3]

Conflict Resolution/Non-repudiation
Protocol

5.1 Objectives

The conflict resolution system’s main goal is to prevent and/or solve conflicts
when invoicing for a given exchange of data. It is therefore a core subsystem
for the i3-MARKET secure data exchanges.

For the conflict resolution system to work, the i3-MARKET Non-
repudiation Protocol (NRP) must be executed with every exchanged block
of data. The Non-repudiation Protocol generates verifiable proofs of the data
exchange that can be used to later prove that a given digital data exchange
happened and that it met the agreed conditions (based on a data sharing
agreement).

If the NRP is followed, the NRP proofs can be used to support fair
unfakeable billing with fiat or crypto money and to prevent or solve eventual
disputes with the data exchange alike.

A complementary conflict-resolver service (CRS) has been developed,
which can be run by any trusted third party to issue verifiable signed
resolutions regarding the execution of the NRP.

In short, as per the above explanation, the conflict resolution/Non-
repudiation Protocol system relies on two subsystems, both already made
publicly available in the i3-MARKET GitHub and Gitlab repo:

e the Non-repudiation Protocol library [60];
e the conflict-resolver service [61].

Updated detailed documentation can be found in, e.g., https://github.com
/i3-Market- V3-Public-Repository/SP3-SCGBSSW-CR-Documentation#c
onflict-resolution--non-repudiation-protocol.

45

46 Conflict Resolution/Non-repudiation Protocol

5.2 Technical Requirements

The conflict resolution/Non-repudiation Protocol must prevent the following
situations between the two peers of a data exchange, namely provider and
consumer:

e to deny that a given data-block exchange happened;
e or to assert that a data-block exchange that did not happen, happened.

As a result, providers will not be able to invoice a consumer for a data-
block not exchanged; and consumers will not be able to deny or cancel a
payment for a data-block that was successfully exchanged.

For it to happen, every block of data must be exchanged using the NRP.
Accounted proofs give no room to alter the invoicing (fiat money) or the
crypto payments (i3-MARKET tokens) if both entities reliably execute the
protocol; otherwise, the conflict resolver service can be invoked to univocally
solve which entity is intentionally or unintentionally malfunctioning.

5.3 Solution Design/Blocks

The Non-repudiation Protocol starts with a provider Alice, hereby A, sending
a signed proof of origin (PoO) along with an encrypted block of data to a
consumer Bob, hereby B.

An overview of the protocol is depicted in Figure 5.1, and more detailed
sequence diagrams of every step are provided in the following sections.

After validating the PoO, B will demonstrate his will to get the data by
sending a signed proof of reception (PoR). Just recall that B is at this point
not yet able to decrypt the data since he does not know the secret to decrypt
them.

The PoR is a proof that can be used by A to demonstrate that B is
committed to get the secret to decrypt the block of data.

Now A can release the secret as part of a proof of publication (PoP).
However, as B may state that he did not receive the PoP, A also publishes the
secret to the ledger. It is now under B’s responsibility to get the secret from
the ledger since he implicitly agreed to it when sending the PoR.

For A to create a valid invoice for that block of data, she must present a
valid PoR and demonstrate that the secret was published to the ledger within
the agreed delay (part of the agreement). As a result, the lack of one or both
proofs will result in an invalid invoice.

The conflict-resolver service (CRS) can be queried to provide a signed
resolution about the Non-repudiation Protocol associated with an invoice

5.3 Solution Design/Blocks 47

i3-MARKET non-repudiation prolocol
1SM Backplane |
[o-marer our |
- Froof of Origin (Po0] f—
H L] 1. queey a bsock of data |
E civale one-beno sect E
| i
' cophorblock=Fne i (block) H
¥ Civaote signod Pol !
' i
| {cohatiody, Po0 5 rotum e comsurmes caneol
radoention, Pi0) Jlmnw.mwm 7]
' 6. wixaln PoO agast ' '
| wioto poc : :
mormed axchangs ! '
e | P . :
" [P 2 conaumer sndsa Proat of Recepion (PoR) } .
| Croste sgndd PR [comoproatat B | :
Dz PoR) ' '
| PoRt : H
1
! B oo Por 1) | [te PoR !
! [10 siom por :
The PaR is non-epudale preol of storn PR
ihe baing commiled 10 get —
tha secral fo decrypt fha
I I
| winp 3. provider publishes ihe secret,
: 1 L
1. Prowder publishes secrel on ihe DUT |
Thes one-time secrid thal was used 10 enciypt e — 1
tho block is putskstod to the LT using the = e]
Ronrepudiation smiart contract !
: T T :
1 [12 Prowser emates the pop. By H
1 | A proof of pubiscation (PoP~) is croatod, :
bt oedy to accelesnte the process, 1
| he actisal PoP s ihe secret pubhished Create signed PoP ;
| with the smart contract. In any casa, :
! the PoP s ikely festor fhan !
| waiteng o the secret to be putdshed on i
| [the par :
[13 Consumer gets tha secret 0 me Por ™y
T T
opt 7 anwlhnnwuul
135 W tho PoP 5 not reconed, tho comsumor

dovnivads the secret om the DUT

| it trer PR the eonsumes cormenitod o got
| the sacrot toen the DLT o f tha PoP was
1| et racenet

! pocToSecrtDolay to wit
i[orine sectet 1o be meladie on the DLT

15, Tha consuma docrypts the ciphartlock)

[-maeT oLt |

Figure 5.1 Overview of the Non-repudiation Protocol.

48 Conflict Resolution/Non-repudiation Protocol

being valid or invalid. It could be invoked by either the consumer or the
provider. The latter should be mandatory, being the resolution sent along with
the invoice to the consumer.

However, this resolution does not ensure that the published secret could
be used to decrypt the encrypted block of data. If the consumer B is not able
to decrypt the cipherblock, he could initiate a dispute on the CRS. The CRS
will also provide signed resolution of whether B is right or not.

5.4 Diagrams

This section presents detailed diagrams for the Non-repudiation Protocol and
conflict resolution already depicted in the previous section. For a diagram
with high-level overview of the NRP, please refer to Figures 5.2-5.6 for the
different interactions and use cases.

e NRP — step 1: consumer gets cipherblock and non-repudiable proof
of origin (PoO).

e NRP — step 2: consumer sends a proof of reception (PoR).

e NRP — step 3: provider publishes the secret, and consumer decrypts
the cipherblock.

e Conflict resolution: verification (NRP completeness).

e Conlflict resolution: dispute.

5.5 Interfaces

A standard i3-MARKET developer interacts with the conflict resolution/Non-
repudiation Protocol system using the API of the non-repudiation library from
the JavScript/TypeScript code or querying the conflict resolver service HTTP
APL

API of the non-repudiation library:

The non-repudiation library API is a documented typescript library whose
API can be properly documented “on the fly” while programming.
Besides that, automated TypeDoc documentation is generated and available
at https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-
NonRepudiationLibrary/blob/public/docs/API.md.

5.5 Interfaces 49

i3M NRP - step 1: consumer gets cipherblock and non-repudiable Proof of Crigin (PoO)
Cancumer Prowider]

|- sow 50K | : Dt Transfer Marager

1 1
| GET ditta Jif?: ook |ic>] ' |1_ quimy a biock of daka j

creabs aredims secmt

I

3. onorypt data ook with socnot ciphertiock=Ene ., block]
using agreed enchlg (only AE modes
of operation suppored) []:I

PeO= Wt 1
Iss: ‘ong’,
prooiType: 'Poly,
Im: =timestamg row=,
cuchangel{
s
orig: sting ¥ Fublic kay as a compact JWH of
Hraz prordoer
dest- siring ff Public koy as @ compact JWE ol
e Coois Lt
hashaly: sting (¥ agreed hash algorthm
onolg: siing agneed orcryplion algarithm
signingdlg: string ! agrees JWE signing
akgarithm
ledgerlnmmacticitress: sting f cantract

4. crnate proof of origin ﬂqu DI hdguﬁb;'ﬂ'.ﬂdd‘m: sinng ' addmss of the
orig in the ledger

pooToPorDalay: number 1 max milisecands
between issued Pol and wrifed PoH

pooToSecretDoiay: numbr (i max milisecands
batween ssupd Pol and seomt publishes on the
Indger

schemat: sting ! an optional schema. In e
fuune it will bz used to chieck tha deorypied data

cipherhiockDgst: string i hash of the
cipherbiock in basefaur with no padcing

secretdommEment: skring ! hash of e socnot
it can b used 1o decrypl the bock in beseSdud
wilh no pacoing

|B. melum cipherblock [he consumer cannot
cecrytp & yotl and the Pod

il Poc lenmm.@mm

mehed ciphertlock and
agmeed exchange

opt A povale 7o) E
= X
Lok e [—— 'ﬁ '
|:smm|c | SOMAP
: Data Transfsr Mardgar

Figure 5.2 NRP — step 1: consumer gets cipherblock and non-repudiable proof of origin
(PoO).

50 Conflict Resolution/Non-repudiation Protocol

30 NRP - step 2: consumer sends a Proof of Reception (PoR)

iZM Consumer i2M Provider
SDAAP]
Consumer: SDA SDK : Data Transfer Manager
PDR:JW %L‘F SRUMEr {{
iss: 'dest]
proofType: 'FoR'

iat: <timastamp_nows=,
poo: string, 7 The Pol as & compact JW
exchange: <the same exchange in the Ppl=

I

1. create proof of
reception (PoR)

n

FaR

| R

1

]

. >

! P — validste PoR

- Se e | [—
opt finvalid PoR]

NEETIORE

| I

| 3. store PoR.

i The PoR is non-repudiable proof of store PoR.

| the consumer being commited to gat

| the secret to decrypt the cipherblock
Consumer: S04 SDKE SDAAPL

: Data Transfer Manager

Figure 5.3 NRP — step 2: consumer sends a proof of reception (PoR).

API of the conflict resolver service:

The conflict resolver service implements a HTTP API following the OpenAPI
standard. The specification can be consulted in the openapi.json file in the root
directory of the conflict resolver service at [61]. For convenience, it can also
be visualized online at editor.swagger.io as it is shown in Figure 5.7.

The CRS provides two endpoints: one for checking that the protocol was
executed properly, and the other one to initiate a dispute when a consumer
claims that he cannot decrypt the cipherblock he has been invoiced for.

! https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-

Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService/public/spec/openapi.yaml

5.5 Interfaces 51

i3M NRP - step 3: provider publishes the secret, and consurer decrypts the cipherblock

150 Comuumur AN I"revider 150 Backslune
SOAAFI
 Diaka Transfor Manager I MARKET OLT

1. Privader pubishes Seera on tha DUT. By
Tha -1 Sersl thal was used 1 ncnpl |

v Dioac b i i il 5 tha DT w6 i L o Ll 50 SN S Secr]
M- alion SMa LorracL
Thhaa icaz el ot Do qusriil with kncs: sager
[peesicar adorasa | and anchangald.

I i
3,)
2 Prodder cownes e PoP. E H N:‘J‘.:Ij:_“ mh
A, proof of pubbcalion "Fof®) @ crealed, H :‘ﬂ:‘:;fw:m*
Dl ey 10 RECHAn 1) proceEs, Sisee : . oy ¥
1N a1l PoP s D4 et el pulirahed ::“:lmmr: "mmnﬁrxmmin*
wilh am;cgﬂlrﬁ:l. Ty G, | Sacral: sina N Cosspact FAK of i seeral
Teai g 5 POP & ikaky b Tas H u
: sl B M Mok s i 0 hy arlfiationThaa: sirng ' DLT 1x Saah
! thea LT, il
! -
| PoR '
e e — R '

|| 2. Comgmier pets the secst i tha PeP 5 1

I
opt_] [NEraspanas | ek ressanaa] '
| PP i
i -
1| 3.5 i PoP i nal redd e, T Sonsurmar
|| downbons Tha decl from e DLT.

| WA e PO e 0 uTher omsiled Lo gal

| Ui et Fem the DLT w1 PeP wis

+| ek .

o iy i, T G el el N
| M o poaTeSecna Dty L wai .
e e Sed 1 B sk o e OLT N

loop o [WEls AACTALAZE raCaleRd BB SArTRAITIN * Ford i = AcaTeecrarCaly] |

+ e el (. Kk S Al s,
s hange)

P e sacndlal
\ '

| sl
| aendial < Pollial + poaToSsoniDaay
| i) == Palharchanga secneCosmiand

|4. Tha cossumar wiilis e seonal D'l

iyl cipharioek with seeral: |
cucnpiedfiocslee o (G pherlinek] i i
1 i

i

L

= TeRcrat 253 pAEIAEAE In Ome || s aparan
| mnnale

| |
E. Tha cormusiar dienypels e cpmariock. &'I

-

! iesana 1hal:
P B st Pl [)
[—

opt [ha2 dacrypaen || sabearian falad] i |
! el H
| : =4

e e

- Dada Trarsher Manager

Figure 54 NRP — step 3: provider publishes the secret, and consumer decrypts the
cipherblock.

The endpoints require JWT bearer authentication. The JWT can be
obtained after performing a login with OIDC and presenting valid i3-
MARKET credentials.

52 Conflict Resolution/Non-repudiation Protocol

I3-MARKET conllictr (MRP

T Fromder

‘ TTH Bwchplune.
1 e . 1
Ty e B, & ek WSl

_ SMARKET BT
j

| tnch i s
H nm-rwﬂuu
etz

| it wasbsa) = W R——

EIMMM-I

: e el iy et anehange. ok JWH
' ismsidin's peble byl

ot Zac it |w:r=rl-un-w-‘5v-ﬂﬂ-i.

ity
sacril t puistated &8
semcridlil < i, paxs il +

e s g pus e duc s Dutey.
le—1
3 gentfusution = SRS o)

prdiscel for I anchage & cor et L thal . I
nl: =i) PursericDvs ow

s aing Ve puise key of (ha CAS n WK

et alring i L puise: JWH of i eormeerin

E-MERKET OLT

Figure 5.5 Conflict resolution: verification (NRP completeness).
iZ-MARKET canflicl resdlubion: dispule

3M Comemer 13M Beckplune
[e | [t | S
irreen [E———] a
1| e et Chnf! paogerty ha . P
1| i hirtek Wik Ihes prabd b agcnt, 1 A
o] EamEUTES CAN R O Sspate so e i N
1| ot i e s e by it ! !
it zenty prearry Uit Lns e < pimertiozk
mred iy b ocryplint
hmile s puliflacuicl = VG P
prodl Typic| ecuesl’ d
o deal” . "
i Fumibe) Narinc Dl kor mausd il 3 g
L pn gl the PoR i compct ME ‘ H
| cdiEesiuagtet aley ! !
| tpp plisfeper H H
| cpeitisch slring 1) the cibeiblock i 4 WE o
] .
.:I H
| POET Mapsde | 3 f
' et jpme ioctunge leckp Sgrurteciise, H
et aachangs i) H
| dacrypd 6 phudsiess wilh screl: d
' cerrystecBloekelios o (HplEticy) H
' — i
H bl [H
| meeta P L :
: <! i
| sgmafuschfion = WE g :
i il par ‘sl e’ N
1 Eppas i’ H
| [Ty T e — s=Rulalin: ccigned | et . " i
e i rrmiser) Momeresale o
D e i 1 e puts: ke of the £ is Tist
Ay slring U the Sublic MK of B £ i it H
e g
H
i3-MARKET DLT

Figure 5.6 Conlflict resolution: dispute.

5.5 Interfaces 53

® @ swagger Editor

a 7 || Q Searct © e x
1UPC W Calendar ™ Meet @ Drive @ OneDrive ® Atenea @SIA @ Froman @ code - GitLab » [0ther Bookmarks

@ Swagger Editor file . Edit. Insert . GenerateServer - GenerateClient » About « Try our new Editor ~*

Conflict-Resolver Service
(CRS) API®

The Conflict-Resolver Service (C

diation protocol as
voked by ei
provider. It is a core element of the Conflict
MARKET

can be queried to prov

stem in i3-

Conflict-Resolver Service ~

verification request of completeness of
non:-repudiation protocol regarding a data v
exchange

/verifica
tion

Figure 5.7 CRS API at swagger.editor.io.

e POST/verification.

The CRS can be queried to provide a signed resolution about a data
exchanged successfully performed or not. It could be invoked by either the
consumer or the provider. The provider should query this endpoint and send
it along with the invoice to the consumer.

This endpoint can be accessed at POST/verification and requires valid
13-MARKET consumer or provider’s credentials.

Input:

A verification request as a compact JSON Web Signature (JWS). For the
request to be accepted, it must be signed with the same key it was used during
the data exchange for this verification.

{

verificationRequest: string // the verification request in compact JWS format

A verification request is a JWS signed by either the consumer or
the provider using the same key he/she used for the data exchange. The
verification request payload holds a valid PoR:

54 Conflict Resolution/Non-repudiation Protocol

type: 'verificationRequest'

proofType: 'request’

iss: 'orig' | 'dest’

iat: number // unix timestamp for issued at

por: string // a compact JWS holding a PoR. The proof MUST be signed with the
same key as either 'orig' or 'dest' of the payload proof.

dataExchangeId: string // the unique id of this data exchange

Output:
It returns a signed resolution as a compact JWS with payload:

proofType: 'resolution’
type: 'verification'

resolution: 'completed' | 'not completed' // whether the data exchange has been
verified to be complete

datakExchangeId: string // the unique id of this data exchange

iat: number // unix timestamp stating when it was resolved

iss: string // the public key of the CRS in JWK

sub: string // the public key (JWK) of the entity that requested a resolution

e POST/dispute.

Note that the signed resolution obtained from POST/verification does not
ensure that the published secret could be used to decrypt the encrypted block
of data. If the consumer B is not able to decrypt the cipherblock, he could
initiate a dispute on the CRS. The CRS will also provide signed resolution of
whether B is right or not.

All this is handled in this endpoint, which can only be queried if in
possession of valid i3-MARKET consumer’s credentials.

Input:
{
disputeRequest: string // the dispute request in compact JWS format

¥

A dispute request as a compact JSON Web Signature (JWS). For the request
to be accepted, it must be signed with the same key it was used during the
data exchange for this verification.

5.6 Background Technologies 55

The payload of a decoded disputeRequest holds a valid PoR, and the

received cipherblock:
{

proofType: 'request’

type: ‘'disputeRequest’

iss: 'dest’

cipherblock: string // the cipherblock as a JWE string

iat: number // unix timestamp for issued at

por: string // a compact JWS holding a PoR. The proof MUST be signed with the
same key as either 'orig' or 'dest' of the payload proof.

dataExchangeld: string // the unique id of this data exchange

Output:
It returns a signed resolution as a compact JWS with payload:
{

proofType: 'resolution’

type: 'dispute’

resolution: 'accepted' | ‘'denied' // resolution is 'denied' if the cipherblock
can be properly decrypted; otherwise is 'accepted’

dataExchangeld: string // the unique id of this data exchange

iat: number // unix timestamp stating when it was resolved

iss: string // the public key of the CRS in JWK

sub: string // the public key (JWK) of the entity that requested a resolution

5.6 Background Technologies

Both the non-repudiation library and the conflict resolver service need access
to a DLT. Access to the DLT is provided by the following technologies:

e Ethers.js [55] is a complete and compact library for interacting with the
Ethereum-based DLTs. Along with Web3 is the reference implementa-
tion for that purpose.

e Veramo [56] is a JavaScript Framework for Verifiable Data that was
designed from the ground up to be flexible and modular, which makes
it highly scalable. It can run on several environments: node, mobile, and
browser. Its main utility is to make easy the use of DIDs, Verifiable
Credentials, and data-centric protocols to bring next-generation features
to users.

56 Conflict Resolution/Non-repudiation Protocol

The smart contracts that regulate the Non-repudiation Protocol have
been developed in Solidity [37], an object-oriented, high-level language for
implementing smart contracts for Ethereum-like DLTs, and the development
environment of choice has been Hardhat.

The non-repudiation library can be instantiated from JavaScript or Type-
Script code. It internally uses Panva’s JOSE [63] to handle JSON web keys,
and Ajv [64] to check and verify JSON schema.

Conflict resolver service HTTP API is developed using Express [65],
a minimal and flexible Node.js web application framework that provides a
robust set of features for creating robust APIs (among other things).

The conflict resolver service meets the OpenAPI specification [57] with
validation of all inputs against the OpenAPI schema using express-openapi-
validator [58].

