www.ansible.com/products/tower



2.8 i3-MARKET Master Environment 13

i3M 
Centralized 

Services

Third-party 
Software

DevOps Stack

Cloud Provisioning and Management

Figure 2.4 i3M centralized software stack layers.

environment. Table 2.2 shows some deployment aspects of the previously
commented tools:

Table 2.2 i3M centralized cloud management and monitoring software.
SW
Component

Building
block

Assigned
VM/PR

Type Technology

Ansible AWX Deployment I3M-PH-Node2 Third-party SW Ansible AWX
Zabbix Monitoring I3M-PH-Node4 Third-party SW Zabbix

i3-MARKETDevOps will be a set of practices that will combine software
development and IT operations, and it will aim to shorten the i3-MARKET
system development life cycle and provide continuous delivery with high
software quality. Thus, the DevOps layer combines software development
and IT operations by means of the artifacts listed in Table 2.3.

Besides that, a set of artifacts from the i3-MARKET third-party software
is needed in the centralized environment to master some services:

• Master Besu node, which gives authorization to new member to the
blockchain network.

• Cockroach data base, which hosts the “Seed Index” for federating
queries.

• RocksDB, which is the central instance of the blockchain.
• Security services for allowing authentication and authorization capabil-
ities to the central node.



14 General Description

Table 2.3 i3M centralized DevOps software.
SW Com-
ponent

Building block Assigned
VM/PR

Type Technology

Ansible
AWX

Deployment I3M-PH-Node2 Third-
party SW

Ansible AWX

Docker
Swarm

Deployment I3M-PH-Node1,
I3M-PH-Node2,
I3M-PH-Node3,
and I3M-PH-
Node4

Third-
party SW

Docker
Swarm

GitLab
CI/CD
(Runners)

CI/CD GitLab (out of
i3M cluster)

Third-
party SW

GitLab

Nexus CI/CD I3M-PH-Node4 Third-
party SW

Nexus

NGINX Management/security I3M-PH-Node1,
I3M-PH-Node2,
I3M-PH-Node3,
and I3M-PH-
Node4

Third-
party SW

NGinx

MkDocs Documentation I3M-PH-Node4 Third-
party SW

MkDocs

Table 2.4 shows some deployment details regarding the before com-
mented artifacts.

Table 2.4 i3M centralized third-party software.
SW Com-
ponent

Building block Assigned
VM/PR

Type Technology

Blockchain
framework
(central
node)

Blockchain network I3M-PH-
Node4

Third-party
SW

Hyperledger
Besu

Distributed
storage

Data storage I3M-PH-
Node4

Third-party
SW

CockroachDB

Decentralized
storage

Data storage I3M-PH-
Node4

Third-party
SW

RocksDB

Security
server

Trust, security, and
privacy

I3M-PH-
Node4

Third-party
SW

OIDC, VC, and
Keycloak

Finally, regarding the “i3-MARKET centralized services”, the notifica-
tion manager and the SDK-generator (which support the SDK-core generator)
have been designed to be centralized. Table 2.5 shows some deployment
details of them.



2.9 i3-MARKET Pilot Environment 15

Table 2.5 I3M centralized proprietary software.
SW Com-
ponent

Building
block

Assigned
VM/PR

Type Technology

Notification
manager

Data storage I3M-PH-Node4 i3-MARKET SW RabittMQ

SDK-
generator

Reference
implementa-
tion

I3M-PH-Node4 Hybrid artifact OpenAPI
Generator2

2.9 i3-MARKET Pilot Environment

The i3-MARKET pilots’ stack is represented in Figure 2.5 and it is composed
mainly of two layers: “Third-party software” layer and “i3M core services”
layer.

i3M Core 
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure 2.5 i3M pilots’ software stack layers.

The top layer is composed of all i3-MARKET core artifacts supplied by
the project, which might be deployed in a decentralized way. In other words,
each marketplace willing to be part of the i3-MARKET ecosystemmight have
one instance of these artifacts running on its own i3-MARKET infrastructure.
Table 2.6 shows more information about these artifacts/components as well



16 General Description

as the set of services provided by each of them (linked with the Microservices
View in D2.4). Other details that can be found in the table are:

• SW artifact/component name
• Associated building block (see internal deliverable I2.41 [3])
• Artifact type
• Technology supporting artifact

Table 2.6 i3M pilots’ core artifacts.
SW
Component

Building block Services Type Technology

User-centric
authentication

Trust, security,
and privacy

Verifiable
Credential
API

i3-MARKET
SW

Keycloak

Service-centric
Authentication

Trust, security,
and privacy

OIDC
provider
API

i3-MARKET
SW

Cloud Wallet Trust, security,
and privacy

Wallet Cloud
Server and
Wallet APP

i3-MARKET
SW

HWWallet Trust, security,
and privacy

i3-MARKET
SW

Smart contract
manager

Trust, security,
and privacy

Smart
contract
manager API
+ explicit user
consent

i3-MARKET
SW

Hyperledger
Besu,
Solidity

Conflict resolu-
tion

Trust, security,
and privacy

Conflict reso-
lution API

i3-MARKET
SW

Auditable
accounting

Trust, security,
and privacy

Auditable
accounting
API

i3-MARKET
SW

Monetization Trust, security,
and privacy

Pricing
manager API,
Tokenizer
API, and non-
repudiation
protocol
library

i3-MARKET
SW

Data access Data access Data access
API, standard
payments
system, and
data transfer

i3-MARKET
SW



2.9 i3-MARKET Pilot Environment 17

Table 2.6 Continued.
SW
Component

Building block Services Type Technology

Semantic Semantics Semantic
engine API
(metadata
registry
management,
data
offerings,
and federated
query
discovery)

i3-MARKET
SW

MongoDB

Backplane API Backplane i3-MARKET
SW

LoopBack4

SDK-RI Reference
implementation

i3-MARKET
SW

Java

Web-RI Reference
implementation

i3-MARKET
SW

Finally, the “Third-party SW” layer will be mainly in charge of providing
the software stack identified as software requirements by the i3-MARKET
system. These software requirements are: Hyperledger Besu, CockroachDB,
Loopback4, and Keycloak. The Table 2.7 summarise the i3M pilot third party
artifacts used.

Table 2.7 i3M pilots’ third-party artifacts.
SW Component Building

block
Type Technology

Blockchain framework Blockchain
network

Third-party SW Hyperledger Besu

Distributed storage Data storage Third-party SW CockroachDB
(deployed standalone)

Decentralized storage Data storage Third-party SW RocksDB
Security server Trust,

security,
and privacy

Third-party SW Keycloak

Regarding “DevOps Stack” and “Cloud provisioning and management”,
these two layers are out of scope of the stack provided by i3-MARKET on
each external instance. This is mainly because of two reasons:

• Each pilot is responsible for deciding, deploying, and using the nodes
management and service monitoring tools most suitable to its needs and



18 General Description

restrictions. Thus, for example, IBM pilot has decided to use Trivy3 for
scanning vulnerabilities in the deployment of its i3-MARKET instance.

• As it was commented in the infrastructure sections, self-management by
the pilot is assumed where to deploy each artifact. Therefore the “Cloud
provisioning and management” layer is now under the scope of the pilot
administrators.

3 https://www.aquasec.com/products/trivy/


