
9
i3-MARKET Semantic Model Repository and

Community

The results are shared not only with project partners but also with stakehold-
ers and community in open-source repositories. As part of open-source assets,
the data models, documentations, and files used in the i3-MARKET project
are made available, such as the following:

• The i3-MARKET data pack is the set of files, schemas, and metadata
model diagrams that represent the way the i3-MARKET semantics is
organized and structured; it also contains the metadata in two different
formats, e.g., ttl and Jason-ld. owl.

• The i3-MARKET semantic model info is the documentation that
describes in detail all the taxonomies and vocabularies from needed
domains used in i3-MARKET and that describes and represents all
the relationships between them to build the graph representation of
the i3-MARKET semantic model.

• The support repo is the mechanism for how the data model is maintained
following the interoperability requirements in i3-MARKET. If you want
to contribute or have any suggestion for improving the semantic models,
visit the open-source repositories and contact authors and members.

• The model files are shared in i3-MARKET GitHub/Gitlab repositories
with release versions where each section contains the online machine-
readable files in OWL and other formats for online accessibility. The
files are maintained and updated regularly to keep the latest version of
the model files up to date.

The code as well the models and vocabularies are available open-source
via the establishment of the i3-MARKET spaces on Gitlab available at:
https://gitlab.com/i3-MARKET-V3-public-repository/ and GitHub available
at: https://github.com/i3-MARKET-V3-public-repository/.

119

120 i3-MARKET Semantic Model Repository and Community

i3-MARKET semantic model governance process, which is defined as
the support and evaluation process to include semantic improvements, is as
follows:

• Request for changes or updates: Identify any changes prior to a major
release, which should be considered private and usually is on testing and
pre-consensus/staging.

• The evaluation of any type of update request: A review from edi-
tors and community, approves participation, and updates. In particular
terms, vocabularies, ontologies or initiate a model extension in the
i3-MARKET OSS project.

• The communication of the results from technical experts: A tagging
version using alpha, beta, and gamma versions and then tagged as major
is used here.

• Evaluation of contributions for new commits: Technical experts, PM,
TM, TPMs, WPLs, and TaskLs assess and evaluate the contribution,
including documentation at the initiated project in i3-MARKET OSS.

• Reports and changes report: The technical board issues a short report,
explaining the rational on the rejection in exceptional cases; this step can
include rejecting/cancelling project participation.

It is possible to find a more complete definition of the attributes used in
the data offering description schema template as used in the semantic engine
API in Appendix A.

9.1 Semantic Engine (SEED)

The semantic engine and framework solution is available and integrated
into the i3-MARKET Backplane. Another concept is the metadata semantic
registry stored in a registry database (like MongoDB). With this feature, the
Backplane can rely on the metadata registry storage capacity to collect the
semantic information about the assets and information for the marketplaces
and stakeholders that can be created, searched, retrieved, and manipulated for
external and internal operations.

Semantic engine framework:

From an operational perspective, i3-MARKET envisages semantic engine
components (e.g., SEED) to manage query mechanisms on top of the
registry catalogues, including complex discovery and retrieve checks that

9.2 Technical Requirements 121

make sure, e.g., that the necessary information is retrieved by the actors
and services. Also very important are the functionalities related to the
creation and registration of the data offering descriptions and the management
of local and federated registries. The data offerings can be shared by
providers/marketplaces in the i3-MARKET network and the engine can
search, discover, and retrieve the data offerings, which are authorized, from
all the nodes/marketplaces.

The engine also has functionalities and interfaces that are used in
conjunction with other Backplane components/systems to compile and fill
information and details for the functionalities, for example, for notification
manager, smart contract manager, data access & transfer, and BESU.

Semantic engine and metadata framework:

a. Data offering creation
b. Data offering discovery
c. Data offering registry
d. Federated discovery on different instances
e. Management of data sharing agreement and service agreement parame-

ters to comply with contract manager operations
f. Alignment with entities and IDs in Backplane information models

We developed and implemented dedicated software components for
semantic engine system as SEED, which is in charge of managing the
semantic metadata, descriptions, queries, discoveries, retrieving, creating,
and mapping descriptions and manipulating registries, federated queries, and
component interactions and interfaces. To make easier the interface and use
of functionalities, we present the external operations via APIs that are more
agnostic and easier to use also for non-semantic experts.

9.2 Technical Requirements

For the semantic storage, the following high-level capabilities have been
defined:

1. Semantic metadata management:
The semantic engine (SEED) relies on a local MongoDb and
Hyperledger-BESU. All the information, for instance, data provider,
data offerings, consumer, and querying offering, are stored as semantic
data.

122 i3-MARKET Semantic Model Repository and Community

Name Description Labels
Metadata
storage
(MongoDb)

The registry storage (MongoDb) is responsible
to store semantic data and process the queries.
The storage should provide either the REST
endpoint or client connector so that other com-
ponents can access to the data

Epic

Spatial and
text data
storage

To support spatial and full-text search queries,
the semantic data manager should be able to
index spatial and full-text data

Epic

Name Description Labels
Save seman-
tic data

As a subject, I want to save my semantic meta-
data so that I can query and update it later
Subject: Data Consumer, Data Provider

Epic

2. Offering registration:
The semantic engine exposes APIs to register, query, and update offer-
ing. A data provider can regist er offering, for instance, datasets and the
price for data, etc.

Name Description Labels
Offering
registration

Offering registration is a component that
allows the user to manage their data offer-
ing. More specifically, it provides the follow-
ing functionalities: Register the data offering
− Retrieve all the offerings − Update/delete
offerings − Subscribe to an offering

Epic

3. Offering discovery:
The semantic engine exposes APIs to query the existing offerings in
i3-MARKET Backplane. A data consumer can query datasets, prices
for any dataset, offering, etc.

9.2 Technical Requirements 123

Name Description Labels
Offering
discovery

Offering discovery is a component that allows
the data consumers to search the offering data
available on the marketplace. The data con-
sumer has to specify the characteristics of the
data they are looking for. The offering discov-
ery module will then process the data request
and returns a list of available offering data
that meet their requirements. More specifically,
the offering discovery should provide the fol-
lowing functionalities: Register the consumer
data request − Retrieve all the data request
of a consumer − Process a data request −
Update/delete a data request − Subscribe to a
data request

Epic

4. Vocabulary management:
Name Description Labels
Vocabulary
manage-
ment:
Semantic
model man-
agement

Vocabulary management is a component that
is used to manage the i3-MARKET seman-
tic data model. More specifically, the vocabu-
lary management should provide the following
functionalities: View and search the concepts
of i3-MARKET − Allow the user to propose
a new concept − Allow the administrator to
add a new concept − Allow the administrator
to update/delete an existing concept

Epic

Backlog release − features:
Name Description Labels
Semantic
data
manager:
registry
storage

The registry/semantic storage is responsi-
ble for storing semantic data and processing
the queries. The storage should provide
either the REST endpoint or client connec-
tor so that other components can access the
data

Semantic
Data
Storage
Offerings

124 i3-MARKET Semantic Model Repository and Community

Features:
Name Description Labels
Save seman-
tic data

As a subject, I want to save my semantic
metadata so that I can query and update it
later
Subject: Data Consumer, Data Provider

User Story

Tasks:
Name Description Labels
Define a
semantic
description
template

As a data provider, I want to create a seman-
tic description of my offering data so that I
can register it to i3-MARKET. It would be
desirable that the semantic engine should
provide a semantic description template so
that the data provider can easily fill in to
register the offering data

User Story

9.3 Solution Design/Blocks

Figure 9.1 shows the final version, which is defined as:

– Components and functionalities of semantic engine and framework
– New versions of i3-MARKET semantic models

Figure 9.1 High-level Backplane block diagram.

9.4 Building Block High-level Picture 125

– Semantic vocabulary management environments

Figure 9.1 shows that we use BESU SEED-INDEX library in order to
retrieve all registered nodes addressed in the network and hence enabling the
federated query search.

BESU-HYPERLEDGER

SEMANTIC-ENGINE MongoDB BACKPLANE

Figure 9.2 High-level Backplane block diagram.

9.4 Building Block High-level Picture

The specific component diagrams are shown in Figures 9.3–9.6.

Figure 9.3 High-level operations of the semantic engine system.

For the semantic subsystems in charge of dealing with “semantic data
management”, we can highlight the following parts:

126 i3-MARKET Semantic Model Repository and Community

Figure 9.4 Main interfaces and interactions of the semantic engine system.

Figure 9.5 Main operations and interactions for the federated functionalities of the semantic
engine system.

– Semantic data storage: This component on receiving JSON pushes
the data to MongoDb database. MongoDb is a NoSql document-based
database.

9.5 Diagrams 127

– Semantic mapping: This component does semantic mappings and trans-
forms data received from API endpoints.

– Vocabulary management: This environment keeps and manages all of
the vocabularies, defined as i3-MARKET semantic model, used in dif-
ferent operations of the semantic engine. The i3-MARKET Semantic
Model is available using the GitHub and Gitlab repositories where
the models/files are stored, shared, managed, and described, and the
documentations is available in the developer portal.

– Offering registration: This component is basically REST APIs exposed
as endpoints. Semantic engine exposes different endpoints for offering
registration. Examples are:

◦ register data provider;
◦ register data offering of a data provider;
◦ update data offerings;
◦ deleting a data offering;
◦ query existing offerings, etc.

– Offering discovery: This component is basically REST APIs exposed
as endpoints. Semantic engine exposes different endpoints for offering
discoveries and retrieving. Examples are:

◦ retrieve a list of data offerings;
◦ discover data offerings by providers;
◦ discover data offerings by parameters;
◦ discover data offerings by category;
◦ discover data offerings by active state;
◦ discover data offerings by shared state;
◦ discover data offerings by text;
◦ discover data offerings by keywords/text;
◦ discover data offerings in federated search by category;
◦ discover data offerings in federated search by active state;
◦ discover data offerings in federated search by shared state;
◦ discover data offerings in federated search by text;
◦ discover data offerings in federated search by category;
◦ search for particular metadata, etc.

Figure 9.6 shows a detailed landscape of the current set of microservices
(cubes), API’s (little yellow rectangles), components (blue rectangles), and
storages (white rectangles) on i3-MARKET.

128 i3-MARKET Semantic Model Repository and Community

Figure 9.6 i3-MARKET services layout.

9.5 Diagrams

Data offering registration:

The diagram in Figure 9.7 shows that a data provider first must have
to authenticate with i3-MARKET Backplane through a gateway. Once a
provider is successfully authenticated, the provider can see all the APIs
exposed by the semantic engine – called (SEED) – in the Backplane swagger
interface. A provider can register an offering using registration endpoint
using the template for data offering description. The Backplane internally
communicates with SEED and dispatches create request to it. The engine,
on receiving requests from Backplane, maps the incoming data into RDF
according to the semantic data model and stores data into local registry
catalogue database and sends back the response to the Backplane that offering
is registered. The Backplane notifies the client/provider that offering has been
successfully registered as represented in Figure 9.7.

Data offering discovery/deletion/update sequence diagram:

When a data provider interacts with i3-MARKET Backplane and has suc-
cessful been authenticated, s/he can perform the following tasks:

• retrieve offering by providing offering ID;

9.5 Diagrams 129

Figure 9.7 Sequence diagram for registering a data provider.

• retrieve a list of all offerings registered by a data provider using its
provider ID;

• retrieve a list of all offerings filtered by category, which are registered
not only in local instance of SEED (semantic engine) but also other
instances of SEEDs running in the i3-Market cluster;

• update an offering;
• delete a particular data offering by providing its ID;
• the user can also download the data offering template.

The figure shows the sequence of messages used to perform different
tasks. For instance, when a user wants to retrieve a particular offering s/he
provides the offering ID and the Backplane sends this offering ID towards
the SEED. On receiving an offering ID, the SEED executes a query on
MongoDB. If the offering with the given ID is registered in the local storage,
the SEED constructs the results (i.e., the requested offering) and sends back
towards Backplane, where results are presented to the user. Similarly, if the
user is interested to find all the offering registered by a data provider, s/he
provides the provider ID and SEED looks all the offerings registered in local
repository and sends back the results towards Backplane where results (list of
all offerings registered by a data provider) are presented to users.

The SEED, by interacting with BESU, also can distribute the queries
towards all other instances of SEEDs running on the i3-MARKET cluster.
For example, if a user is interested to find offerings not only locally but also
those that are registered on other instances in the i3-MARKET cluster. The

130 i3-MARKET Semantic Model Repository and Community

SEED engine transparently finds the offerings, filtered by category, from all
the i3-MARKET instances.

Figure 9.8 shows that user can also update an offering by giving the
description of an offering s/he queried by either offering by ID or data
Provider ID. User has to copy the retrieved offering to the endpoint, where
s/he can update any field. On receiving the updated offering, the SEED
updates all the data against that particular data offering in the local storage. A
data provider can also delete an offering by giving offering ID in the endpoint.
Upon receiving the delete request from Backplane, the SEED executes a
delete query on the local storage and the particular offering is permanently
deleted from it.

To retrieve a query template, the user has to use the endpoint shown in
Figure 9.8. On receiving template request, the SEED generates the offering
template fully compliant with the semantic data model.

Figure 9.8 Sequence diagram for querying, deleting, and updating data offerings.

9.6 Interfaces 131

9.6 Interfaces

The semantic engine currently has many functionalities via APIs, which
include: registration, searching, retrieving, updating, and deletion of different
data offerings and delivery of info to other components.

Register data provider:

A data provider, when for the first-time interacts with the system, can register
its information in the i3-MARKET. Following is the endpoint address and the
request for registration of data provider in the semantic repository. The user
must provide a “providerID” field, the ID which was provided to user at the
authentication process.

{
 "providerId": "string",
 "name": "string",
 "description": "string",
 "organization": [
 {
 "organizationId": "string",
 "name": "string",
 "description": "string",
 "address": "string",
 "contactPoint": "string"
 }
]
}

Listing 9.1 Data provider template.

Register data offering:

When a user is registered as data provider, the next step would be to create
and register data offerings (semantic descriptions) for the data assets that they
want to share/sell. Below is the API pointer and the request template the user
can use to register data offerings. It is important to note that the value of
“provider” in the offering template should be the “ID” of the data provider.

{
 "context": {
 "core": "http://i3-MARKET.eu/Backplane/core/",
 "dcat": "http://www.w3.org/ns/dcat#",
 "pricingModel": "http://i3-MARKET.eu/Backplane/pricingmodel"
 },
 "dataOfferingId": "string",

132 i3-MARKET Semantic Model Repository and Community

 "provider": "string",
 "marketId": "string",
 "owner": "string",
 "providerDid": "string",
 "marketDid": "string",
 "ownerDid": "string",
 "active": true,
 "ownerConsentForm": "string",
 "inSharedNetwork": true,
 "personalData": true,
 "dataOfferingTitle": "string",
 "dataOfferingDescription": "string",
 "category": "string",
 "status": "string",
 "dataOfferingExpirationTime": "string",
 "version": 0,
 "createdAt": "2022-12-19T15:20:56.816Z",
 "updatedAt": "2022-12-19T15:20:56.816Z",
 "contractParameters": {
 "interestOfProvider": "string",
 "interestDescription": "string",
 "hasGoverningJurisdiction": "string",
 "purpose": "string",
 "purposeDescription": "string",
 "hasIntendedUse": {
 "processData": true,
 "shareDataWithThirdParty": true,
 "editData": true
 },
 "hasLicenseGrant": {
 "transferable": true,
 "exclusiveness": true,
 "paidUp": true,
 "revocable": true,
 "processing": true,
 "modifying": true,
 "analyzing": true,
 "storingData": true,
 "storingCopy": true,
 "reproducing": true,
 "distributing": true,
 "loaning": true,
 "selling": true,
 "renting": true,
 "furtherLicensing": true,
 "leasing": true
 }
 },
 "hasPricingModel": {
 "pricingModelName": "string",
 "basicPrice": 0,
 "currency": "string",
 "hasPaymentOnSubscription": {
 "paymentOnSubscriptionName": "string",
 "paymentType": "string",
 "timeDuration": "string",
 "description": "string",
 "repeat": "string",
 "hasSubscriptionPrice": 0
 },
 "hasPaymentOnApi": {
 "paymentOnApiName": "string",
 "description": "string",
 "numberOfObject": 0,
 "hasApiPrice": 0
 },

9.6 Interfaces 133

 "hasPaymentOnUnit": {
 "paymentOnUnitName": "string",
 "description": "string",
 "dataUnit": 0,
 "hasUnitPrice": 0
 },
 "hasPaymentOnSize": {
 "paymentOnSizeName": "string",
 "description": "string",
 "dataSize": "string",
 "hasSizePrice": 0
 },
 "hasFreePrice": {
 "hasPriceFree": true
 }
 },
 "hasDataset": {
 "title": "string",
 "keyword": "string",
 "dataset": "string",
 "description": "string",
 "issued": "string",
 "modified": "string",
 "temporal": "string",
 "language": "string",
 "spatial": "string",
 "accrualPeriodicity": "string",
 "temporalResolution": "string",
 "theme": [
 "string"
],
 "distribution": [
 {
 "title": "string",
 "description": "string",
 "license": "string",
 "accessRights": "string",
 "downloadType": "string",
 "conformsTo": "string",
 "mediaType": "string",
 "packageFormat": "string",
 "dataStream": true,
 "accessService": {
 "conformsTo": "string",
 "endpointDescription": "string",
 "endpointURL": "string",
 "servesDataset": "string",
 "serviceSpecs": "string"
 },
 "dataExchangeSpec": {
 "encAlg": "string",
 "signingAlg": "string",
 "hashAlg": "string",
 "ledgerContractAddress": "string",
 "ledgerSignerAddress": "string",
 "pooToPorDelay": 0,
 "pooToPopDelay": 0,
 "pooToSecretDelay": 0
 }
 }
],
 "datasetInformation": [
 {
 "measurementType": "string",
 "measurementChannelType": "string",
 "sensorId": "string",

134 i3-MARKET Semantic Model Repository and Community

 "deviceId": "string",
 "cppType": "string",
 "sensorType": "string"
 }
]
 }
}

Listing 9.2 Data offering template.

(When the data offering template is created, the system can use the above
JSON request and store it, but the system can be updated in case to manage
the data offerings as Json-ld in the registry storage.)
{

"@context": {

 "core": “http://i3-MARKET.eu/Backplane/core/”

 "dcat": "https://www.w3.org/ns/dcat.jsonld”

 "pricingmodel": "http://i3-MARKET.eu/Backplane/pricingmodel”

 },

 “id”: “#####-#######-#######-###” OR ”http://i3-MARKET.org/resource/#####-#######-#######-
###”

 “type”: “http://i3-MARKET.eu/Backplane/core/DataOffering”

 "provider": "#####-#######-#######-###”

 "marketId": "#####-#######-#######-###",

 "owner": "#####-#######-#######-###",

 "dataOfferingTitle": "_field",

 "dataOfferingDescription": "string",

 "category": "Other",

 "status": "e.g. Activated, InActivated, ToBeDeleted, Deleted",

 "dataOfferingExpirationTime": "NA",

 "contractParameters":

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://i3-MARKET.eu/Backplane/core/ContractParameters”

 "contractParametersId": "string",

 "interestOfProvider": "NA",

 "interestDescription": "NA",

 "hasGoverningJurisdiction": "NA",

 "purpose": "NA",

 "purposeDescription": "NA",

 "hasIntendedUse":

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://i3-MARKET.eu/Backplane/core/IntendedUse”

9.6 Interfaces 135

 "intendedUseId": "string",

 "processData": "true OR false",

 "shareDataWithThirdParty": "true OR false",

 "editData": "true OR false"

 } ,

 "hasLicenseGrant":

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://i3-MARKET.eu/Backplane/core/LicenseGrant”

 "licenseGrantId": "string",

 "copyData": "true OR false",

 "transferable": "true OR false",

 "exclusiveness": "true OR false",

 "revocable": "true OR false"

 }

 } ,

 "hasDataset":

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://www.w3.org/ns/dcat#Dataset”

 "datasetId": "string",

 "title": "_field",

 "keyword": "_field",

 "dataset": "_field",

 "description": "_field",

 "issued": "date-time",

 "modified": "date-time",

 "temporal": "_field",

 "language": "_field",

 "spatial": "_field",

 "accrualPeriodicity": "_field",

 "temporalResolution": "_field",

 "distribution": [

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://www.w3.org/ns/dcat#Distribution”

 "distributionId": "string",

 "title": "_field",

136 i3-MARKET Semantic Model Repository and Community

 "description": "_field",

 "license": "_field",

 "accessRights": "_field",

 "downloadType": "_field",

 "conformsTo": "_field",

 "mediaType": "_field",

 "packageFormat": "_field",

 "accessService":

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://www.w3.org/ns/dcat#DataService”

 "dataserviceId": "string",

 "conformsTo": "_field",

 "endpointDescription": "_field",

 "endpointURL": "_field",

 "servesDataset": "_field",

 "serviceSpecs": "_field"

 }

 }

],

 "datasetInformation": [

 {

 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”

 “type”: “http://i3-MARKET.eu/Backplane/core/DatasetInformation”

 "datasetInformationId": "string",

 "measurementType": "_field",

 "measurementChannelType": "_field",

 "sensorId": "_field",

 "deviceId": "_field",

 "cppType": "_field",

 "sensorType": "_field"

 }

],

 "theme": [

 "_field"

 "_field"

 "_field"

]

 }

}

9.6 Interfaces 137

Query a registered data offering by offering ID:

Figure 9.9 shows the endpoint to fetch a particular offering registered in store.
A data provider must provide the “offering ID”. This offering can further
be used in other endpoint (i.e., /semantic-engine/api/registration/update-
offering) if the user wants to update this offering.

Figure 9.9 Get offering by offering ID.

Query a list of all registered data offerings by provider ID:

The following endpoint is used to fetch all the offerings registered by a
data provider – see Figure 9.10. In this endpoint, the user must provide the

Figure 9.10 Get a list of offerings by provider ID.

138 i3-MARKET Semantic Model Repository and Community

“Provider ID”. The current release includes retrieval of list of offerings with
complete data offering. This might affect the query performance if the data in
the storage is increased.

Query a list of all registered data offerings by category:

In the i3-MARKET project, we use different nodes in the cluster and each
node has its own semantic engine instance running on it. Furthermore, each
instance of semantic engine may have its own data by categories from
different pilots (e.g., manufacturing, automotive, wellbeing, etc.) or multiple.
Consider a use-case where someone is looking for data offerings registered
in i3-MARKET on different nodes. This endpoint allows the user to transpar-
ently fetch all the data offerings based on the “category” from i3-MARKET
cluster. In summary, this endpoint performs federated query in a distributed
nature and brings back the results from different instances in i3-MARKET;
see Figure 9.11.

Figure 9.11 Get a list of offerings by category.

Update a data offering:

The following endpoint is used to update an already registered data offering.

For example, if a specific user can update any field which s/he wants to
update, it is important that the user do not change/update the fields with -id
attributes, e.g., dataOfferingId, pricingModelId, etc., because such attributes
are used internally by the semantic engine to link the data.

9.6 Interfaces 139

Delete a data offering:

This endpoint can be used to permanently remove an offering from the
repository. The user must provide the “Offering ID” of the data offerings
they want to delete; see Figure 9.12.

Figure 9.12 Delete offering by ID.

Download data offering template:

Figure 9.13 shows that endpoint is used to download the offering template.

Figure 9.13 Get data offering template.

Query list of offerings by active state:

Figure 9.14 shows an endpoint used to search data offerings that are “active”
and so made available to be seen and searched by their providers.

140 i3-MARKET Semantic Model Repository and Community

Figure 9.14 Query list of offerings by active state.

Query list of offerings by shared state:

Figure 9.15 shows the endpoint to look for data offerings that are set or not
available to be shared in the network by the data marketplaces.

Figure 9.15 Query list of offerings by shared state.

9.6 Interfaces 141

Query offerings based on text/keyword:

Figure 9.16 shows an endpoint can be used for text searches.

Figure 9.16 Query offerings based on text/keyword.

Query offerings in federated network:

The semantic engine is able to search, discover, and retrieve data offerings not
only in single instance of a marketplace but also throughout the entire nodes
of marketplace belonging to the i3-MARKET network via federated queries.
This is possible using the information that each semantic engine manages via
SEED-INDEX in the shared BESU blockchains, where there is info about
each node/engine. With such details, each semantic engine can search and
retrieve the “shared, active” data offerings from the other data marketplace to
be consulted by consumers and expanding the availability of offered assets
from one marketplace to the entire network.

142 i3-MARKET Semantic Model Repository and Community

Following are some of the endpoints:

To be noted, most of the endpoints work the same as in local node. The
main difference is that now we can search from the cluster or network of
registered marketplaces/endpoints.

SDK(-RI) semantic engine services:

Once the functionalities of the semantic engine from the internal API inter-
faces are mapped and reflected in the Backplane API gateway, they are
available to be used via the i3-MARKET development kits in languages like
Java and JavaScript (among the others) using directly the SDK-Core and/or
the SDK-RI services.

9.7 Background Technologies

Data Catalogue Vocabulary (DCAT)− Version 3:
W3C (World Wide Web Consortium) recommendation:
DCAT is an RDF vocabulary designed to facilitate interoperability

between data catalogues published on the Web. This document defines the
schema and provides examples for its use.

DCAT enables a publisher to describe datasets and data services in a cata-
logue using a standard model and vocabulary that facilitates the consumption
and aggregation of metadata from multiple catalogues. This can increase the
discoverability of datasets and data services. It also makes it possible to have
a decentralized approach to publishing data catalogues and makes federated

9.7 Background Technologies 143

search for datasets across catalogues in multiple sites possible using the same
query mechanism and structure.

https://www.w3.org/TR/vocab-dcat-3/

Also, its extension DCAT-AP:
The DCAT Application Profile for data portals in Europe (DCAT-AP) is a

specification based on the Data Catalogue Vocabulary (DCAT) developed by
W3C.

This application profile is a specification for metadata records to meet the
specific application needs of data portals in Europewhile providing semantic
interoperability with other applications on the basis of reuse of established
controlled vocabularies (e.g., EuroVoc) and mappings to existing metadata
vocabularies (e.g., Dublin Core, SDMX, INSPIRE metadata, etc.).

DCAT-AP provides a common specification for describing public sector
datasets in Europe to enable the exchange of descriptions of datasets among
data portals. DCAT-AP allows:

• Data catalogues to describe their dataset collections using a standard-
ized description, while keeping their own system for documenting and
storing them.

• Content aggregators, such as the European Data Portal, to aggregate
such descriptions into a single point of access.

• Data consumers to find datasets more easily through a single point of
access.

DCAT-AP has an extension GeoDCAT-AP for describing geospatial
datasets, dataset series and services. Another extension, StatDCAT-AP, pro-
vides specifications and tools that enhance interoperability between descrip-
tions of statistical datasets within the statistical domain and between statisti-
cal data and open data portals.

https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-
europe/release/200

RDF Store

As part of the marketplace persistence framework back-end layer, we need to
use and deploy a database that is able to store our semantic (meta)data in the
best way. This database represents the main registry and repository where all
the semantically annotated (meta)data are uploaded and saved.

In the persistent database, it is needed to store all the (meta)data descrip-
tions created and collected by marketplace stakeholders, e.g., with the

144 i3-MARKET Semantic Model Repository and Community

information about providers, consumers, offering descriptions, and recipes.
In our research for a semantic interoperability in i3-MARKET, we decided to
model our providers, consumers, data offering descriptions, and parameters
following an RDF schema model, annotated with our i3-MARKET Semantic
Core Model and represent and exchange data in JSON serialization format.

So due to the nature of such kind of (meta)data, we need to choose the
best solution for storing, managing, accessing, and retrieving information.

RDF triple-store is a type of graph database that stores semantic facts.
Being a graph database, triple-store stores data as a network of objects
with materialized links between them. This makes RDF triple-store a pre-
ferred choice for managing highly interconnected data. Triple-stores are more
flexible and less costly than a relational database, for example.

The RDF database, often called a semantic graph database, is also capable
of handling powerful semantic queries and of using inference for uncovering
new information out of the existing relations. In contrast to other types of
graph databases, RDF triple-store engines support the concurrent storage of
data, metadata, and schema models (e.g., the so-called ontologies). Mod-
els/ontologies allow for the formal description of the data. They specify both
object classes and relationship properties, and their hierarchical order as we
use our i3-MARKET models to describe our resources.

This allows creating a unified knowledge base grounded in common
semantic models that allow combining all metadata coming from different
sources, making them semantically interoperable to:

• create coherent queries independently from the source, format, date,
time, provider, etc.;

• enable the implementation of more efficient semantic querying features;
• enrich the data and make it more complete, more reliable, and more
accessible;

• enable to perform inference as triple materialization from some of the
relations.

In the following paragraphs, we are going to give some more information
and examples about the semantic data formalization, query interface, and the
interface of the semantic framework backend layer within the Backplane.

MongoDB

MongoDB is a source-available cross-platform document-oriented database
program. Classified as a NoSQL database program, MongoDB uses

9.7 Background Technologies 145

JSON-like documents with optional schemas. MongoDB is developed by
MongoDB Inc. (https://www.mongodb.com/).

Main features:

- Ad-hoc queries:

MongoDB supports field, range query, and regular-expression searches.
Queries can return specific fields of documents and also include user-defined
JavaScript functions. Queries can also be configured to return a random
sample of results of a given size.

- Indexing:

Fields in a MongoDB document can be indexed with primary and
secondary indices or index.

- Replication:

MongoDB provides high availability with replica sets. A replica set con-
sists of two or more copies of the data. Each replica set member may act in the
role of primary or secondary replica at any time. All writes and reads are done
on the primary replica by default. Secondary replicas maintain a copy of the
data of the primary using built-in replication. When a primary replica fails,
the replica set automatically conducts an election process to determine which
secondary should become the primary. Secondaries can optionally serve read
operations, but that data is only eventually consistent by default.

- Load balancing:

MongoDB scales horizontally using sharding. The user chooses a shard
key, which determines how the data in a collection will be distributed. The
data is split into ranges (based on the shard key) and distributed across
multiple shards. (A shard is a master with one or more replicas.) Alternatively,
the shard key can be hashed to map to a shard – enabling an even data
distribution.

Semantic data model and serialization formats:

Linked data is based around describing real-world things using the resource
description framework (RDF). The following paragraphs introduce the basic
data model and then outline existing formats to serialize semantic data
models.

146 i3-MARKET Semantic Model Repository and Community

The semantic descriptions are generated following the i3-MARKET Core
Model, annotated with the i3-MARKET Domain Models, and mapped with the
i3-MARKET Application Model vocabularies and then loaded into a registry-
store.

Semantic data model:

Figure 9.17 represents an RDF triple. RDF is very simple, flexible, and
schema-less to express and process a series of simple assertions. Consider
the following example: “Sensor A measures 21C”. Each statement, i.e., piece
of information, is represented in the form of triples (RDF triples) that link
a subject (“Sensor A”), a predicate (“measures”), and an object (“21C”).
The subject is the thing that is described, i.e., the resource in question. The
predicate is a term used to describe or modify some aspect of the subject. It
is used to denote relationships between the subject and the object. The object
is, in RDF, the “target” or “value” of the triple. It can be another resource or
just a literal value such as a number or word.

Figure 9.17 RDF triple in graph representation describing “Sensor A measures 21.8◦C”.

Since objects can also be a resource with predicates and objects on
their own, single triples are connected to a so-called RDF graph. In terms
of graph theory, the RDF graph is a labelled and directed graph. As the
illustration, we extend the previous example, replacing the literal “21.8C” by
a resource “measurement” for the object in the RDF triple in Figure 9.18. The
resource itself has two predicates assigning a unit and the actual value to the

Figure 9.18 Simple RDF graph including the example RDF triple.

9.7 Background Technologies 147

measurement – see Figure 9.18. The unit is again represented by a resource
and the value is numerical literal. The resulting RDF graph looks as follows:

Serialization formats:

The RDF data model itself does not describe the format in which the data,
i.e., the RDF graph structure, is stored, processed, or transferred. Several
formats exist that serialize RDF data; the following overview lists the most
popular formats, including a short description of their main characteristics
and examples. Figure 9.18 shows a simple RDF graph to serve as the basis.

RDF/XML:

The RDF/XML syntax is standardized by the W3C and is widely used to
publish linked data on the Web. On the downside, however, the XML syntax
is also viewed as difficult for humans to read and write. This recommends
consideration of:

a) other serialization formats in data management and control workflows
that involve human intervention;

b) the provision of alternative serializations for consumers who may wish
to examine the raw RDF data.

The RDF/XML syntax is described in detail as part of the W3C RDF
Primer. The MIME type that should be used for RDF/XML within HTTP
content negotiation is application/rdf+xml. The listing below shows the
RDF/XML serialization for the RDF graph.

RDF/XML serialization example:

<?xml version="1.0"?>
<rdf:RDF xmlns:ex="http://www.example.org/"
<rdf:Description rdf:about=" http://www.example.org/Sensor_A">
 <ex:title>21.8°C</ex:title>
</rdf:Description>
</rdf:RDF>

Turtle: Turtle (Terse RDF Triple Language) is a plain text format for serial-
izing RDF data. It has support for namespace prefixes and other shorthands,
making Turtle typically the serialization format of choice for reading RDF

148 i3-MARKET Semantic Model Repository and Community

triples or writing them by hand. A detailed introduction to Turtle is given
in the W3C Team Submission document Turtle. It was accepted as a first
working draft by the World Wide Web Consortium (W3C) RDF Working
Group in August 2011, and parsing and serializing RDF data is supported by
a large number of RDF toolkits. The following listing shows the serialization
listing for the example RDF graph in Turtle syntax.

Turtle serialization example:

@prefix : <http://www.example.org/> .
:Sensor_A :measures “21.8°C”

N-Triples: The N-Triples syntax is a subset of Turtle, excluding features
such as namespace prefixes and shorthands. Since all URIs must be specified
in full in each triple, this serialization format involves a lot of redundancy,
typically resulting in large N-Triples particularly compared to Turtle, but also
to RDF/XML. This redundancy, however, enables N-Triples files to be parsed
one line at a time, benefitting the loading and processing of large data files that
will not fit into main memory. The redundancy also allows compressing N-
Triples files with a high compression ratio, thus reducing network traffic when
exchanging files. These two factors make N-Triples the de facto standard for
exchanging large dumps of linked data. The complete definition of the N-
Triples syntax is given as part of the W3C RDF test cases recommendation.
The following listing in Table 7.1 represents the N-Triples serialization of the
example RDF graph.

N-Triples serialization example:

<http://www.example.org/Sensor_A> <http://www.example.org/measures> “21.8°C”@en-UK
.

JSON-LD: Used as main data model for the metadata in i3-MARKET.

Jason-LD (https://json-ld.org/) − Many developers have little or no expe-
rience with linked data, RDF, or common RDF serialization formats such
as N-Triples and Turtle. This produces extra overhead in the form of a
steeper learning curve when integrating new systems to consume linked
data. To counter this, the project consortium decided to use a format based
on a common serialization format such as XML or JSON. Thus, the two
remaining options are RDF/XML and JSON-LD. JSON-LD was chosen over

9.7 Background Technologies 149

RDF/XML as the data format for all linked data items in BigIoT. JSON-LD
is a JSON-based serialization for linked data with the following design goals:

• Simplicity: There is no need for extra processors or software libraries,
just the knowledge of some basic keywords.

• Compatibility: JSON-LD documents are always valid JSON docu-
ments; so the standard libraries from JSON can be used.

• Expressiveness: Real-world data models can be expressed because the
syntax serializes a directed graph.

• Terseness: The syntax is readable for humans and developers need little
effort to use it.

• Zero edits: Most of the time JSON-LD can be devolved easily from
JSON-based systems.

• Usable as RDF: JSON-LD can be mapped to/from RDF and can be used
as RDF without having any knowledge about RDF.

From the above, terseness and simplicity are the main reasons that JSON-
LD was chosen over RDF/XML. JSON-LD also allows for referencing
external files to provide context. This means contextual information can be
requested on demand and makes JSON-LD better suited to situations with
high response times or low bandwidth usage requirements. More information
can be found in http://json-ld.org/.

The data model underlying JSON-LD is a labelled, directed graph. There
are a few important keywords, such as @context, @id, @value, and @type.
These keywords are the core part of JSON-LD. Four basic concepts should
be considered:

• Context: A context in JSON-LD allows using shortcut terms to make
the JSON-LD file shorter and easier to read (as well as increasing
its resemblance with pure JSON). The context maps terms to IRIs. A
context can also be externalized and reused for multiple JSON-LD files
by referencing its URI.

• IRIs: Internationalized resource identifiers (IRIs) are used to identify
nodes and properties in linked data. In JSON-LD, two kinds of IRIs are
used: absolute IRIs and relative IRIs. JSON-LD also allows defining a
common prefix for relative IRIs using the keyword @vocab.

• Node identifiers: Node identifiers (using the keyword @id) reference
nodes externally. As a result of using @id, any RDF triples produced
for this node would use the given IRI as their subject. If an application
follows this IRI, it should be able to find some more information about

150 i3-MARKET Semantic Model Repository and Community

the node. If no node identifier is specified, the RDF mapping will use
blank nodes.

• Specifying the type: It is possible to specify the type of a distinct node
with the keyword @type. When mapping to RDF, this creates a new
triple with the node as the subject, a property rdf:type and the given type
as the object (given as an IRI).

JSON-LD example:

[{"@id":"http://www.example.org/Sensor_A","http://www.example.org/measures":[{"@val
ue":"21.8C"}]}]

SPARQL:
SPARQL (SPARQL protocol and RDF query language, https://www.w3.o
rg/TR/sparql11-query/) is the most popular query language to retrieve and
manipulate data stored in RDF and became an official W3C recommendation
in 2008. Depending on the purpose, SPARQL distinguishes the following for
query variations:

• SELECT query: Extraction of (raw) information from the data.
• CONSTRUCT query: Extraction of information and transformation
into RDF.

• ASK query: Extraction of information resulting a true/false answer.
• DESCRIBE query: Extraction of RDF graph that describes the
resources found.

Given that RDF forms a directed, labelled graph for representing informa-
tion, the most basic construct of a SPARQL query is a so-called basic graph
pattern. Such a pattern is very similar to an RDF triple with the exception
that the subject, predicate, or object may be a variable. A basic graph pattern
matches a subgraph of the RDF data when RDF terms from that subgraph
may be substituted for the variables and the result is RDF graph equivalent
to the subgraph. Using the same identifier for variables also allow combining
multiple graph patterns. Besides aforementioned graph patterns, the SPARQL
1.1 standard also supports the sorting (ORDER BY), and the limitation of
result sets (LIMIT, OFFSET), the elimination of duplicates (DISTINCT),
the formulation of conditions over the value of variables (FILTER), and the
possibility to declare a constraint as OPTIONAL. The SPARQL 1.1 standard
significantly extended the expressiveness of SPARQL. In more detail, the new
features include:

9.7 Background Technologies 151

• Grouping (GROUP BY) and conditions on groups (HAVING).
• Aggregates (CONT, SUM, MIN, MAX, AVG, etc.).
• Subqueries to embed SPARQL queries directly within other queries.
• Negation to, e.g., check for the absence of data triples.
• Project expression, e.g., to use numerical result values in the SELECT
clause within mathematical formulas and assign new variable names to
the result.

• Update statements to add, change, or delete statements.
• Variable assignments to bind expressions to variables in a graph pattern.
• New built-in functions and operators, including string functions (e.g.,
CONCAT, CONTAINS, etc.), string digest functions (e.g., MD5, SHA1,
etc.), numeric functions (e.g., ABS, ROUND, etc.), or date/time func-
tions (e.g., NOW, DAY, HOURS, etc.).

As mentioned previously, RDF graph data is represented as triples, i.e.,
“subject”, “predicate”, and “object”. A very basic SPARQL, which brings
back 100 triples from the RDF graph, can be written as follows.

SPARQL example:
SELECT * WHERE {?s ?p ?o} LIMIT 100

