
8
i3-MARKET Crypto Token and Data

Monetization

8.1 Objectives

The federation of independent data spaces/marketplaces further calls for a
highly secure, trusted, and cost-efficient payment solution.

At first a standard payment solution has been designed providing a proto-
col to exchange data with a non-repudiable and auditable accounting of data
transfers. This ensures transparent billing and support for conflict resolution.

This protocol is based on a cryptographic proof exchange between data
consumer and data provider and a final recording of this proof on the
blockchain as “notarization” on the data exchange.

Then a tokenization solution has been designed providing a crypto token
based on Ethereum standard ERC-1155 and the concept of “distributed trea-
sury”, which means that each data marketplace joining the federation could
exchange token for fiat money with a fixed value. The tokens minted by each
marketplace are “tagged” differently so that there is always a link between
the tokens and the issuer, which must provide the associated amount of fiat
money during a “clearing” phase between the data marketplaces.

This allows instant currency exchange among all the stakeholders partic-
ipating in the federation and also supports full audibility of all transactions.

However, until the landscape of cryptocurrencies and tokens is clarified,
with the EU Parliament vote on adopting MiCA(https://eur-lex.europa.e
u/legal-content/EN/TXT/?uri=CELEX%3A52020PC0593) regulation,
which is expected to establish harmonized rules for crypto-assets at the EU
level, thereby providing legal certainty and guidance as to the usage of crypto
tokens, the i3-MARKET Alliance decided to only use tokens as a means for
distributing fees for the long-term sustainability of the system.

The choice to establish a new crypto token for real-time trading of data
assets between federated data spaces and marketplaces in the i3-MARKET

89

90 i3-MARKET Crypto Token and Data Monetization

platform was made to overcome the boundaries of individual marketplaces
and build a trustworthy working environment, one of the keys to establishing
a single European data economy.

In particular, the problems solved by the adoption of the token as a
currency (like the use of the blockchain in our non-repudiable protocol) are:

• to exchange value in a peer-to-peer manner, without the need for
someone in between;

• to make sure that ownership is transferred and that information about the
exchange cannot be tampered with.

This is extremely disruptive for the market because information is decen-
tralized and the control is distributed among all network marketplaces, thus
avoiding the designation of an impartial central intermediary. Decentralized
communities provide certainty of identity, certainty of provenance and the
smart contracts, like the treasury smart contract designed here, and certainty
of execution (“if I pay with tokens, I get value in return”) in the network.

The main technical contributions are the design and development of an
ad-hoc blockchain-based non-repudiation protocol and the design of a crypto
token solution based on the concept of “distributed treasury” to allow and
trust the real-time trading of data assets among federated data spaces and
marketplaces.

The designed non-repudiable protocol, instead of relying on trusted third
parties for storing the non-repudiation evidence information, uses the Hyper-
ledger BESU blockchain deployed on the i3-MARKET nodes that preserve
both the proof of origin and proof of receipt of the parties involved. This
is to ensure two things: one is that the information sent cannot be denied,
for example, a DC has sent a message to a DP, so the DC cannot deny the
behaviour. The other is that the recipient of the information cannot be denied.
Similarly, DP has sent a message to DC, but DC cannot claim that it has
not received this message. In this sense, the blockchain guarantees both the
non-repudiation of information and the non-tampering of data by the parties
involved.

The tokenization component and the cryptographic token flow have been
designed to support all the different interactions between the subjects of i3-
MARKET, namely data marketplace, data provider, and data consumer. To
enable the trading of assets among the i3-MARKET network marketplaces,
a custom flow has been designed consisting of four different phases, which,
starting from the mint of the token from a data marketplace, allow it to be
used as a means of payment for data or fees and to trace the path up to the

8.2 Technical Requirements 91

return to the original marketplace, where it is burned. In particular, the use
of the token in these phases enables payments that are easy to make, reliable,
safe, and verifiable both within and between marketplaces and allows correct
management to differentiate the tokens issued by different marketplaces.

8.2 Technical Requirements

For the components of the data monetization subsystem, the following
requirements have been defined in the form of epics and user stories.

Standard payments:

Epics:

Name Description Labels
Standard
payments

Standard payments refer to payments for a specific
dataset or piece of data. Initially, it should support:
payment in advance − a posteriori payment. In
both cases, it should also support: pay per dataset
or specific piece of data − subscription (flat rate
within a specific set of conditions)

Epic data Consumer
Data provider
Data marketplace

User stories:

Name Description Labels
In advance
payment

As a data provider, I want to be paid in advance
for providing my data so that I can monetize them
immediately

User story
Data provider
Data consumer
Data marketplace

A posteriori
payment

As a data provider, I want to be paid a posteriori
for providing my data so that I can have more
consumers to subscribe my offering

User story
Data marketplace
Data consumer
Data provider

Non-
repudiation
Protocol

As a data provider, I want to provide my data with
a Non-repudiation Protocol so that I can bill data
consumers based on reliable data exchanges
As a data consumer, I want to consume data with
a non-repudiation protocol so that I can contest
wrong billings

User story
Data consumer
Data provider

92 i3-MARKET Crypto Token and Data Monetization

Tokenization:

Epics:

Name Description Labels
Currency
tokeniza-
tion

The federation of independent data
spaces/marketplaces further calls for a highly
secure, trusted, and cost-efficient payment
solution. Therefore, a suitable crypto currency
solution that allows instant currency exchange
among the participating data spaces/marketplaces
and also supports full audibility of all transactions
has to be provided

Epic
Data marketplace
Data consumer
Data provider
Data owner

User stories:

Name Description Labels
Provide
crypto
tokens
(exchange
in)

As a data marketplace, I want to provide crypto
tokens to data consumer so that I will enable P2P
payments for data exchange
As a data consumer, I want to purchase crypto
tokens from a data marketplace so that I can
subscribe offering from other marketplaces in the
i3-MARKET network

User story
Data marketplace
Data consumer

Payment
with
crypto
tokens

As a data provider, I want to receive payment
with crypto tokens so that I can receive instant
payments

User story
Data marketplace
Data consumer
Data provider
Data owner

Withdraw
crypto
tokens
(exchange
out)

As a data provider/data owner, I want to receive
fiat currency from a data marketplace so that I can
monetize the crypto tokens received for providing
my data
As a data consumer, I want to receive fiat currency
from a data marketplace so that I can monetize my
crypto tokens if I leave the i3-MARKET network

User story
Data marketplace
Data consumer
Data provider
Data owner

Clearing As a data marketplace, I want to receive fiat cur-
rency for the tokens emitted by other data mar-
ketplaces so that I can monetize these tokens if I
leave the i3-MARKET network or with a specific
scheduling

User story
Data marketplace

8.3 Solution Design/Blocks 93

8.3 Solution Design/Blocks

The following are the high-level capabilities provided by the data monetiza-
tion subsystem:

1. Standard payments: In advance or a posteriori payment for a specific
dataset or piece of data.

2. Tokenization: Creation of a crypto token solution for instant currency
exchange among the participating data spaces/marketplaces.

3. Pricing manager: Managing of i3-MARKET cost and price model.

From Figure 8.1, the data monetization subsystem block interacts with
following two building blocks:

– Data storage system: The data monetization subsystem uses the data
Storage system for recording crypto token transactions.

– Backplane system: The data monetization subsystem has been used from
the Backplane system for accounting and executing payment operations
for data purchases and tokenization operations.

– Data access system: The data monetization subsystem has been used
from the data access system for accounting and/or executing payments
for data exchanges.

Figure 8.1 Backplane architecture.

See Figure 8.2 for the specific component diagram.

94 i3-MARKET Crypto Token and Data Monetization

Figure 8.2 Data monetization components.

The data monetization subsystem is in charge of providing “standard
payments”, “pricing manager”, and “tokenization” capabilities.

Inside, we can find:

– component “standard payments” responsible for managing the pay-
ments, in advance or a posteriori, for a specific dataset or piece of
data;

– component “tokenization” responsible for the creation of a crypto token
for instant currency exchange and other tokenization operations among
the participating data spaces/marketplaces;

– component “pricing manager” responsible for managing the price and
the cost model.

8.4 Standard Payment

The Non-repudiation Protocol aims at preventing parties in a data exchange
from falsely denying having taken part in that exchange. The protocol flow
begins when a data consumer requests a block of data from the data provider.
See Figure 8.3 for details.

At first, the data provider has to generate a one-time symmetric secret
key (JWK) for a given JWA algorithm identifier; this secret is going to be
used to encrypt the data block required by the data consumer (Figure 8.4).
After the data encryption, the data provider builds a proof of origin JWT
object, containing information about the parties (source, destination, etc.),
the timestamp, the hash algorithm used, the hash of the block, the secret key,
and the encrypted cipherblock. See Figure 8.5 for more details.

8.4 Standard Payment 95

Figure 8.3 NRP Phase 1− consumer gets cipherblock and non-repudiable proof of origin.

This object is then signed with the private key of the data provider and
returned to the data consumer.

The data consumer, at this point (Figure 8.5), can validate the proof
received using the data provider public key. If the validation is successful, he
can store the proof in his local memory. After having completed these steps,
he generates another proof, the proof or receipt. This proof is generated as

96 i3-MARKET Crypto Token and Data Monetization

Figure 8.4 NRP Phase 1 Part 2.

Figure 8.5 NRP consumer sends PoR.

8.4 Standard Payment 97

another JWT object containing information about the parties (iss, sub, etc.),
the timestamp, the hash of the received proof of origin, and the hash algorithm
used.

The proof of receipt is then signed with the data consumer private key
and sent back to the data provider. Once proof of receipt is received, the data
provider can validate it using the data consumer public key; see Figure 8.6.

Figure 8.6 NRP provider publishes the secret, and consumer decrypts the cipherblock.

The provider now publishes the one-time secret that was used to encrypt
the block on the i3M BESU blockchain. A proof of publication is then created

98 i3-MARKET Crypto Token and Data Monetization

but only to accelerate the process, since the actual proof of publication is the
secret published within the smart contract. The PoP is then sent to the data
consumer.

If the data consumer does not receive the proof and the key in a
predefined/agreed max timeout, he can retrieve them directly from the
blockchain. Once having received the proof of publication and the secret key,
the data consumer can validate the proof of publication with the auditable
accounting public key and verify that the hash of the key received is equal to
the hash of the key previously received in the proof of origin.

As the last step, if the verification is successful, he can decrypt the block
with the secret key and validate it with the hashed block included in the proof
of origin. If some validation or verification problems arise, the flow will enter
a conflict resolution phase.

8.5 Tokenization

The tokenization process and the components used to create and manage
a cryptographic token for instant currency exchange and other tokeniza-
tion operations among participating i3-MARKET actors are represented in
Figure 8.7.

i3-MARKET tokenization architecture:

Starting from the right of the architecture in Figure 8.21, to manage the
operational flows between the various data spaces/marketplaces involved in

Figure 8.7 Tokenization process.

8.5 Tokenization 99

currency exchange within the i3-MARKET platform, a specific i3-MARKET
treasury smart contract has been created. This smart contract contains and
maintains for each wallet the token balance of the data marketplaces, DP, DC,
and community members. More specifically, it is responsible for managing
the secure transfer of tokens between the parties and for tracking immutably
payments made in both tokens and fiat money.

To enable interaction with the treasury smart contract functionalities,
we have created two microservices, the tokenizer and the pricing manager.
The tokenizer allows the i3-MARKET actors to interact with the treasury
smart contract and keep track of all the marketplace operations, and the
pricing manager manages the data price and the fees. These two services
are integrated with the i3M Backplane and the SDK-RI to be used from an
i3-MARKET DM.

Treasury smart contract operations:

The most important features involving the tokenization operations are pre-
sented below; these have been implemented within the treasury contract,
which extends the ERC-1155 standard.

• Register a data marketplace:

To register a new data marketplace and its token type, a mapping to bond
the data marketplace addresses and the index identifier of the new token type
is required.

The function that inserts a new marketplace in the smart contract, incre-
ments an index variable and is added in the mapping of the marketplace
address as key and using a unit value as the identifier of the new token type.

contract I3-MARKETTreasury is ERC1155 {

 uint public index = 0;
 mapping(address => uint) public mpIndex;

 constructor() public ERC1155("https://i3-MARKET.com/marketplace/{id}.json"){
 }

 /*
 * add a new Data Marketplace in the platform
 */
 function addMarketplace(address _mpAdd) external onlySameAdd(_mpAdd)
onlyNewMpAdd(_mpAdd) {
 index += 1;
 marketplaces.push(_mpAdd);
 mpIndex[_mpAdd] = index;
 }
}

100 i3-MARKET Crypto Token and Data Monetization

• Exchange in:

The exchange method must be called by a data marketplace, which issues
and transfers the right amount of tokens (of its token type) to the user who
pays in fiat money.

ERC1155 function:
_mint(address account, uint256 id, uint256 amount, bytes data)

• Fee payment:

The payment method should transfer the token fees, taken “arbitrarily”
from the token types available in the data consumer balance, to the data
provider.

The ERC1155 function used for the payment:

safeBatchTransferFrom(address from, address to,
uint256[] ids, uint256[] amounts, bytes data)

Example: Starting from the first token type in the balance loop until the
amount is covered.

function configurePayment(address from, uint256 amount) private view returns
(uint256[] memory ids, uint256[] memory amounts) {
uint256[] memory mpIds = new uint256[](index);
 uint256[] memory mpTokens = new uint256[](index);
 for (uint256 i = 0; i < index && amount != 0; ++i) {
 uint256 mpBalance = super.balanceOf(from, i + 1);
 if (mpBalance != 0) {
 mpIds[i] = i + 1;
 mpTokens[i] = getMarketplaceNeededTokens(mpBalance, amount);
 amount = amount - mpTokens[i];
 }
 }
 require(amount == 0, "NOT ENOUGH TOKENS");
 return (mpIds, mpTokens);
}

• Exchange out:

The exchange-out method should transfer the right amount of token,
taken “arbitrarily” (first the tokens belonging to the data marketplace in the
exchange out and once finished, the others) from the token types available in
the balance, from a community member to a data marketplace.

The ERC1155 function used for the exchange-out operation:

safeBatchTransferFrom(address from, address to,
uint256[] ids, uint256[] amounts, bytes data)

8.5 Tokenization 101

• Clearing:

The clearing method should be called for every token type present in the
data marketplace balance, aside from the token type the data marketplace has
created.

The ERC1155 function used for the clearing operation:

safeTransferFrom(address from, address to,
uint256 id, uint256 amount, bytes data)

struct ClearingOperation{
 string transferId;
 address toAdd;
 uint tokenAmount;
}

function clearing(ClearingOperation[] memory _clearingOps) external payable
onlyMp(msg.sender){

 //clearing for each marketplace contained
 for (uint i = 0; i < _clearingOps.length; ++i){
 isMarketplace(_clearingOps[i].toAdd,"ADD ISN'T A MP");
 if(_clearingOps[i].tokenAmount > minimumClearingThreshold) {
 super.safeTransferFrom(msg.sender,_clearingOps[i].toAdd,mpIndex[_clear
ingOps[i].toAdd], _clearingOps[i].tokenAmount, "0x0");

 //create transaction with isPaid param to False as Fiat money payment
is not completed yet
 txs[_clearingOps[i].transferId] =
TokenTransfer(_clearingOps[i].transferId, msg.sender, _clearingOps[i].toAdd,
_clearingOps[i].tokenAmount, false, "");
 emit TokenTransferred(_clearingOps[i].transferId, "clearing",
msg.sender, _clearingOps[i].toAdd);
 }
 }
}

• Exchange-out and clearing strategy:

Since a marketplace has first to collect the fiat money from all the
DM involved in an exchange-out operation before transferring the money
requested, here we describe the suggested strategy that each marketplace
should implement in its code. Other strategies can be used in agreement with
the network marketplaces.

Requirements:

• Set a number variable X as the interval of days that a marketplace
collects exchange-out requests.

102 i3-MARKET Crypto Token and Data Monetization

• Set a numeric variable Z as the interval of days in which a marketplace
must wait for other marketplaces to pay in fiat money for the tokens sent
via clearing.

Strategy flow:
Marketplace ordered steps for the exchange-out operation:

1. Starting from the first day a marketplace starts operating, in the
firstX days, the marketplace should collect all the exchange-out requests
from the users (community).

2. At the end of X days, the marketplace asks to exchange the tokens in its
balance that belong to other marketplaces.

3. Now the marketplace should wait for another Z days so that all the other
marketplaces can pay with fiat money the tokens sent with the clearing
operation.

4. Once the Z days have passed and the fiat money from the clearings are
collected, the marketplace can pay out the users that in the first X days
requested the exchange-out of tokens.

The marketplace can restart in parallel this flow and collect another round
of exchange-out requests at the end of point 2.

Tracking of token transfers (exchange out, clearing):
The token payment process involves storing in the blockchain the history

of the transactions made once the token transfer is completed.
We want to save the transfer operation in a mapping of structs, where the

key identifier is a unique value generated outside.

// object that stores the token transfer information
struct TokenTransfer {
 uint transferId;
 address fromAddress;
 address toAddress;
 uint tokenAmount;
 bool isPaid; //True if the fiat money payment has been completed
 //False if only the token transfer is completed
 string transferCode;

}

//mapping to track all the token transfer transactions
mapping(uint => TokenTransfer) public transactions;

Tokenizer service:

The main purpose of the tokenizer service is to allow the i3-MARKET actors
(i.e., marketplace, data provider, and data consumer) to call the i3-MARKET

8.5 Tokenization 103

treasury smart contract methods and interact with the i3-MARKET token
flow; see Figure 8.8. The tokenizer is a Node.js backend service with a local
Postgres database to persist the marketplace token activities.

Figure 8.8 Tokenizer architecture.

Each data marketplace needs an instance of the tokenizer and a dedicated
local database. The tokenizer tracks the status of transactions made by a
marketplace on the treasury smart contract using blockchain events, while the
full history of each transaction is stored in the local database for verification
and error prevention.

To deploy a transaction on the i3M BESU blockchain, the transaction
should be first signed with the i3-MARKET Wallet. The tokenizer post
operations create a transaction object that must be signed and then deployed
separately using the flow presented below.

1. The first step is to create a new raw transaction using one of the
post operations available (i.e., exchangeIn, exchangeOut, clearing, fee-
payment, etc.). After a successful transaction, the payload of the
response will be a transaction object like this one:

104 i3-MARKET Crypto Token and Data Monetization

With this operation, the marketplace tokenizer service saves in its
database the operation with the operation_name (i.e., exchangeIn,
exchangeOut, clearingIn, clearingOut, fee-payment, etc.) with sta-
tusUNSIGNED-OPERATION, the address of the user involved, the date,
and a unique transferID to get this operation at a later time:

TRANSFERID OPERATION STATUS USER DATE
1111 operation_name unsigned_operation address date

2. Now the raw transaction has to be signed with the i3M wallet. Only
the fields contained in the “transactionObject” are used for the signing
transaction operation. Below is the object to be signed:

3. The next step is to deploy the signed transaction. Once the market-
place gets the signed raw transaction, it can call the deployment end-
point of the tokenization service /treasury/transactions/deploy-signed-
transaction. The response of the request should be a long transaction
object with information about the transaction.

4. When the operation deployment is successful, the marketplace tokenizer
service updates in its database the previous operation with status open.

TRANSFERID OPERATION STATUS USER DATE
1111 operation_name open address Later-date

Pricing manager service:

Pricing manager is a Java microservice to configure and evaluate the price
and the cost of data; see Figure 8.9. The microservice uses the i3-MARKET
BESU blockchain and an in-memory database to persist data.

8.6 Diagrams 105

Figure 8.9 Pricing manager architecture.

The service APIs are logically divided into two subsets.

Pricing management:
This service allows to calculate the price of some data based on a preconfig-
ured formula. The service, through the exposed APIs, allows you to manage
the formula and customize the parameters and constants.

The formula and the constant values are stored in an in-memory database
inside the service, as every marketplace can have a customized formula if
needed.

Currently, in the i3-MARKET platform, all the data marketplaces will use
the formula provided by AUEB.

Cost management:
This service can be used to calculate the fee of some data, which depends
on the price of the data and the percentage of the fee. The fee percentage is
stored in the blockchain and more specifically in the treasury smart contract.

8.6 Diagrams

The following diagrams describe the processes involving the components of
the data monetization subsystem.

These requirements have been collected using the Trello Boards system
taking into account functional use cases and general requirement reported by
partners, stakeholders, big companies, and SMEs.

Standard payment:

A Non-repudiable Protocol is used for accounting data transfers. Based on
the accounted data exchanges and smart contract information about data
consumer (company name, VAT, billing address, etc.) and pricing, the data
provider will invoice the data consumer; see Figure 8.5. The payment will be
done using standard bank payment methods.

106 i3-MARKET Crypto Token and Data Monetization

• Accounting:

The Non-repudiation Protocol aims at preventing parties in a data
exchange from falsely denying having taken part in that exchange. To ensure
the traceability of data exchanges and manage conflicts, the proof of origin of
the data provider and the proof of receipt of the data consumer are stored in
the immutable ledger; see Figure 8.10.

Figure 8.10 NRP Part 1.

In the first step of the protocol, shown in Figure 8.11, a block of data
is requested from the data consumer to the data provider. The data provider
encrypts the requested block, creates the proof of origin, and returns this proof
to the consumer with the encrypted block. At this point, the data consumer
validates the proof of origin received from the data provider, stores the proof
in its local memory, and creates the proof of receipt.

In the second step, the data consumer sends the proof to the data provider;
see Figure 8.11. The data provider validates the proof of receipt and stores
it in local storage. As a third step, the provider publishes the secret on the
blockchain and sends the proof of publication to the data consumer.

The data consumer can obtain the proof of publication and the crypto-
graphic key directly from the data provider or from the blockchain if this is
not received within a maximum time; see Figures 8.12 and 8.13. The data
consumer then checks that the key is received, that the PoP is valid, and that

8.6 Diagrams 107

Figure 8.11 NRP Part 2.

the key hash is the same as the key commitment parameter included within the
PoO. At this point, the data consumer decrypts and validates the previously
received cipherblock.

Figure 8.12 NRP Step 3 Part 1.

Figure 8.13 NRP Step 3 Part 2.

108 i3-MARKET Crypto Token and Data Monetization

• Invoice management:

In this process, the data provider retrieves from the Backplane the
information (based on the accounted data exchanges and the smart contract
agreement) to produce the invoices for the data consumers.

Data consumers could check the invoices verifying the accounted infor-
mation and pay the invoices with standard payment methods; see Figure 8.14.

Figure 8.14 Invoicing process.

Tokenization:

An i3-MARKET crypto token has been created customizing Ethereum ERC-
1155 standard. The treasury smart contract contains and maintains the
different balances for each data marketplace and user in the i3-MARKET
network. When a data consumer obtains tokens from a data marketplace
paying fiat money (exchange in), both the total balance of data consumer
wallet and the specific data marketplace balance will be increased.

8.6 Diagrams 109

During the payment for data phase between a data consumer and a data
provider, the data consumer can pay the data price in fiat money or in
tokens to the data provider. In addition to the data price payment, the data
consumer will pay some fees in tokens to the i3M community, the provider
data marketplace, and the consumer data marketplace; see Figure 8.15.

A community member (or a DP if we enable data price payments in
tokens) will be able to ask fiat money for his token balance from any of the
network DM (exchange out) and the amount of token will be transferred from
the total balance of community member wallet to the balance of DM wallet;
the community member can pay with tokens belonging to the DMwith which
it is doing the operation or with tokens belonging to other DMs.

Finally, a DM will be able to ask for the clearing of tokens distributed
by the other DMs (clearing) – Figure 8.15. For each specific DM balance of
the requesting DM wallet, a clearing request will be created, and all the DMs
involved will be notified and should pay fiat money to the requesting DM
and confirm clearing execution. On clearing confirmation, the tokens will be
transferred from requesting DMwallet to clearing DMwallet (requesting DM
already approved the transfer during the clearing request) in Figure 8.16.

Figure 8.15 Tokenization model.

• Exchange in:

In the exchange in phase, the user requests a specific amount of tokens
from a data marketplace, which, upon receiving the payment in fiat money
from the user, returns the tokens in the amount requested as depicted in
Figure 8.16.

110 i3-MARKET Crypto Token and Data Monetization

Figure 8.16 Exchange in process.

8.6 Diagrams 111

As shown in the flow above, when the fiat money payment is received
by the data marketplace, it authenticates with the Backplane so that it can
call the “exchange in” method of the treasury smart contract; see Figure 8.17.
The smart contract mints the tokens directly into the address of the user who
requested the tokens; see Figure 8.17.

• Payment:

In the payment phase, first, the user logs in as data consumer and then
can start a data exchange. As a first step, the data consumer makes a first

Figure 8.17 Payment process.

112 i3-MARKET Crypto Token and Data Monetization

transaction in the blockchain in which he inserts tokens on deposit and,
therefore, commits himself to the data provider by offering a guarantee
(monetary security). When the data exchange is concluded, the right amount
of tokens are taken from the data consumer deposit and moved to the data
provider balance; see Figure 8.18.

• Exchange out:

Figure 8.18 Exchange out process.

8.6 Diagrams 113

In the exchange out phase, the data provider after the login with the
data marketplace can start the withdrawal of the i3-MARKET tokens in his
balance sheet (Figure 8.19). At first, he confirms the cash-out operation via
his wallet application that calls the “exchange out” method in the treasury
smart contract. If the operation is successful, the smart contract saves the
information regarding the token transaction. At this point, the data mar-
ketplace proceeds with the payment in fiat money to the user IBAN and
publishes the transaction identifier (TRN) in the blockchain to securely store
the transaction in case of future conflicts.

• Clearing request:

Figure 8.19 Clearing request process.

114 i3-MARKET Crypto Token and Data Monetization

During the clearing phase, the data marketplace that wants to leave the
i3-MARKET network should return the tokens in its balance to the corre-
sponding data marketplace owners – see Figure 8.20. The clearing method
should be called for every token type present in the data marketplace balance
aside from the token type the data marketplace has created.

• Clearing execution:

Figure 8.20 Clearing execution process.

8.7 Interfaces 115

In the clearing execution phase, the data marketplaces that receive a
clearing request from a data marketplace must pay the corresponding value
in fiat money of the tokens received.

8.7 Interfaces

The interfaces of the library of the Non-repudiation Protocol for standard
payment of the treasury smart contract for tokenization and pricing manager
microservices are presented below – see Figures 8.21 and 8.22.

Tokenization:

Figure 8.21 Tokenization API.

116 i3-MARKET Crypto Token and Data Monetization

Pricing manager:

Figure 8.22 Pricing manager API.

8.8 Background Technologies

To implement the solution for tokenization, the ERC-1155 multi-token
standard has been chosen and customized.

The ERC-1155 standard was used to implement the i3-MARKET treasury
contract, which outlines a smart contract interface that can represent any
number of fungible and non-fungible token types. More specifically, the
ERC-1155 multi-token standard allows each token ID to represent a new
configurable token type, which can have its own metadata, supply, and other
attributes.

Adapted to our solution, this token standard has been used to collect the
token for the different marketplaces that adhere to the platform, where a new
fungible token has to be created for every new marketplace that joins the
consortium. This solution allows us to track at any time which token type
and therefore which marketplace the tokens in the balance sheet for any
participant in the network belong to.

This is particularly important because, for example, during a clearing
operation, a marketplace should know to which different marketplaces its
tokens in the balance sheet belong; therefore, it can send to each one the
right amount of tokens to be converted and returned in fiat money.

It is also important to underline the advantages that the 1155 standard
brings because in token standards like ERC-20 and ERC-721, a new separate

8.8 Background Technologies 117

contract has to be deployed for each token type or collection. This places
a lot of redundant bytecodes on the Ethereum blockchain and limits certain
functionalities by the nature of separating each token contract into its own
permissioned address. With this new design, it is possible to transfer multiple
token types at once, saving on transaction costs and removing the need to
“approve” individual token contracts separately.

