
7
Smart Contract Manager

7.1 Objectives

The smart contract manager (SCM) provides a gateway to access the smart
contracts and is used by other subsystems to integrate their functionalities
(conflict resolution, pricing manager, explicit user consent, and secure data
exchanges).

Smart contract manager facilitates the creation of agreement objects using
the data sharing agreement (DSA) smart contract. The DSA solidity contract
is based on a legal agreement for data sharing, considering the existing legal
framework (e.g., GDPR [26]). The agreement objects are used to enforce
agreed-upon obligations from the provider and consumer sides.

The smart contract manager development has been made publicly avail-
able in the i3-MARKET GitHub repository and the smart contracts the
subsystem uses at [66]. The Table 7.1 summarizes the Smart Contract
Manager user stories.

7.2 Technical Requirements

Table 7.1 Smart contract manager – user stories.
Name Description Labels
SCM Within i3-MARKET, DSA objects need to be stored on

the blockchain in order to automatically enforce certain
clauses of the legal data trading agreement. Additionally,
automatic conflict resolution of certain types of viola-
tions has to be supported.

User story

The smart contracts of the SCM need to combine legal
certainty with automated enforcement, built-in conflict
resolution mechanisms, and guaranteed access to rem-
edy. The SCM evaluates a signed resolution, issued by
the conflict-resolver service, which relies on the execu-
tion of the Non-repudiation Protocol. Depending on the
type of resolution, the state of the agreement is automat-
ically updated.

65

66 Smart Contract Manager

Table 7.1 Continued.
Name Description Labels

Explicit data owner consent: In case of personal data,
legal consent of data owners is required. When the con-
sent is given, the SCM stores a list of explicit consents
for a specific offering. The consent can be revoked any-
time, and before an agreement is created, the consent
status is verified. As long as the data to be shared is
personal data, agreements can be created just when the
consent was given by the data owner.
Pricing: The price and the fee of the data are stored in
the agreement. The fee is requested from the pricing
manager, based on the price in the data offering.

7.3 Solution Design/Blocks

The smart contract manager extracts the contractual parameters from the
data offering description and returns a template with possible contractual
parameters (to be displayed in the marketplace), as shown in Figure 7.1. After
a data purchase request is sent, with a potential proposal of new parameters by
the consumer, the provider and consumer must sign the agreement and store it
in the wallet. As soon as both received the signed data sharing agreement and
saved it in the wallet, the provider can create and store the agreement on the
blockchain. The smart contract manager invokes the data sharing agreement
smart contract and creates an agreement with the proposed contractual param-
eters. The agreement object is put on the ledger and automatically enforced
by the corresponding smart contract (Figure 7.2).

Figure 7.1 Context view of the smart contract manager.

7.3 Solution Design/Blocks 67

Figure 7.2 Component diagram of the smart contract manager subsystem.

The smart contract manager is interconnected with the following i3-
MARKET subsystems, as it is shown in Figures 7.3–7.5.

• Semantic engine: To retrieve the parameters and details about the data
offering descriptions to compile information for the contract agree-
ments.

• Conflict resolution: In order to check whether a violation to the con-
tract occurred, the conflict resolution is invoked. The conflict resolution
will prevent any two peers of a data exchange, namely provider and
consumer to deny that a given data-block exchange happened or to
assert that a data-block exchange that did not happen, happened. The
conflict-resolver service issues verifiable signed resolutions regarding
the execution of the i3-MARKET Non-Repudiation Protocol. The SCM
evaluates the signed resolution and, depending on the type of resolution,
automatically changes the state of the agreement in case of a violation,
as well as suggests penalties for one of the peers.

• Non-repudiation Protocol: The Non-repudiation Protocol aims at pre-
venting parties in a data exchange from falsely denying having taken
part in that exchange.

• Explicit data-owner consent: To ensure an explicit consent of the data
owners every time their personal data is traded, the explicit data owner
consent component is triggered.

• Pricing manager: The SCM requests the fee of the data based on the
price registered in the data offering by invoking the pricing manager
to calculate the corresponding fee and includes it in the contractual
template.

• User-centric authentication: To ensure that only authorized partic-
ipants (with the corresponding role) are able to trigger functionality

68 Smart Contract Manager

provided by the data sharing agreement smart contract (via the smart
contract manager), user-centric authentication is used (part of the
Backplane).

• i3M-Wallet: The raw transactions created in the SCM have to be signed
with an i3M-Wallet (either the Wallet Desktop App or the server wallet)
in order to deploy them.

Figure 7.3 Sequence diagram – retrieve contractual parameters template.

Figure 7.4 Sequence diagram – create agreement.

7.4 Diagrams 69

Figure 7.5 Data sharing agreement negotiation, key pair generation, storage in wallet, and
agreement creation on blockchain.

70 Smart Contract Manager

7.4 Diagrams

The smart contract manager extracts the static contractual parameters from
the data offering description using the semantic data model. The interactions
are shown in Figure 7.6. The dynamic parameters, such as the consumer DID,
start date, and end date of the agreement, are filled when a data purchase
request is created by the consumer.

Before storing an agreement on the blockchain using the smart contract
manager, the provider and the consumer should generate their public−private
keys (using the non-repudiation library) and they should each sign the con-
tract. After they filled in their public keys and the contract is signed, they
should store the generated key pairs and data sharing agreement in their
wallets as shown in Figure 7.7.

As soon as the negotiation between the provider and consumer is over and
they agree on specific contractual parameters, as well as store the final data
sharing agreement and the key pairs in their wallets, the provider can create
the agreement on the blockchain using the smart contract manager.

Firstly, a raw transaction is created using the data sharing agreement,
which was saved in the wallet. The successful response of creating an
agreement request is a raw transaction object. This raw transaction has to be
signed with the wallet using the provider’s DID. After the signed transaction
is obtained from the wallet, it has to be deployed. The response of the Smart
Contract Manager should be a transaction object with information about

Figure 7.6 Sequence diagram− check agreements by offering ID.

7.4 Diagrams 71

Figure 7.7 Conflict resolution.

Figure 7.8 Agreement lifecycle and states.

the transaction in Figure 7.8. If the confirmation is 1, the transaction was
successfully deployed, and the agreement is stored on the blockchain.

After that, the provider and consumer receive a notification that the
agreement is active, which means it was created and stored on the blockchain.
This notification will be encrypted and contains the agreement id. The noti-
fications should be retrieved from the notification manager based on the
provider/consumer public key and decrypted using the corresponding private
key. After they receive this notification, the provider should post the data

72 Smart Contract Manager

Figure 7.9 Agreement violation− conflict resolution.

exchange agreement, the agreement id, and the private key to data access and
then the consumer can start the transfer – see Figure 7.9.

Agreement violation− conflict resolution:
After the data transfer is finished, a consumer can request a verification or
initiate a dispute using the conflict resolution. The proof of the completeness

7.5 Interfaces 73

of the data exchange will be checked and the consumer receives the signed
resolution based on that proof.

The smart contract manager evaluates the signed resolution. Within this
evaluation, the resolution is decoded and depending on the resolution, the
agreement’s state can change from active to violated.

The transfer was unsuccessful when the resolution is:

• not completed (in case of a verification) − the decryption key was not
published;

• accepted (in case of a dispute) − the cypher block cannot be properly
decrypted.

If the transfer was not successful, the agreement is violated. When the
agreement is violated, the consumer receives a list of penalties.

These penalties could be:

• new end date for agreement;
• new end date for agreement and a price reduction;
• termination of agreement.

The consumer should propose one of these penalties to the provider. The
provider will receive a notification with the chosen penalty and if he agrees
to the penalty, he should enforce on the blockchain. By enforcing the new
penalty, the agreement state changes from violated to active or terminated (in
case the penalty termination is chosen).

7.5 Interfaces

The smart contract manager API is the interface via which the clients gain
access to the smart contract parameters.

The endpoints documented below were grouped by modules.

Agreement:

GET /template/{offering_id}

Request template with static and dynamic parameters

offering_id (required)

Example data
Content-Type: application/json
{
 "dataOfferingDescription": {
 "dataOfferingId": "63662ebdb7d5dd78b7159566",
 "version": 0,

74 Smart Contract Manager

 "title": "Oil Supply Unit",
 "category": "manufacturing",
 "active": true
 },
 "parties": {
 "providerDid":
"did:ethr:i3m:0x0243cc9dbc7157ee12ce1898ac0c49b366822f32d57bc108e127f45b6c4
3a57e90",
 "consumerDid": "string"
 },
 "purpose": "Oil supply Unit measurements",
 "duration": {
 "creationDate": 0,
 "startDate": 0,
 "endDate": 0
 },
 "intendedUse": {
 "processData": true,
 "shareDataWithThirdParty": false,
 "editData": true
 },
 "licenseGrant": {
 "transferable": false,
 "exclusiveness": true,
 "paidUp": true,
 "revocable": true,
 "processing": true,
 "modifying": true,
 "analyzing": true,
 "storingData": true,
 "storingCopy": true,
 "reproducing": true,
 "distributing": false,
 "loaning": false,
 "selling": false,
 "renting": false,
 "furtherLicensing": false,
 "leasing": false
 },
 "dataStream": false,
 "personalData": false,
 "pricingModel": {
 "paymentType": "one-time purchase",
 "pricingModelName": "string",
 "basicPrice": 125.68,
 "currency": "$",
 "fee": 6.28,
 "hasPaymentOnSubscription": {
 "paymentOnSubscriptionName": "",
 "paymentType": "",
 "timeDuration": "",
 "description": "",
 "repeat": "",
 "hasSubscriptionPrice": 0
 },
 "hasFreePrice": {
 "hasPriceFree": false
 }
 },
 "dataExchangeAgreement": {
 "orig": "string",

7.5 Interfaces 75

 "dest": "string",
 "encAlg": "A128GCM",
 "signingAlg": "ES256",
 "hashAlg": "SHA-256",
 "ledgerContractAddress": "0x8d407a1722633bdd1dcf221474be7a44c05d7c2f",
 "ledgerSignerAddress":
"0x02897978ebd80646bc469cba19d79d8655cd862cb9fd2484141d66103260cc540d",
 "pooToPorDelay": 100000,
 "pooToPopDelay": 30000,
 "pooToSecretDelay": 180000
 },
 "signatures": {
 "providerSignature": "string",
 "consumerSignature": "string"
 }
}

Returns the template with static and dynamic contractual parameters
POST /sdk-ri/contract/create-data-purchase

Create data purchase request (not part of the Backplane) – sends noti-
fication to provider with the static and dynamic parameters filled in by the
consumer

POST /create_agreement_raw_transaction/{sender_address}

Create agreement raw transaction (createAgreement)
sender_address (required)
Request body
body template (required)

{
 "dataOfferingDescription": {
 "dataOfferingId": "63662ebdb7d5dd78b7159566",
 "version": 0,
 "title": "Oil Supply Unit",
 "category": "manufacturing",
 "active": true
 },
 "parties": {
 "providerDid":
"did:ethr:i3m:0x0243cc9dbc7157ee12ce1898ac0c49b366822f32d57bc108e127f45b6c4
3a57e90",
 "consumerDid":
"did:ethr:i3m:0x03878572e4476a6b7b0223d07f53159ef923c874084ea56760fd130d80c
51409ad"
 },
 "purpose": "P&ID diagram of the Lube Oil supply Unit",
 "duration": {
 "creationDate": 1678997655,
 "startDate": 1786678869,
 "endDate": 1886678869
 },
 "intendedUse": {
 "processData": true,
 "shareDataWithThirdParty": false,
 "editData": true
 },

76 Smart Contract Manager

 "licenseGrant": {
 "transferable": false,
 "exclusiveness": false,
 "paidUp": true,
 "revocable": true,
 "processing": true,
 "modifying": true,
 "analyzing": true,
 "storingData": true,
 "storingCopy": true,
 "reproducing": true,
 "distributing": false,
 "loaning": false,
 "selling": false,
 "renting": false,
 "furtherLicensing": false,
 "leasing": false
 },
 "dataStream": false,
 "personalData": false,
 "pricingModel": {
 "paymentType": "one-time purchase",
 "pricingModelName": "string",
 "basicPrice": 125.68,
 "currency": "$",
 "fee": 6.28,
 "hasPaymentOnSubscription": {
 "paymentOnSubscriptionName": "string",
 "paymentType": "string",
 "timeDuration": "string",
 "description": "string",
 "repeat": "string",
 "hasSubscriptionPrice": 0
 },
 "hasFreePrice": {
 "hasPriceFree": false
 }
 },
 "dataExchangeAgreement": {
 "orig": "{\"kty\":\"EC\",\"crv\":\"P-
256\",\"x\":\"4sxPPpsZomxPmPwDAsqSp94QpZ3iXP8xX4VxWCSCfms\",\"y\":\"8YI_bvV
rKPW63bGAsHgRvwXE6uj3TlnHwoQi9XaEBBE\",\"alg\":\"ES256\"}",
 "dest": "{\"kty\":\"EC\",\"crv\":\"P-
256\",\"x\":\"6MGDu3EsCdEJZVV2KFhnF2lxCRI5yNpf4vWQrCIMk5M\",\"y\":\"0OZbKAd
ooCqrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00N\",\"alg\":\"ES256\"}",
 "encAlg": "A256GCM",
 "signingAlg": "ES256",
 "hashAlg": "SHA-256",
 "ledgerContractAddress": "0x7B7C7c0c8952d1BDB7E4D90B1B7b7C48c13355D1",
 "ledgerSignerAddress": "0x17bd12C2134AfC1f6E9302a532eFE30C19B9E903",
 "pooToPorDelay": 10000,
 "pooToPopDelay": 20000,
 "pooToSecretDelay": 150000
 },
 "signatures": {
 "providerSignature":
"eyJhbGciOiJQUzM4NCIsImtpZCI6ImJpbGJvLmJhZ2dpbnNAaG9iYml0b24uZXhhbXBsZSJ9.S
XTigJlzIGEgZGFuZ2Vyb3VzIGJ1c2luZXNzLCBGcm9kbywgZ29pbmcgb3V0IHlvdXIgZG9vci4g
WW91IHN0ZXAgb250byB0aGUgcm9hZCwgYW5kIGlmIHlvdSBkb24ndCBrZWVwIHlvdXIgZmVldCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IG1pZ2h0IGJlIHN3ZXB0IG9mZiB0by4.cu
22eBqkYDKgIlTpzDXGvaFfz6WGoz7fUDcfT0kkOy42miAh2qyBzk1xEsnk2IpN6tPid6VrklHkq

7.5 Interfaces 77

sGqDqHCdP6O8TTB5dDDItllVo6_1pcbUrhiUSMxbbXUvdvWXzg-
UD8biiReQFlfz28zGWVsdiNAUf8ZnyPEgVFn442ZdNqiVJRmBqrYRXe8P_ijQ7p8Vdz0TTrxUeT
3lm8d9shnr2lfJT8ImUjvAA2Xez2Mlp8cBE5awDzT0qI0n6uiP1aCN_2_jLAeQTlqRHtfa64QQS
UmFAAjVKPbByi7xho0uTOcbH510a6GYmJUAfmWjwZ6oD4ifKo8DYM-X72Eaw",
 "consumerSignature":
"eyJhbGciOiJQUzM4NCIsImtpZCI6ImJpbGJvLmJhZ2dpbnNAaG9iYml0b24uZXhhbXBsZSJ9.S
XTigJlzIGEgZGFuZ2Vyb3VzIGJ1c2luZXNzLCBGcm9kbywgZ29pbmcgb3V0IHlvdXIgZG9vci4g
WW91IHN0ZXAgb250byB0aGUgcm9hZCwgYW5kIGlmIHlvdSBkb24ndCBrZWVwIHlvdXIgZmVldCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IG1pZ2h0IGJlIHN3ZXB0IG9mZiB0by4.cu
22eBqkYDKgIlTpzDXGvaFfz6WGoz7fUDcfT0kkOy42miAh2qyBzk1xEsnk2IpN6tPid6VrklHkq
sGqDqHCdP6O8TTB5dDDItllVo6_1pcbUrhiUSMxbbXUvdvWXzg-
UD8biiReQFlfz28zGWVsdiNAUf8ZnyPEgVFn442ZdNqiVJRmBqrYRXe8P_ijQ7p8Vdz0TTrxUeT
3lm8d9shnr2lfJT8ImUjvAA2Xez2Mlp8cBE5awDzT0qI0n6uiP1aCN_2_jLAeQTlqRHtfa64QQS
UmFAAjVKPbByi7xho0uTOcbH510a6GYmJUAfmWjwZ6oD4ifKo8DYM-X72Eaw"
 }
}

Return type
raw_transaction

Example data
Content-Type: application/json

{
 "nonce": 46,
 "to": "0x4d722c3a1Cec5306710637103495dDd9DFAda905",
 "from": "0xc6b8cf76bd7078e56c6ce8c357dd91caeea70170",
 "gasLimit": 12500000,
 "gasPrice": 1000,
 "chainId": 1337,
 "data":
"0x667a8beb00
00a000000000000
000
000
000
00000000000000000006737472696e67000
000000000"
}

Returns a raw transaction for the create agreement operation

POST /deploy_signed_transaction

Deploy signed transaction and send encrypted notification based on the event
emitted by the DataSharingAgreement smart contract
Request body
body signed_transaction (required)

78 Smart Contract Manager

Example data
Content-Type: application/json
{
 "signedTransaction":
"0xf90f2a2e8203e883bebc20944d722c3a1cec5306710637103495ddd9dfada90580b90ec4
ee4b2db50003a0000
0079223a224543222c22637276223
a22502d323536222c2278223a22364d4744753345734364454a5a5656324b46686e46326c78
43524935794e7066347657517243494d6b354d222c2279223a22304f5a624b41646f6f43717
251635042334266717930672d5935536d6e54796f76466f465933354630304e222c22616c67
223a224553323536227d000
0004036313335306463336666643730
326262393739333663383936386364694e415566385a6e7950456756466e3434325a644e716
9564a526d4271725952586538505f5153556d4641416a564b50624279693778686f3075544f
000
000
000673747
2696e6700820a95a05263ad3d
490c6ab7baf8d755814ece3390de10e7df0cfc1ef3ae58361f949429a056fec9bcb23e8c1a1
cfd7d30f1c4959e63c1863ef1261b5941a9a22d779e855d"
}

Return type
transaction_object
Example data
{
 "transactionHash":
"0x833013a9428427016fc4b3cd1f05e9b42b289f4f98cd5bccfb91f4ae45fd630d",
 "transactionIndex": 0,
 "blockHash":
"0x1fd6a7de60041d0ec9c4735b9ecd8b022e8cbb154bc4f153cf9c517bc8f7e381",
 "blockNumber": 661175,
 "contractAddress": null,
 "cumulativeGasUsed": 1672030,
 "to": "0x4d722c3a1Cec5306710637103495dDd9DFAda905",
 "from": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170",
 "gasUsed": 1672030,
 "logsBloom":
"0x00
000
0000000000240008000000000000000
000
00000000000000000100800000000
0000000000000000800
000",

"logs": [
 {
 "transactionIndex": 0,
 "blockNumber": 661175,
 "transactionHash":
"0x833013a9428427016fc4b3cd1f05e9b42b289f4f98cd5bccfb91f4ae45fd630d",
 "address": "0x4d722c3a1Cec5306710637103495dDd9DFAda905",
 "topics": [

"0x40f080228d46fb72660eddafe315e4a5b47df236dc33b76fcd122bcbea89b01d"
],
 "data":
"0x006000000000

7.5 Interfaces 79

0001200000000000000000000
00f000000000000000000000000000000
000000000000000000000000000000008c7b226b7479223a224543222c22637276223a22502
d323536222c2278223a22347378505070735a6f6d78506d5077444173715370393451705a33
69585038785834567857435343666d73222c2279223a223859495f627656724b50573633624
741734867527677584536756a33546c6e48776f516939586145424245222c22616c67223a22
4553323536227d000
0008c7b226b7479223a224543222c22637276
223a22502d323536222c2278223a22364d4744753345734364454a5a5656324b46686e46326
c7843524935794e7066347657517243494d6b354d222c2279223a22304f5a624b41646f6f43
717251635042334266717930672d5935536d6e54796f76466f465933354630304e222c22616
c67223a224553323536227d00",
 "logIndex": 0,
 "blockHash":
"0x1fd6a7de60041d0ec9c4735b9ecd8b022e8cbb154bc4f153cf9c517bc8f7e381"
 }
],
 "confirmations": 1,
 "status": 1
}

Returns transaction receipt with confirmation 1

GET /get_agreement/{agreement_id}

Retrieve an agreement by agreement id
Path parameters
agreement_id (required)
Example data
Content-Type: application/json
 {
 "agreementId": 15,
 "providerPublicKey": "{\"kty\":\"EC\",\"crv\":\"P-
256\",\"x\":\"4sxPPpsZomxPmPwDAsqSp94QpZ3iXP8xX4VxWCSCfms\",\"y\":\"8YI_bvV
rKPW63bGAsHgRvwXE6uj3TlnHwoQi9XaEBBE\",\"alg\":\"ES256\"}",
 "consumerPublicKey": "{\"kty\":\"EC\",\"crv\":\"P-
256\",\"x\":\"6MGDu3EsCdEJZVV2KFhnF2lxCRI5yNpf4vWQrCIMk5M\",\"y\":\"0OZbKAd
ooCqrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00N\",\"alg\":\"ES256\"}",
 "dataExchangeAgreementHash":
"61350dc3ffd702bb97936c8968d9fc19629a427157d6254bea5d415616edf07e",
 "dataOffering": {
 "dataOfferingId": "63662ebdb7d5dd78b7159566",
 "dataOfferingVersion": 0,
 "dataOfferingTitle": "Oil Supply Unit"
 },
 "purpose": "P&ID diagram of the Lube Oil supply Unit",
 "state": 0,
 "agreementDates": [
 1671753600,
 1786678869,
 1886678869
],
 "intendedUse": {
 "processData": true,
 "shareDataWithThirdParty": false,
 "editData": true
 },

80 Smart Contract Manager

 "licenseGrant": {
 "transferable": false,
 "exclusiveness": true,
 "paidUp": true,
 "revocable": true,
 "processing": true,
 "modifying": true,
 "analyzing": true,
 "storingData": true,
 "storingCopy": true,
 "reproducing": true,
 "distributing": false,
 "loaning": false,
 "selling": false,
 "renting": false,
 "furtherLicensing": false,
 "leasing": false
 },
 "dataStream": false,
 "personalData": false,
 "pricingModel": {
 "paymentType": "one-time purchase",
 "price": 125.68,
 "currency": "$",
 "fee": 6.28,
 "paymentOnSubscription": {
 "timeDuration": "string",
 "repeat": "string"
 },
 "isFree": false
 },
 "violation": {
 "violationType": 0
 },
 "signatures": {
 "providerSignature":
"eyJhbGciOiJQUzM4NCIsImtpZCI6ImJpbGJvLmJhZ2dpbnNAaG9iYml0b24uZXhhbXBsZSJ9.S
XTigJlzIGEgZGFuZ2Vyb3VzIGJ1c2luZXNzLCBGcm9kbywgZ29pbmcgb3V0IHlvdXIgZG9vci4g
WW91IHN0ZXAgb250byB0aGUgcm9hZCwgYW5kIGlmIHlvdSBkb24ndCBrZWVwIHlvdXIgZmVldCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IG1pZ2h0IGJlIHN3ZXB0IG9mZiB0by4.cu
22eBqkYDKgIlTpzDXGvaFfz6WGoz7fUDcfT0kkOy42miAh2qyBzk1xEsnk2IpN6tPid6VrklHkq
sGqDqHCdP6O8TTB5dDDItllVo6_1pcbUrhiUSMxbbXUvdvWXzg-
UD8biiReQFlfz28zGWVsdiNAUf8ZnyPEgVFn442ZdNqiVJRmBqrYRXe8P_ijQ7p8Vdz0TTrxUeT
3lm8d9shnr2lfJT8ImUjvAA2Xez2Mlp8cBE5awDzT0qI0n6uiP1aCN_2_jLAeQTlqRHtfa64QQS
UmFAAjVKPbByi7xho0uTOcbH510a6GYmJUAfmWjwZ6oD4ifKo8DYM-X72Eaw",
 "consumerSignature":
"eyJhbGciOiJQUzM4NCIsImtpZCI6ImJpbGJvLmJhZ2dpbnNAaG9iYml0b24uZXhhbXBsZSJ9.S
XTigJlzIGEgZGFuZ2Vyb3VzIGJ1c2luZXNzLCBGcm9kbywgZ29pbmcgb3V0IHlvdXIgZG9vci4g
WW91IHN0ZXAgb250byB0aGUgcm9hZCwgYW5kIGlmIHlvdSBkb24ndCBrZWVwIHlvdXIgZmVldCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IG1pZ2h0IGJlIHN3ZXB0IG9mZiB0by4.cu
22eBqkYDKgIlTpzDXGvaFfz6WGoz7fUDcfT0kkOy42miAh2qyBzk1xEsnk2IpN6tPid6VrklHkq
sGqDqHCdP6O8TTB5dDDItllVo6_1pcbUrhiUSMxbbXUvdvWXzg-
UD8biiReQFlfz28zGWVsdiNAUf8ZnyPEgVFn442ZdNqiVJRmBqrYRXe8P_ijQ7p8Vdz0TTrxUeT
3lm8d9shnr2lfJT8ImUjvAA2Xez2Mlp8cBE5awDzT0qI0n6uiP1aCN_2_jLAeQTlqRHtfa64QQS
UmFAAjVKPbByi7xho0uTOcbH510a6GYmJUAfmWjwZ6oD4ifKo8DYM-X72Eaw"
 }
}

7.5 Interfaces 81

Returns the agreement by agreement id
GET /get_pricing_model/{agreement_id}

Retrieve an agreement’s pricing model
pricingModel
Example data
Content-Type: application/json
 {
 "pricingModel": {
 "paymentType": "one-time purchase",
 "price": 125.68,
 "currency": "$",
 "fee": 6.28,
 "paymentOnSubscription": {
 "timeDuration": "string",
 "repeat": "string"
 },
 "isFree": false
 }
}

Returns the pricing model by agreement id
GET /check_active_agreements

Retrieve all the active agreements. (The agreements become active when they
are created and stored on the blockchain.)
Returns a list of active agreements
GET /check_agreements_by_consumer/{consumer_public_keys}

/{active}

Retrieve all or just the active agreements of a consumer
Path parameters

– consumer_public_keys (required)
– active (required)

Example data
- [

{"kty":"EC","crv":"P-
256","x":"6MGDu3EsCdEJZVV2KFhnF2lxCRI5yNpf4vWQrCIMk5M","y":"0OZbKA
dooCqrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00M","alg":"ES256"}

]
- false

Return type
Returns all/active agreements based on consumer’s public keys

GET /check_agreements_by_provider/{provider_public_keys}

/{active}

Retrieve all or just the active agreements of a provider

82 Smart Contract Manager

Path parameters

– provider_public_keys (required)
– active (required)

Example data
- [

{"kty":"EC","crv":"P-
256","x":"4sxPPpsZomxPmPwDAsqSp94QpZ3iXP8xX4VxWCSCfms","y":"8YI_bv
VrKPW63bGAsHgRvwXE6uj3TlnHwoQi9XaEBBE","alg":"ES256"}

]
- true

Return type
Returns all/active agreements based on provider’s public keys

GET /check_agreements_by_data_offering/{offering_id}

Retrieve all agreements for a data offering
Returns all agreements by offering id

GET /retrieve_agreements/{consumer_public_key}

Retrieve the active agreement by consumer public key whose start date is
reached
Returns active agreement by consumer public key whose start date is reached

GET /state/{agreement_id}

Check the state of the agreement: active, violated, or terminated
Returns agreement’s state based on agreement id

POST /evaluate_signed_resolution

Evaluate a signed resolution
body signed_resolution (required)
 {
 "proof":
"eyJhbGciOiJFUzI1NiJ9.eyJwcm9vZlR5cGUiOiJyZXNvbHV0aW9uIiwiZGF0YUV4Y2hhbmdlS
WQiOiJTTmg5eUtYYjJlaGxWSFJZQkllay16Z1pVaDJtU1NvMWpwbGg3SWEtNHlRIiwiaWF0Ijox
NjQ2OTUxNjM1LCJpc3MiOiJ7XCJhbGdcIjpcIkVTMjU2XCIsXCJjcnZcIjpcIlAtMjU2XCIsXCJ
kXCI6XCJ1Z1NpSTlJTEdnTWM1TmMwbkFhM3FGTjNBTjBvR2JhMzNJQWFrSHFkdm1nXCIsXCJrdH
lcIjpcIkVDXCIsXCJ4XCI6XCJMNldmVlhHYkgwaW82SnBtOTRTMWxwZGk2eUd0VDFPbVo2NUFfa
1NfaGs4XCIsXCJ5XCI6XCI2WUUwb1BPcFdCcUM3NURfanRKVWZ5NWxzWGxHak81ZzZRWGl2RHdN
REtjXCJ9Iiwic3ViIjoie1wiYWxnXCI6XCJFUzI1NlwiLFwiY3J2XCI6XCJQLTI1NlwiLFwia3R
5XCI6XCJFQ1wiLFwieFwiOlwiVlhzQnVPWndWamhvZkpWNGtBaGJhNnduMUVZRHdVSWtnWGIyZl
ZuTDh4Y1wiLFwieVwiOlwiaDRmTDVRdjRFWXQ3WGRLcWRJeTFaSnM0X1FXWURrWTF6VXpTb0k2M
U43WVwifSIsInJlc29sdXRpb24iOiJkZW5pZWQiLCJ0eXBlIjoiZGlzcHV0ZSJ9.TtxUm3E6Lfm
wEI74cr6RO4-nw-xcFaeARYOZ4z1dBVlc_JU0mCv0Ftr9tCDhggfLiJqb4RIPiNfIytFZMUbx-
g",
 "sender_address": "0x4d82Bd33baA4Fe5489C45bBdC206019403dcF829"
}

7.5 Interfaces 83

Returns a raw transaction for the create agreement operation
 POST /propose_penalty

Propose penalty
Request body
body choose_penalty (required)
{
 "agreementId": 15,
 "chosenPenalty": "NewEndDateForAgreementAndReductionOfPayment",
 "paymentPercentage": 16,
 "newEndDate": 189898999
}

Returns the chosen penalty and sends notification to the provider with the
chosen penalty

 PUT /enforce_penalty

Agree to penalty by enforcing it on the blockchain
Request body
body enforce_penalty (required)
{
 "senderAddress": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170",
 "agreementId": 15,
 "chosenPenalty": "NewEndDateForAgreementAndReductionOfPayment",
 "paymentPercentage": 16,
 "newEndDate": 189898999
}

Returns a raw transaction for the enforce penalty operation

 PUT /terminate

Terminate agreement for batch data based on the last block of successful
transfer and for streaming data if the end date is reached
body terminate (required)
{
 "senderAddress": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170",
 "agreementId": 15,
 "proof": "JWT",
}

Returns a raw transaction for the terminate agreement operation

Explicit consent:

 POST /give_consent

Give consent to a user
body consent (required)

84 Smart Contract Manager

{
 "dataOfferingId": "63909dae0863a775a4d71bc9",
 "consentSubjects": [

"did:ethr:i3m:0x026b23ab3cc76f1da1d5d2aa087d29894146ee52b56c23392a7f1
36f7dc2a7a90c",

"did:ethr:i3m:0x020bc2643908df0e6ab258a2dac38cd3b42ce2088a0a4e3b501d4
85ababf9f5ad6",

],
 "consentFormHash":
"36bede32098bd09e15a23274a37117e58a8b08bf54a1e48331a1ff8cc509e6da",
 "startDate": 1633344669,
 "endDate": 1673344669,
 "senderAddress": "0x9aDA42ff81B9D661cC4fdab62791DaC30cfe7305"

}

Returns a raw transaction for the give consent operation

 PUT /revoke_consent

Revoke consent by consent subjects
body consent (required)

{
 "dataOfferingId": "63909dae0863a775a4d71bc9",
 "consentSubjects": [

"did:ethr:i3m:0x026b23ab3cc76f1da1d5d2aa087d29894146ee52b56c23392a7f1
36f7dc2a7a90c"

],
 "senderAddress": "0x9aDA42ff81B9D661cC4fdab62791DaC30cfe7305"

}

Returns a raw transaction for the enforce penalty operation

GET /check_consent_status/{dataOfferingId}

Retrieve consent status
Returns a list of consent status based on data offering and consent subject
(optional)

POST /deploy_consent_signed_transaction

Deploy signed transaction and send encrypted notification based on the event
emitted by the ExplicitUserConsent smart contract
body signed_transaction (required)
Returns transaction receipt with confirmation 1

7.6 Background Technologies 85

7.6 Background Technologies

• Hyperledger BESU:

1 Technology
Technology
name

Hyperledger BESU

Summary Hyperledger BESU is an Ethereum client designed to be enterprise-friendly for
both public and private permissioned network use cases. It can also be run on test
networks such as Rinkeby, Ropsten, and Görli. Hyperledger BESU includes sev-
eral consensus algorithms including PoW and PoA (IBFT, IBFT 2.0, Etherhash,
and Clique). It also supports features including privacy and permissioning.

Description Hyperledger BESU is an open-source Ethereum client developed under the
Apache 2.0 license and written in Java. It runs on the Ethereum public networks,
private networks, and test networks such as Rinkeby, Ropsten, and Görli. BESU
implements Proof of Work (Ethash) and Proof of Authority (IBFT 2.0 and
Clique) consensus mechanisms.
BESU includes a command line interface and JSON-RPC API for running,
maintaining, debugging, and monitoring nodes in an Ethereum network. BESU
nodes support authentication and authorization, that is, identifying the user that
performed the API query and allowing the execution of a specific set of methods.
BESU supports two authentication mechanisms: username and password or JWT
public key; see Figure 7.10.
The communications are performed using the API via RPC over HTTP or via
WebSockets. The API supports typical Ethereum functionalities such as:

• ether mining;
• smart contract development;
• decentralized application (Dapp) development.

The resultant BESU architecture is the following:

Figure 7.10 BESU architecture.

86 Smart Contract Manager

1 Technology
BESU uses a private transaction manager, Orion, to implement privacy. Each
BESU node sending or receiving private transactions requires an associated
Orion node. Private transactions pass from the BESU node to the associated
Orion node (see Figure 7.11). The Orion node encrypts and directly distributes
(that is, point-to-point) the private transaction to the Orion nodes participating in
the transaction.

Figure 7.11 Alice sends a private transaction to Bob
using Orion privacy manager.

BESU also supports permissioning, which stands for permitting only specified
nodes and accounts to participate by enabling node permissioning and account
permissioning on the network. It supports local permissioning (a configuration
file for each node) or on-chain (via smart contracts).

Keywords Blockchain, distributed ledger, Ethereum, privacy, permissioning, authentication
ICT
problem(s)
and related
functional-
ity(ies)

Bullet list of the ICT problem(s) that the technology solves and associated
functionalities.

• Distributed ledger

◦ Auditable data storage
◦ Persistent transaction history
◦ Permissioned and non-permissioned network
◦ Pseudo-anonymous user identity

• Smart contracts

◦ Turing-complete machine
◦ Immutable code (auditable and verifiable)

• Privacy

◦ Send cryptocurrency using private transactions
◦ Execute smart contracts using private transactions

7.6 Background Technologies 87

1 Technology

• Authentication

◦ JWT-based tokens
◦ Username and password
◦ JWT public key authentication

• Monitoring

◦ Visual representation of declining node or network performance
◦ Collection of log files to enable issue diagnosis

• Communications

◦ Full-nodes and miners using HTTP/WebSockets
◦ Encrypted communications for privacy (Orion) and signer (Eth-

Signer) using TLS

TRL Current technology readiness level of the technology:
• TRL 7 – system prototype demonstration in operational environment

Website https://www.hyperledger.org/projects/besu
Standards BESU nodes are compatible with Ethereum public network. It supports different

consensus protocols: Proof of Work (Ethash) and Proof of Authority (IBFT 2.0
and Clique).
The communications use HTTP and JSON-RPC protocols. Clients can be authen-
ticated using JWT.
Smart contracts are coded using Solidity.

• Solidity:

Solidity is an object-oriented, high-level language for implementing smart
contracts. Smart contracts are programs that govern the behaviour of accounts
within the Ethereum state. It is a curly-bracket language. It is designed to
target the Ethereum virtual machine (EVM).

Solidity is used to develop the smart contracts that are deployed on the
Ethereum blockchain.

• Hardhat:

Hardhat is a development environment for Ethereum software. It consists
of different components for compiling, debugging, and deploying smart
contracts, all of which work together to create a complete development
environment.

Hardhat has a plug-in for integration with ethers.js, which is a compact
library for interacting with the Ethereum blockchain.

88 Smart Contract Manager

• Swagger:

Swagger is a set of open-source rules and tools for developing RESTful
APIs. It simplifies the process of writing APIs by specifying the standards
and providing the tools required to write safe, performant, and scalable APIs.
Moreover, the Swagger framework allows developers to create interactive,
machine and human-readable API documentation.

