
5
Conflict Resolution/Non-repudiation

Protocol

5.1 Objectives

The conflict resolution system’s main goal is to prevent and/or solve conflicts
when invoicing for a given exchange of data. It is therefore a core subsystem
for the i3-MARKET secure data exchanges.

For the conflict resolution system to work, the i3-MARKET Non-
repudiation Protocol (NRP) must be executed with every exchanged block
of data. The Non-repudiation Protocol generates verifiable proofs of the data
exchange that can be used to later prove that a given digital data exchange
happened and that it met the agreed conditions (based on a data sharing
agreement).

If the NRP is followed, the NRP proofs can be used to support fair
unfakeable billing with fiat or crypto money and to prevent or solve eventual
disputes with the data exchange alike.

A complementary conflict-resolver service (CRS) has been developed,
which can be run by any trusted third party to issue verifiable signed
resolutions regarding the execution of the NRP.

In short, as per the above explanation, the conflict resolution/Non-
repudiation Protocol system relies on two subsystems, both already made
publicly available in the i3-MARKET GitHub and Gitlab repo:

• the Non-repudiation Protocol library [60];
• the conflict-resolver service [61].

Updated detailed documentation can be found in, e.g., https://github.com
/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-Documentation#c
onflict-resolution--non-repudiation-protocol.

45

46 Conflict Resolution/Non-repudiation Protocol

5.2 Technical Requirements

The conflict resolution/Non-repudiation Protocol must prevent the following
situations between the two peers of a data exchange, namely provider and
consumer:

• to deny that a given data-block exchange happened;
• or to assert that a data-block exchange that did not happen, happened.

As a result, providers will not be able to invoice a consumer for a data-
block not exchanged; and consumers will not be able to deny or cancel a
payment for a data-block that was successfully exchanged.

For it to happen, every block of data must be exchanged using the NRP.
Accounted proofs give no room to alter the invoicing (fiat money) or the
crypto payments (i3-MARKET tokens) if both entities reliably execute the
protocol; otherwise, the conflict resolver service can be invoked to univocally
solve which entity is intentionally or unintentionally malfunctioning.

5.3 Solution Design/Blocks

The Non-repudiation Protocol starts with a provider Alice, hereby A, sending
a signed proof of origin (PoO) along with an encrypted block of data to a
consumer Bob, hereby B.

An overview of the protocol is depicted in Figure 5.1, and more detailed
sequence diagrams of every step are provided in the following sections.

After validating the PoO, B will demonstrate his will to get the data by
sending a signed proof of reception (PoR). Just recall that B is at this point
not yet able to decrypt the data since he does not know the secret to decrypt
them.

The PoR is a proof that can be used by A to demonstrate that B is
committed to get the secret to decrypt the block of data.

Now A can release the secret as part of a proof of publication (PoP).
However, as B may state that he did not receive the PoP, A also publishes the
secret to the ledger. It is now under B’s responsibility to get the secret from
the ledger since he implicitly agreed to it when sending the PoR.

For A to create a valid invoice for that block of data, she must present a
valid PoR and demonstrate that the secret was published to the ledger within
the agreed delay (part of the agreement). As a result, the lack of one or both
proofs will result in an invalid invoice.

The conflict-resolver service (CRS) can be queried to provide a signed
resolution about the Non-repudiation Protocol associated with an invoice

5.3 Solution Design/Blocks 47

Figure 5.1 Overview of the Non-repudiation Protocol.

48 Conflict Resolution/Non-repudiation Protocol

being valid or invalid. It could be invoked by either the consumer or the
provider. The latter should be mandatory, being the resolution sent along with
the invoice to the consumer.

However, this resolution does not ensure that the published secret could
be used to decrypt the encrypted block of data. If the consumer B is not able
to decrypt the cipherblock, he could initiate a dispute on the CRS. The CRS
will also provide signed resolution of whether B is right or not.

5.4 Diagrams

This section presents detailed diagrams for the Non-repudiation Protocol and
conflict resolution already depicted in the previous section. For a diagram
with high-level overview of the NRP, please refer to Figures 5.2–5.6 for the
different interactions and use cases.

• NRP− step 1: consumer gets cipherblock and non-repudiable proof
of origin (PoO).

• NRP− step 2: consumer sends a proof of reception (PoR).

• NRP− step 3: provider publishes the secret, and consumer decrypts
the cipherblock.

• Conflict resolution: verification (NRP completeness).

• Conflict resolution: dispute.

5.5 Interfaces

A standard i3-MARKET developer interacts with the conflict resolution/Non-
repudiation Protocol system using the API of the non-repudiation library from
the JavScript/TypeScript code or querying the conflict resolver service HTTP
API.

API of the non-repudiation library:

The non-repudiation library API is a documented typescript library whose
API can be properly documented “on the fly” while programming.
Besides that, automated TypeDoc documentation is generated and available
at https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-
NonRepudiationLibrary/blob/public/docs/API.md.

5.5 Interfaces 49

Figure 5.2 NRP − step 1: consumer gets cipherblock and non-repudiable proof of origin
(PoO).

50 Conflict Resolution/Non-repudiation Protocol

Figure 5.3 NRP− step 2: consumer sends a proof of reception (PoR).

API of the conflict resolver service:

The conflict resolver service implements a HTTP API following the OpenAPI
standard. The specification can be consulted in the openapi.json file in the root
directory of the conflict resolver service at [61]. For convenience, it can also
be visualized online at editor.swagger.io1 as it is shown in Figure 5.7.

The CRS provides two endpoints: one for checking that the protocol was
executed properly, and the other one to initiate a dispute when a consumer
claims that he cannot decrypt the cipherblock he has been invoiced for.

1 https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-
Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService/public/spec/openapi.yaml

5.5 Interfaces 51

Figure 5.4 NRP − step 3: provider publishes the secret, and consumer decrypts the
cipherblock.

The endpoints require JWT bearer authentication. The JWT can be
obtained after performing a login with OIDC and presenting valid i3-
MARKET credentials.

52 Conflict Resolution/Non-repudiation Protocol

Figure 5.5 Conflict resolution: verification (NRP completeness).Figure 5.5 Conflict resolution: verification (NRP completeness).

Figure 5.6 Conflict resolution: dispute.

5.5 Interfaces 53

Figure 5.7 CRS API at swagger.editor.io.

• POST/verification.

The CRS can be queried to provide a signed resolution about a data
exchanged successfully performed or not. It could be invoked by either the
consumer or the provider. The provider should query this endpoint and send
it along with the invoice to the consumer.

This endpoint can be accessed at POST/verification and requires valid
i3-MARKET consumer or provider’s credentials.

Input:
A verification request as a compact JSON Web Signature (JWS). For the
request to be accepted, it must be signed with the same key it was used during
the data exchange for this verification.

{

 verificationRequest: string // the verification request in compact JWS format

}

A verification request is a JWS signed by either the consumer or
the provider using the same key he/she used for the data exchange. The
verification request payload holds a valid PoR:

54 Conflict Resolution/Non-repudiation Protocol

{

 type: 'verificationRequest'

 proofType: 'request'

 iss: 'orig' | 'dest'

 iat: number // unix timestamp for issued at

 por: string // a compact JWS holding a PoR. The proof MUST be signed with the
same key as either 'orig' or 'dest' of the payload proof.

 dataExchangeId: string // the unique id of this data exchange

}

Output:
It returns a signed resolution as a compact JWS with payload:

{

 proofType: 'resolution'

 type: 'verification'

 resolution: 'completed' | 'not completed' // whether the data exchange has been
verified to be complete

 dataExchangeId: string // the unique id of this data exchange

 iat: number // unix timestamp stating when it was resolved

 iss: string // the public key of the CRS in JWK

 sub: string // the public key (JWK) of the entity that requested a resolution

}

• POST/dispute.

Note that the signed resolution obtained from POST/verification does not
ensure that the published secret could be used to decrypt the encrypted block
of data. If the consumer B is not able to decrypt the cipherblock, he could
initiate a dispute on the CRS. The CRS will also provide signed resolution of
whether B is right or not.

All this is handled in this endpoint, which can only be queried if in
possession of valid i3-MARKET consumer’s credentials.

Input:
{

 disputeRequest: string // the dispute request in compact JWS format

}

A dispute request as a compact JSON Web Signature (JWS). For the request
to be accepted, it must be signed with the same key it was used during the
data exchange for this verification.

5.6 Background Technologies 55

The payload of a decoded disputeRequest holds a valid PoR, and the
received cipherblock:
{

 proofType: 'request'

 type: 'disputeRequest'

 iss: 'dest'

 cipherblock: string // the cipherblock as a JWE string

 iat: number // unix timestamp for issued at

 por: string // a compact JWS holding a PoR. The proof MUST be signed with the
same key as either 'orig' or 'dest' of the payload proof.

 dataExchangeId: string // the unique id of this data exchange

}

Output:
It returns a signed resolution as a compact JWS with payload:
{

 proofType: 'resolution'

 type: 'dispute'

 resolution: 'accepted' | 'denied' // resolution is 'denied' if the cipherblock
can be properly decrypted; otherwise is 'accepted'

 dataExchangeId: string // the unique id of this data exchange

 iat: number // unix timestamp stating when it was resolved

 iss: string // the public key of the CRS in JWK

 sub: string // the public key (JWK) of the entity that requested a resolution

}

5.6 Background Technologies

Both the non-repudiation library and the conflict resolver service need access
to a DLT. Access to the DLT is provided by the following technologies:

• Ethers.js [55] is a complete and compact library for interacting with the
Ethereum-based DLTs. Along with Web3 is the reference implementa-
tion for that purpose.

• Veramo [56] is a JavaScript Framework for Verifiable Data that was
designed from the ground up to be flexible and modular, which makes
it highly scalable. It can run on several environments: node, mobile, and
browser. Its main utility is to make easy the use of DIDs, Verifiable
Credentials, and data-centric protocols to bring next-generation features
to users.

56 Conflict Resolution/Non-repudiation Protocol

The smart contracts that regulate the Non-repudiation Protocol have
been developed in Solidity [37], an object-oriented, high-level language for
implementing smart contracts for Ethereum-like DLTs, and the development
environment of choice has been Hardhat.

The non-repudiation library can be instantiated from JavaScript or Type-
Script code. It internally uses Panva’s JOSE [63] to handle JSON web keys,
and Ajv [64] to check and verify JSON schema.

Conflict resolver service HTTP API is developed using Express [65],
a minimal and flexible Node.js web application framework that provides a
robust set of features for creating robust APIs (among other things).

The conflict resolver service meets the OpenAPI specification [57] with
validation of all inputs against the OpenAPI schema using express-openapi-
validator [58].

