7

Smart Contract Manager

7.1 Objectives

The smart contract manager (SCM) provides a gateway to access the smart
contracts and is used by other subsystems to integrate their functionalities
(conflict resolution, pricing manager, explicit user consent, and secure data
exchanges).

Smart contract manager facilitates the creation of agreement objects using
the data sharing agreement (DSA) smart contract. The DSA solidity contract
is based on a legal agreement for data sharing, considering the existing legal
framework (e.g., GDPR [26]). The agreement objects are used to enforce
agreed-upon obligations from the provider and consumer sides.

The smart contract manager development has been made publicly avail-
able in the i3-MARKET GitHub repository and the smart contracts the
subsystem uses at [66]. The Table 7.1 summarizes the Smart Contract
Manager user stories.

7.2 Technical Requirements

Table 7.1 Smart contract manager — user stories.

Name Description
SCM Within i3-MARKET, DSA objects need to be stored on | User story

the blockchain in order to automatically enforce certain
clauses of the legal data trading agreement. Additionally,
automatic conflict resolution of certain types of viola-
tions has to be supported.
The smart contracts of the SCM need to combine legal
certainty with automated enforcement, built-in conflict
resolution mechanisms, and guaranteed access to rem-
edy. The SCM evaluates a signed resolution, issued by
the conflict-resolver service, which relies on the execu-
tion of the Non-repudiation Protocol. Depending on the
type of resolution, the state of the agreement is automat-
ically updated.

65

66 Smart Contract Manager

Table 7.1 Continued.
‘ Name ‘ Description ‘ Labels
Explicit data owner consent: In case of personal data,
legal consent of data owners is required. When the con-
sent is given, the SCM stores a list of explicit consents
for a specific offering. The consent can be revoked any-
time, and before an agreement is created, the consent
status is verified. As long as the data to be shared is
personal data, agreements can be created just when the
consent was given by the data owner.
Pricing: The price and the fee of the data are stored in
the agreement. The fee is requested from the pricing
manager, based on the price in the data offering.

7.3 Solution Design/Blocks

The smart contract manager extracts the contractual parameters from the
data offering description and returns a template with possible contractual
parameters (to be displayed in the marketplace), as shown in Figure 7.1. After
a data purchase request is sent, with a potential proposal of new parameters by
the consumer, the provider and consumer must sign the agreement and store it
in the wallet. As soon as both received the signed data sharing agreement and
saved it in the wallet, the provider can create and store the agreement on the
blockchain. The smart contract manager invokes the data sharing agreement
smart contract and creates an agreement with the proposed contractual param-
eters. The agreement object is put on the ledger and automatically enforced
by the corresponding smart contract (Figure 7.2).

P PN,
Conflict n Auditable
Resolution call Smart Accounting

T Contract
1
Non-repudiation
library
resolution
_ get agreement extract contr. -
data parameters I
Data ACCESS puni il fessccosesos—nes Semantic Engine
. .
// s\\
notify ./~ ™\, calculate fee
e sign g
/’ transaction \\
P / .
Notifcation ’ p ..
Pricing Manager
Manager

Figure 7.1 Context view of the smart contract manager.

7.3 Solution Design/Blocks 67

Figure 7.2 Component diagram of the smart contract manager subsystem.

The smart contract manager is interconnected with the following 13-
MARKET subsystems, as it is shown in Figures 7.3-7.5.

* Semantic engine: To retrieve the parameters and details about the data
offering descriptions to compile information for the contract agree-
ments.

* Conflict resolution: In order to check whether a violation to the con-
tract occurred, the conflict resolution is invoked. The conflict resolution
will prevent any two peers of a data exchange, namely provider and
consumer to deny that a given data-block exchange happened or to
assert that a data-block exchange that did not happen, happened. The
conflict-resolver service issues verifiable signed resolutions regarding
the execution of the i3-MARKET Non-Repudiation Protocol. The SCM
evaluates the signed resolution and, depending on the type of resolution,
automatically changes the state of the agreement in case of a violation,
as well as suggests penalties for one of the peers.

* Non-repudiation Protocol: The Non-repudiation Protocol aims at pre-
venting parties in a data exchange from falsely denying having taken
part in that exchange.

» Explicit data-owner consent: To ensure an explicit consent of the data
owners every time their personal data is traded, the explicit data owner
consent component is triggered.

* Pricing manager: The SCM requests the fee of the data based on the
price registered in the data offering by invoking the pricing manager
to calculate the corresponding fee and includes it in the contractual
template.

* User-centric authentication: To ensure that only authorized partic-
ipants (with the corresponding role) are able to trigger functionality

68 Smart Contract Manager

provided by the data sharing agreement smart contract (via the smart
contract manager), user-centric authentication is used (part of the
Backplane).

* i3M-Wallet: The raw transactions created in the SCM have to be signed
with an i3M-Wallet (either the Wallet Desktop App or the server wallet)
in order to deploy them.

SCM - Request contractual parameters template

==] [
.

Request contractual parameters template |

|

1
B |
i
1

Request static params

PR — A —

state params.

1
L
I
1
1
1
1
1
1
I
|
H create template and insert staic params
1

I

1

request

gettee

template with contractual parameters

display template

i
i
Figure 7.3 Sequence diagram — retrieve contractual parameters template.

SCM Create agreement

[| [| [| [
I

Create agreement

Create AGREEMENT rawTransaction

Create AGREEMENT rawTransaction

|
|
|
|
»l
|
|
T
|
L rawTransaction

retun

Ask to sign transaction

B N S S —

I
I
notify AgreementCreated }

>

|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
|
|
|
[
L
|
|
|
|
|

7 >
User-Wallet interaction 5
T T T T
| ! | |
e Signed raw transaction H |
" | | I
| call deploy ransaction API | : }
I |
| | | I
| l call deploy ransaction APL | |
1 I gl I
: : | deploy transaction
T
| 1 I
e retum result
h
|
1
+
|
|
|
|
|

| |
] I
| |
| |
] |
| | I
| notfy AgreementCreated
I T T
| |
| |

Figure 7.4 Sequence diagram — create agreement.

7.4 Diagrams 69

Provider craates the data offering

Data offering s published
to the semantic engine

Consumer gets the data offerings
nd selects one

Consumer creates public key (for
data exchange) and fills the
template with the dynamic

parameters.

Consumer creates data purchase
request (sends the template to
provider (incl. the public key of the
consumer (dest) for data exchange)

Provider rejects the template
rovider creates key pair and signs (provider doesn'c agree with
(createproo) with Its real identity dynamic fieids)
{static public key). Provider adds
dger signer address (Ethereum

address of the provider service).
‘The complete agreement s sent back
to consumer

Consumer receives notification that
the data purchase has been rejected

Consumer verifies provider's

Consumer signs (cr
contract with real identitly

Consumer sends the signed
contractual template.
Consumer sends notification with it to
he provider

Provider receives the signed contract
actual template {with
dynamic contractual paramecers)
Provider verifies consumer's signature
verifyProaf)

> store in the Wallet DSA + privat
ore in service Wallet the

‘eement and the pri

Deploy signed transaction

nent is Act
pted with pK

Retrieve notification based on pK,
Get Data Sharing Agreement from Waflet,
which cantains publickeys
Decrypt notiffication using the private
key

Figure 7.5 Data sharing agreement negotiation, key pair generation, storage in wallet, and
agreement creation on blockchain.

70 Smart Contract Manager

7.4 Diagrams

The smart contract manager extracts the static contractual parameters from
the data offering description using the semantic data model. The interactions
are shown in Figure 7.6. The dynamic parameters, such as the consumer DID,
start date, and end date of the agreement, are filled when a data purchase
request is created by the consumer.

Before storing an agreement on the blockchain using the smart contract
manager, the provider and the consumer should generate their public—private
keys (using the non-repudiation library) and they should each sign the con-
tract. After they filled in their public keys and the contract is signed, they
should store the generated key pairs and data sharing agreement in their
wallets as shown in Figure 7.7.

As soon as the negotiation between the provider and consumer is over and
they agree on specific contractual parameters, as well as store the final data
sharing agreement and the key pairs in their wallets, the provider can create
the agreement on the blockchain using the smart contract manager.

Firstly, a raw transaction is created using the data sharing agreement,
which was saved in the wallet. The successful response of creating an
agreement request is a raw transaction object. This raw transaction has to be
signed with the wallet using the provider’s DID. After the signed transaction
is obtained from the wallet, it has to be deployed. The response of the Smart
Contract Manager should be a transaction object with information about

Provider creates agreement

Agreement state: Active

Resolution:
not-completed or accepted

Agreement state: Active

Enforce Penalty:
New end date for agreement

Agreement state: Active Agreement state” Terminated

Figure 7.6 Sequence diagram — check agreements by offering ID.

7.4 Diagrams T1

Agreement Smart Contract

(7) evaluate
: decoded resolution

(5) verify resolution
Smart Contract Manager EUIUTRNNNNE Non-repudiation library

(6) receive decoded
resolution

(3) receive signed resolution
Conflict resolution = Non-repudiable proofs

(1a) initiate dispute
(1b) request verification

Figure 7.7 Conflict resolution.

Provider creates agreement

Agresment state: Active

Consumer evaluates signed
lution

1. Discover
service provider

2. Define
Resolution: Resolution:
completed or denled not-completed or accepted

Agreement state: Active

EnTorce Penalty: Enforce Penalty:

New end date for agreement Terminate

Agreement state: Active Agreement state: Terminated

Figure 7.8 Agreement lifecycle and states.

the transaction in Figure 7.8. If the confirmation is 1, the transaction was
successfully deployed, and the agreement is stored on the blockchain.

After that, the provider and consumer receive a notification that the
agreement is active, which means it was created and stored on the blockchain.
This notification will be encrypted and contains the agreement id. The noti-
fications should be retrieved from the notification manager based on the
provider/consumer public key and decrypted using the corresponding private
key. After they receive this notification, the provider should post the data

72 Smart Contract Manager

Conflict Resolution

Consumer
a) requests verification
b) initates dispute

Conflict resolution cheks proof

Consumer receives the signed
resolution

Consumer evaluates signed resolution (SCM)

Resolution type: Resolution type:
verification dispute

Resolution: completed Resolution: not-completed Resolution: accepted Resolution: denied

Violation: Violation:
P Data transfer not as described Data transfer not as described .
olation: Violation:
- Penalty options: Penalty options: -
Terminate agreement Terminate agreement
- New end date for agreement New end date for agreement
- New end date for agreement + price New end date for agreement + price
reduction reduction

Penalty options:

Penalty options:

Present penalties to consumer

Consumer proposes penalty

Provider receives chosen penalty

[— Provider rejects the proposed

Figure 7.9 Agreement violation — conflict resolution.

exchange agreement, the agreement id, and the private key to data access and
then the consumer can start the transfer — see Figure 7.9.

Agreement violation — conflict resolution:
After the data transfer is finished, a consumer can request a verification or
initiate a dispute using the conflict resolution. The proof of the completeness

7.5 Interfaces 73

of the data exchange will be checked and the consumer receives the signed
resolution based on that proof.

The smart contract manager evaluates the signed resolution. Within this
evaluation, the resolution is decoded and depending on the resolution, the
agreement’s state can change from active to violated.

The transfer was unsuccessful when the resolution is:

e not completed (in case of a verification) — the decryption key was not
published;

e accepted (in case of a dispute) — the cypher block cannot be properly
decrypted.

If the transfer was not successful, the agreement is violated. When the
agreement is violated, the consumer receives a list of penalties.
These penalties could be:

e new end date for agreement;
e new end date for agreement and a price reduction;
e termination of agreement.

The consumer should propose one of these penalties to the provider. The
provider will receive a notification with the chosen penalty and if he agrees
to the penalty, he should enforce on the blockchain. By enforcing the new
penalty, the agreement state changes from violated to active or terminated (in
case the penalty termination is chosen).

7.5 Interfaces

The smart contract manager API is the interface via which the clients gain
access to the smart contract parameters.
The endpoints documented below were grouped by modules.

Agreement:

GET /template/{offering id}

Request template with static and dynamic parameters
offering_id (required)

Example data

Content-Type: application/json
{
"dataOfferingDescription": ({
"dataOfferingId": "63662ebdb7d5dd78b7159566",
"version": O,

74 Smart Contract Manager

"title": "0Oil Supply Unit",
"category": "manufacturing",
"active": true

b

"parties": {
"providerDid":
"did:ethr:i3m:0x0243cc9dbc7157eel2cel898ac0c49b366822£32d57bcl08e127£45b6c4
3a57e90",
"consumerDid": "string"
b
"purpose": "Oil supply Unit measurements",
"duration": {

"creationDate": O,

"startDate": 0,
"endDate": 0
by
"intendedUse": ({
"processData": true,
"shareDataWithThirdParty": false,
"editData": true
by
"licenseGrant": {
"transferable": false,
"exclusiveness": true,
"paidUp": true,
"revocable": true,
"processing": true,
"modifying": true,
"analyzing": true,
"storingData": true,
"storingCopy": true,
"reproducing": true,
"distributing": false,
"loaning": false,
"selling": false,
"renting": false,
"furtherLicensing": false,
"leasing": false
by
"dataStream": false,
"personalData": false,
"pricingModel": {
"paymentType": "one-time purchase",
"pricingModelName": "string",
"basicPrice": 125.68,
"currency": "$",
"fee": 6.28,
"hasPaymentOnSubscription": ({
"paymentOnSubscriptionName": "",
"paymentType": "",
"timeDuration": "",
"description": "",
"repeat": "",
"hasSubscriptionPrice": 0
by
"hasFreePrice": ({
"hasPriceFree": false
}
by
"dataExchangeAgreement": {
"orig": "string",

7.5 Interfaces 75

"dest": "string",

"encAlg": "A128GCM",

"signingAlg": "ES256",

"hashAlg": "SHA-256",

"ledgerContractAddress": "0x8d407a1722633bddldcf221474be7a44c05d7c2£f"

"ledgerSignerAddress":
"0x02897978ebdB80646bc469¢cbalod79d8655cd862cb9fd2484141d66103260cc5404",

"pooToPorDelay": 100000,

"pooToPopbelay": 30000,

"pooToSecretDelay": 180000

by

"signatures": {
"providerSignature": "string",
"consumerSignature": "string"

}
}

Returns the template with static and dynamic contractual parameters

POST /sdk-ri/contract/create-data-purchase

Create data purchase request (not part of the Backplane) — sends noti-
fication to provider with the static and dynamic parameters filled in by the
consumer

POST /create agreement raw_transaction/{sender address}

Create agreement raw transaction (createAgreement)
sender_address (required)

Request body

body template (required)

{
"dataOfferingDescription": ({

"dataOfferingId": "63662ebdb7d5dd78b7159566",

"version": O,

"title": "0il Supply Unit",

"category": "manufacturing",

"active": true

by
"parties": {

"providerDid":
"did:ethr:i3m:0x0243cc9dbc7157eel2cel898ac0c49b366822£32d57bcl08el127f45b6c4
3a57e90",

"consumerDid":
"did:ethr:i3m:0x03878572e4476a6b7b0223d07£53159e£923c874084ea56760£d130d80c
51409ad"

by
"purpose": "P&ID diagram of the Lube 0il supply Unit"

"duration": {
"creationDate": 1678997655,
"startDate": 1786678869,
"endDate": 1886678869

s

"intendedUse": ({
"processData": true,
"shareDataWithThirdParty": false,
"editData": true

by

76 Smart Contract Manager

"licenseGrant": {
"transferable": false,
"exclusiveness": false,

"paidUp": true,

"revocable": true,

"processing": true,

"modifying": true,

"analyzing": true,

"storingData": true,

"storingCopy": true,

"reproducing": true,

"distributing": false,

"loaning": false,

"selling": false,

"renting": false,

"furtherLicensing": false,

"leasing": false

b

"dataStream": false,
"personalData": false,
"pricingModel": {

"paymentType": "one-time purchase",

"pricingModelName": "string",

"basicPrice": 125.68,

"currency": "$",

"fee": 6.28,

"hasPaymentOnSubscription": {

"paymentOnSubscriptionName": "string",
"paymentType": "string",
"timeDuration": "string",
"description": "string",
"repeat": "string",
"hasSubscriptionPrice": 0

I

"hasFreePrice": {

"hasPriceFree": false
}
by
"dataExchangeAgreement": ({

"orig": INTKREY\N" I \"EC\", \"crv\":\"P-
256\", \"x\":\"4sxPPpsZomxPmPwDAsgSp94QpZ3iXP8xX4VKWCSCEms\", \"y\":\"8YI bvV
rKPW63bGAsHgRvWXE6Uuj3T1nHWwoQi9XaEBBE\", \"alg\":\"ES256\"}",

"destll: "{\”kty\" . \"EC\", \"Crv\" : \HP_
256\", \"x\":\"6MGDu3EsCdAEJZVV2KFhnF21xCRI5yNpf4viHQrCIMk5M\ ", \"y\" : \" 00ZbKAd
00CqrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00N\", \"alg\": \"ES256\"}",

"encAlg": "A256GCM",

"signingAlg": "ES256",

"hashAlg": "SHA-256",

"ledgerContractAddress": "0x7B7C7c0c8952d1BDB7E4D90B1B7b7C48c13355D1",
"ledgerSignerAddress": "0x17bd12C2134AfC1f6E9302a532eFE30C19B9E903",

"pooToPorDelay": 10000,
"pooToPopDelay": 20000,
"pooToSecretDelay": 150000
b
"signatures": {

"providerSignature":
"eyJhbGci01iJQUzMANCIsImtpZCI6ImIpbGIvImIhZz2dpbnNAaG9iYml0b24uZzXhhbXBsZSJ9. S
XTigJlzIGEgZGFuz2Vyb3VzIGJI1lc21luZXNzLCBGecm9kbywgz2 9pbmcgb3V0IH1vdXIgZzGOveidg
WWI9L1IHNOZXAgb250byB0aGUgcmOhzZCwgYW5kIGImIH1vdSBkb24ndCBrZWVwIH1vdXIgZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmegd2hlecmUgeW91IG1pZ2h0IGI1IIHN3ZXBOIGOMZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfTOkkOy42miAh2qyBzklxEsnk2IpN6tPideVrklHkg

7.5 Interfaces 17

sGgDgHCAP60O8TTB5dDDIt11Vo6_ 1pcbhbUrhiUSMxbbXUvdviWXzg-
UD8biiReQF1£z282zGWVsdiNAUf8ZnyPEGVFn4422dNgiVJRNBgrYRXe8P 1jQ7p8Vdz0TTrxUeT
3lm8d9shnr2lfJT8ImUjvAA2Xez2Mlp8cBE5atzTOqIOn6uiPlaCN727jLAeQquRHtfa64QQS
UmFAAJjVKPbByi7xhoOuTOcbH510a6GYMIUAfMWiwZ60D41ifKo8DYM-X72Eaw",
"consumerSignature":

"eyJhbGciO0iJQUzMANCIsImtpZCI6ImIpbGIvImIhZ2dpbnNAaG9iYml0b24uzZXhhbXBszS5J9.S
XTigJlzIGEgZGFuZ2Vyb3VzIGJ1lc21luZXNzLCBGecmIkbywgZ2 9pbmcgb3VOIH1vdXIgZGOveidg
WWO1IHNOZXAgb250byB0aGUgcm9hZCwgYW5kIGImIH1vdSBkb24ndCBrZWVwIH1vdXIgZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IGlpZz2h0IGI1IHN3ZXBOIGIMZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfT0kkOy42miAh2qyBzklxEsnk2IpN6tPid6VrklHkg
sGgDgHCAP60O8TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdviWXzg-
UD8biiReQF1£z282zGWVsdiNAUf8ZnyPEGVFn4422dNgiVJRNBgrYRXe8P 1jQ7p8Vdz0TTrxUeT
31m8d9shnr21£JT8ImUjvAA2Xez2Mlp8cBESawDzT0gqI0n6uiPlaCN_ 2 jLAeQT1qRHtfa64Q0S
UmFAAJVKPbByi7xho0uTOcbH510a6GYMJUAfmWiwZ60D41ifKo8DYM-X72Eaw"

}
}

Return type
raw_transaction

Example data
Content-Type: application/json

{

"nonce": 46,

"to": "0x4d722c3alCec5306710637103495dDAIDFAda905",

"from": "Oxc6b8cf76bd7078e56c6ce8c357dd91caeea’70170",

"gasLimit™: 12500000,

"gasPrice": 1000,

"chainId": 1337,

"data":
"0x667a8beb00
002000000000000
000
000
000
00000000000000000006737472696e67000
000000000"

}

Returns a raw transaction for the create agreement operation

POST /deploy signed transaction

Deploy signed transaction and send encrypted notification based on the event
emitted by the DataSharingAgreement smart contract

Request body

body signed_transaction (required)

78 Smart Contract Manager

Example data

Content-Type: application/json
{

"signedTransaction":
"0xf90f2a2e8203e883bebc20944d722c3alcec5306710637103495ddd9dfada905800b90ec4d
ee4b2db50003a0000
0079223a224543222¢c22637276223
a22502d323536222¢c2278223a22364d4744753345734364454a5a5656324b46686e46326¢78
43524935794e7066347657517243494d6b354d222¢2279223a22304£5a624b41646£6£43717
251635042334266717930672d5935536d6e54796£76466£465933354630304e222c22616c67
223a224553323536227d4000
0004036313335306463336666643730
326262393739333663383936386364694e415566385a6e7950456756466e3434325a644e716
9564a526d4271725952586538505£5153556d4641416a564b50624279693778686£3075544fF
000
000
000673747
2696e6700820a95a05263ad3d
490c6ab7baf8d755814ece3390delle7df0cfclef3ae58361£949429a056fec9%bcb23e8clal
cfd7d30£1c4959e63c1863ef1261b5941a9a22d779e855d"

}

Return type
transaction_object
Example data

{

"transactionHash":
"0x833013a9428427016£c4b3cd1lf05e9042b289f4£98cd5bccfb91f4aed45£d630d",

"transactionIndex": 0,

"blockHash":
"0x1£fd6a7de60041d0ec9c4735b9%ecdB8b022e8cbbl54bc4£153cf9c517bc8f7e381",

"blockNumber": 661175,

"contractAddress": null,

"cumulativeGasUsed": 1672030,

"to": "0x4d722c3alCec5306710637103495dDd9DFAda905",

"from": "0xC6b8cf76BD7078e56C6CE88C357dD91caeEa70170",

"gasUsed": 1672030,

"logsBloom":
"0x00
000
0000000000240008000000000000000
000
00000000000000000100800000000
0000000000000000800
000™",

"logs": [
{
"transactionIndex": O,
"blockNumber": 661175,

"transactionHash":
"0x833013a9428427016fc4b3cd1£05e9b42b289f4£98cd5bccfb91f4aed5£d4630d4",
"address": "0x4d722c3alCec5306710637103495dDd9DFAda%905",

"topics": [

"0x40£080228d46fb72660eddafe315e4a5b47df236dc33b76fcdl22bcbea89b01d"

I

"data":
"0x006000000000

7.5 Interfaces 79

0001200000000000000000000
00£000000000000000000000000000000
000000000000000000000000000000008c7b226b7479223a224543222¢c22637276223a22502
d323536222c2278223a22347378505070735a6£6d78506d5077444173715370393451705a33
69585038785834567857435343666d73222c2279223a223859495£627656724b50573633624
741734867527677584536756a33546c6e48776£516939586145424245222¢22616c67223a22
4553323536227d4000
0008¢c7b226b7479223a224543222¢c22637276
223a22502d323536222¢2278223a22364d4744753345734364454a5a5656324b46686e46326
c7843524935794e7066347657517243494d6b354d222¢c2279223a22304£5a624b41646£6£43
717251635042334266717930672d5935536d6e54796£76466£465933354630304e222c22616
c67223a224553323536227d00™",
"logIndex": 0,
"blockHash":
"0x1fd6a7de60041d0ec9c4735b9%cd8b022e8cbbl54bc4f153cf9c517bc8E7e381"
}
1,
"confirmations": 1,
"status": 1

Returns transaction receipt with confirmation 1
GET /get agreement/{agreement id}

Retrieve an agreement by agreement id
Path parameters

agreement_id (required)

Example data

Content-Type: application/json

{

"agreementId": 15,

"providerPublicKey": "\N"KEY\"\"EC\", \"crv\":\"P-
256\", \"x\":\"4sxPPpsZomxPmPwDAsqSp940pZ3iXP8xX4VxWCSCEms\", \"y\":\"8YI bvV
rKPW63bGAsHgRVWXE6U]3T1nHwoQ19XaEBBE\", \"alg\": \"ES256\"}",

"consumerPublicKey": "IN"kEYy\"\"EC\", \"crv\":\"P-
256\", \"x\":\"6MGDuU3EsSCAEJZVV2KFhnF21xCRI5yNpf4viWQrCIMk5M\", \"y\": \"00ZbKAd
00CgrQcPB3Bfgy0g-Y5SmnTyovFoFY35F00N\",\"alg\":\"ES256\"}",

"dataExchangeAgreementHash":
"61350dc3££d702bb97936c8968d9£c19629a427157d6254beabd415616edf07e",

"dataOffering": {

"dataOfferingId": "63662ebdb7d5dd78b7159566",
"dataOfferingVersion": O,
"dataOfferingTitle": "0il Supply Unit"

by

"purpose": "P&ID diagram of the Lube 0il supply Unit",

"state": O,

"agreementDates": [

1671753600,
1786678869,
1886678869

1,

"intendedUse": {

"processData": true,
"shareDataWithThirdParty": false,
"editData": true

by

80 Smart Contract Manager

"licenseGrant": {
"transferable": false,
"exclusiveness": true,

"paidUp": true,

"revocable": true,

"processing": true,

"modifying": true,

"analyzing": true,

"storingData": true,

"storingCopy": true,

"reproducing": true,

"distributing": false,

"loaning": false,

"selling": false,

"renting": false,

"furtherLicensing": false,

"leasing": false

I

"dataStream": false,
"personalData": false,
"pricingModel": {

"paymentType": "one-time purchase",

"price": 125.68,

"currency" . "$n’

"fee": 6.28,

"paymentOnSubscription": {

"timeDuration": "string",
"repeat": "string"
by
"isFree": false
I
"violation": {
"violationType": 0
by
"signatures": {

"providerSignature":
"eyJhbGciO0iJQUzM4NCIsImtpZCI6ImIpbGIvLmIhZ2dpbnNAaG9iYml0b24uZXhhbXBszSJ9.S
XTigJlzIGEgZGFuz2Vyb3VzIGJ1c21luZXNzLCBGemIkbywgZ2 9pbmcgb3V0IH1vdXIgZG9veidg
WWI1IHNOZXAgb250byB0aGUgcmOhZCwgYW5kIGImIH1vdSBkb24ndCBrZWVwIH1vdXIgZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IGlpZ2h0IGJI1IIHN3ZXBOIGOmZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7£fUDcfT0kkOy42miAh2qgyBzklxEsnk2IpN6tPid6eVrklHkg
sGgDgHCAP608TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdviXzg-
UD8b1iReQF1fz282zGWVsdiNAUf8ZnyPEgVFN44272dNgiVIRmBqrYRXe8P_1jQ7p8Vdz0TTrxUeT
31m8d9shnr21£JT8ImUjvAA2Xez2M1p8cBESawDzT0qIOn6uiPlaCN 2 jLAeQT1gRHtfa64QQS
UnFAAjVKPbBy17xho0uTOcbH510a6GYmMIUAfmWjwZ60D41fKo8DYM-X72Eaw",

"consumerSignature":
"eyJhbGci0iJQUzM4NCIsImtpZCI6ImIpbGIvLmIhZ2dpbnNAaG9iYml0b24uZXhhbXBszSJ9.S
XTigJlzIGEgZGFuzZ2Vyb3VzIGJI1c21luZXNzLCBGem9kbywgZ29pbmecgb3V0IH1vdXIgZG9veidg
WWO1THNOZXAgb250byB0aGUgcm9hZCwgYWS5kIGImIH1vdSBkb24ndCBrZWVwIH1vdXIgZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlemUgeW91IGlpZ2h0IGJ1IHN3ZXB0OIGO9MZiBO0Oby4. cu
22eBgkYDKgIlTpzDXGvaFfz6WGoz7fUDcfT0kkOy42miAh2qgyBzklxEsnk2IpN6tPid6eVrklHkg
sGgDgHCdP608TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdviWXzg-
UD8b1iReQF1£z28zGWVsdiNAUf8ZnyPEgVFN442ZdNgiVIRmBqrYRXe8P 1jQ7p8Vdz0TTrxUeT
31m8d9shnr21fJT8ImUjvAA2Xez2M1lp8cBESawDzT0qIOn6uiPlaCN 2 jLAeQT1gRHtfa64QQS
UnFAAJVKPbBy17xho0uTOcbH510a6GYmMIUAfmMWjwZ60D41fKo8DYM-X72Eaw"

}
}

7.5 Interfaces 81

Returns the agreement by agreement id
GET /get pricing model/{agreement id}

Retrieve an agreement’s pricing model
pricingModel
Example data

Content-Type: application/json

{
"pricingModel": {
"paymentType": "one-time purchase",
"price": 125.68,
"currency": "S$",
"fee": 6.28,
"paymentOnSubscription": {
"timeDuration": "string",
"repeat": "string"
by

"isFree": false
}
}

Returns the pricing model by agreement id
GET /check active agreements

Retrieve all the active agreements. (The agreements become active when they
are created and stored on the blockchain.)

Returns a list of active agreements

GET /check agreements_by consumer/{consumer public keys}

/{active}

Retrieve all or just the active agreements of a consumer
Path parameters

— consumer_public_keys (required)
— active (required)
Example data

-0
["KEyT I TECH, Mery: P
256", "x" :"6MGDU3EsCdAEJZVV2KFhnF21xCRISyNpf4viWQrCIMk5M", "y" : "00ZbKA
dooCqgrQcPB3Bfqgy0g-Y5SmnTyovFoFY35F00M", "alg" :"ES256" }

]

- false

Return type
Returns all/active agreements based on consumer’s public keys

GET /check agreements by provider/{provider public keys}

/{active}

Retrieve all or just the active agreements of a provider

82 Smart Contract Manager

Path parameters

— provider_public_keys (required)
— active (required)

Example data
- [
("kty":"EC", "crv":"P-
256", "x" :"4sxPPpsZomxPmPwDAsqSp94QpZ31XP8xX4VXWCSCEfms", "y": "8YI bv
VrKPW63bGAsHgRVWXE6U]3T1lnHwoQ19XaEBBE", "alg" :"ES256" }
]

- true

Return type
Returns all/active agreements based on provider’s public keys

GET /check agreements by data offering/{offering id}

Retrieve all agreements for a data offering
Returns all agreements by offering id

GET /retrieve agreements/{consumer public key}

Retrieve the active agreement by consumer public key whose start date is
reached
Returns active agreement by consumer public key whose start date is reached

GET /state/{agreement id}

Check the state of the agreement: active, violated, or terminated
Returns agreement’s state based on agreement id

POST /evaluate signed resolution

Evaluate a signed resolution
body signed_resolution (required)

{

"proof":
"eyJhbGciOiJFUzIINiJ9.eyJdwcm9OvZ1R5¢cGUi01JyZXNVvPHV0aW9uIliwiZGFO0YUV4AY2hhbmdlS
WQi0iJTTmg5eUtYYjJ1laGxWSFJIZQk1l1layl621pVaDItUlNvMilpwbGg3SWELNHIRIiwiaWF0Ijox
NjQ20TUxNjM1LCJIpc3Mi0iJ7XCIhbGdcIjpcIkVTMjU2XCIsXCIjcnZcIjpcI1AtMjU2XCIsXCT
kXCI6XCJ1Z1INpST1JTEANTWMI TmMwbkFhM3FGTjNBTjBVvR2JhMzNIJQWEFr SHEkdm1nXCIsXCJrdH
1cIjpcIkVDXCIsXCJ4AXCI6XCIMNLIAmV1IhHYkgwaW82SnBtOTRTMWxwZGk2eUdOVDFPbVo2NUFfa
INfaGs4XCIsXCJI5XCI6XCI2WUUwb1BPcFACcUM3NUREfanRKVIWZ 5NWxzWGxHak81ZzZRWG12RHAN
REtjXCJ9Tiwic3ViIjoielwiYWxnXCI6XCJIJFUzIINIwiLFwiY3J2XCI6XCIQLTIINIwiLFwia3R
5XCI6XCIFQlwiLFwieFwiOlwiV1lhzQnVPWndWamhvZkpWNGtBaGJhNnduMUVZRHAVSWEnWGIyZ1
ZuTDh4Y1lwiLFwieVwiOlwiaDRmTDVRAJRFWXQ3WGRLcWRJIeTFaSnMOX1FXWURrWIF6VXpTb0k2M
U43WVwifSIsInJdlc29sdXRpb24i0iJkZWS5pZWQIiLCJ0eXB1IjoiZGlzcHV0ZSJY . TtxUm3E6LEfm
wEI74cr6RO4-nw-xcFaeARY0Z4z1dBV1c JUOmMCvOFtr9tCDhggfLiJgb4RIPINfIytFZMUbx-
q",

"sender address": "0x4d82Bd33baA4Fe5489C45bBdAC206019403dcF829"

}

7.5 Interfaces 83

Returns a raw transaction for the create agreement operation
POST /propose penalty

Propose penalty
Request body

body choose_penalty (required)
{

"agreementId": 15,
"chosenPenalty": "NewEndDateForAgreementAndReductionOfPayment",
"paymentPercentage": 16,
"newEndDate": 189898999
}
Returns the chosen penalty and sends notification to the provider with the

chosen penalty
PUT /enforce penalty

Agree to penalty by enforcing it on the blockchain

Request body

body enforce_penalty (required)

{

"senderAddress": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170",
"agreementId": 15,
"chosenPenalty": "NewEndDateForAgreementAndReductionOfPayment",
"paymentPercentage": 16,

"newEndDate": 189898999
}

Returns a raw transaction for the enforce penalty operation

PUT /terminate
Terminate agreement for batch data based on the last block of successful
transfer and for streaming data if the end date is reached

body terminate (required)

{
"senderAddress": "0xC6b8cf76BD7078e56C6CE8C357dD91caecEa70170"
"agreementId": 15,
"proof": "JWT",

}

Returns a raw transaction for the terminate agreement operation

Explicit consent:

POST /give consent

Give consent to a user
body consent (required)

84 Smart Contract Manager

"dataOfferingId": "63909dae0863a775a4d71bco",
"consentSubjects": [

"did:ethr:i3m:0x026b23ab3cc76f1ldald5d2aa087d29894146ee52b56c23392a7f1
36f7dc2a7a90c"

"did:ethr:i3m:0x020bc2643908df0ebab258a2dac38cd3b42ce2088a0ade3b501d4
85ababf9f5ade",
1,
"consentFormHash":
"36bede32098bd09e15a23274a37117e58a8b08bf54al1e48331alff8cc509e6da",
"startDate": 1633344669,
"endDate": 1673344669,
"senderAddress": "0x9aDA42ff81B9D661cC4fdab62791DaC30cfe7305"
}

Returns a raw transaction for the give consent operation

PUT /revoke consent

Revoke consent by consent subjects
body consent (required)

{
"dataOfferingId": "63909dae0863a775a4d71bc9",
"consentSubjects": [

"did:ethr:i3m:0x026b23ab3cc76f1dald5d2aa087d29894146ee52b56c23392a7f1
36f7dc2a7a90c"

1,
"senderAddress": "0x9aDA42f£f81B9D661cC4fdab62791DaC30cfe7305"

}
Returns a raw transaction for the enforce penalty operation

GET /check consent status/{dataOfferingId}

Retrieve consent status
Returns a list of consent status based on data offering and consent subject
(optional)

POST /deploy consent signed transaction

Deploy signed transaction and send encrypted notification based on the event
emitted by the ExplicitUserConsent smart contract

body signed_transaction (required)

Returns transaction receipt with confirmation 1

7.6 Background Technologies 85

7.6 Background Technologies
e Hyperledger BESU:

1 Technology

Technology | Hyperledger BESU

name

Summary Hyperledger BESU is an Ethereum client designed to be enterprise-friendly for
both public and private permissioned network use cases. It can also be run on test
networks such as Rinkeby, Ropsten, and Gorli. Hyperledger BESU includes sev-
eral consensus algorithms including PoW and PoA (IBFT, IBFT 2.0, Etherhash,
and Clique). It also supports features including privacy and permissioning.

Description | Hyperledger BESU is an open-source Ethereum client developed under the

Apache 2.0 license and written in Java. It runs on the Ethereum public networks,
private networks, and test networks such as Rinkeby, Ropsten, and Gérli. BESU
implements Proof of Work (Ethash) and Proof of Authority (IBFT 2.0 and
Clique) consensus mechanisms.

BESU includes a command line interface and JSON-RPC API for running,
maintaining, debugging, and monitoring nodes in an Ethereum network. BESU
nodes support authentication and authorization, that is, identifying the user that
performed the API query and allowing the execution of a specific set of methods.
BESU supports two authentication mechanisms: username and password or JWT
public key; see Figure 7.10.

The communications are performed using the API via RPC over HTTP or via
WebSockets. The API supports typical Ethereum functionalities such as:

 ether mining;
* smart contract development;
« decentralized application (Dapp) development.

The resultant BESU architecture is the following:

| JSON RPC & GraphQL ‘

ETHEREUM CORE NETWORKING
dewtp
Transaction Paol | Synchronizer | Discovery

World State Elack Validator Cansensus RLPx

STORAGE

[Blockehain |

Account State Tx Processar oW

ETH
Accoun £
Starage 507

Code Storage 1BF12

IBF Sub-Protocal

Figure 7.10 BESU architecture.

86 Smart Contract Manager

Technology

BESU uses a private transaction manager, Orion, to implement privacy. Each
BESU node sending or receiving private transactions requires an associated
Orion node. Private transactions pass from the BESU node to the associated
Orion node (see Figure 7.11). The Orion node encrypts and directly distributes
(that is, point-to-point) the private transaction to the Orion nodes participating in
the transaction.

Alice's
ORION NODE
s

Orien Public Keys

Aliea's Orlen
Privote Key

Bob’s
ORION NODE

Mary's

Figure 7.11 Alice sends a private transaction to Bob
using Orion privacy manager.

BESU also supports permissioning, which stands for permitting only specified
nodes and accounts to participate by enabling node permissioning and account
permissioning on the network. It supports local permissioning (a configuration
file for each node) or on-chain (via smart contracts).

Keywords

Blockchain, distributed ledger, Ethereum, privacy, permissioning, authentication

ICT
problem(s)
and related
functional-
ity(ies)

Bullet list of the ICT problem(s) that the technology solves and associated
functionalities.

¢ Distributed ledger

o Auditable data storage

o Persistent transaction history

o Permissioned and non-permissioned network
o Pseudo-anonymous user identity

¢ Smart contracts

o Turing-complete machine
o Immutable code (auditable and verifiable)

e Privacy

o Send cryptocurrency using private transactions
o Execute smart contracts using private transactions

7.6 Background Technologies 87

1 Technology

¢ Authentication

o JWT-based tokens
o Username and password
o JWT public key authentication

* Monitoring

o Visual representation of declining node or network performance
o Collection of log files to enable issue diagnosis

¢« Communications

o Full-nodes and miners using HTTP/WebSockets
o Encrypted communications for privacy (Orion) and signer (Eth-

Signer) using TLS
TRL Current technology readiness level of the technology:
e TRL 7 — system prototype demonstration in operational environment
Website https://www.hyperledger.org/projects/besu

Standards | BESU nodes are compatible with Ethereum public network. It supports different
consensus protocols: Proof of Work (Ethash) and Proof of Authority (IBFT 2.0
and Clique).

The communications use HTTP and JSON-RPC protocols. Clients can be authen-
ticated using JWT.

Smart contracts are coded using Solidity.

e Solidity:

Solidity is an object-oriented, high-level language for implementing smart
contracts. Smart contracts are programs that govern the behaviour of accounts
within the Ethereum state. It is a curly-bracket language. It is designed to
target the Ethereum virtual machine (EVM).

Solidity is used to develop the smart contracts that are deployed on the
Ethereum blockchain.

e Hardhat:

Hardhat is a development environment for Ethereum software. It consists
of different components for compiling, debugging, and deploying smart
contracts, all of which work together to create a complete development
environment.

Hardhat has a plug-in for integration with ethers.js, which is a compact
library for interacting with the Ethereum blockchain.

88 Smart Contract Manager

e Swagger:

Swagger is a set of open-source rules and tools for developing RESTful
APIs. It simplifies the process of writing APIs by specifying the standards
and providing the tools required to write safe, performant, and scalable APIs.
Moreover, the Swagger framework allows developers to create interactive,
machine and human-readable API documentation.

