
4
Auditable Accounting

4.1 Objectives

The auditable accounting component is responsible of registering auditable
logs. As such, this component is one of the main tools to enhance the trust
in the ecosystem of data marketplaces. Our solution must enforce the data
sharing agreement terms, agreed upon all involved parties, by recording them
in an auditable, transparent, and immutable way. Smart contracts are the
key part of the proposed solution for auditable accounting. Figure 4.1 shows
that the auditable accounting component is an abstraction layer to access the
smart contracts and to allow the integration with the rest of the platform. The
auditable accounting component is a service that includes an API to automate
the process of logging and auditing interactions between components and
record the registries in the blockchain.

Figure 4.1 Auditable accounting architecture.

37



38 Auditable Accounting

The auditable accounting development has been made publicly avail-
able in the i3-MARKET GitHub and Gitlab repositories (e.g., https://gith
ub.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-AA-Auditable
Accounting). The Table 4.1 summarises the technical contributions used to
design and implement the i3-MARKET Auditable accounting component.

4.2 Technical Requirements

Table 4.1 Main technical contributions.
Name Description Labels
Auditable Log i3-MARKET needs to be able to log data

and events in blockchain. It is a key com-
ponent for accounting, billing, and conflict
resolution. It is also important to con-
trol access to sensitive information and to
detect potential data breaches.
A public distributed ledger will be used to
store non-repudiable and reliable proofs of
the required actions.

Children:

1. Auditable accounting: marketplace
billing

2. Auditable accounting: conflict resolu-
tion

3. Auditable accounting: providing sensi-
tive data

4. Providing sensitive data
5. Conflict resolution
6. Marketplace billing
7. Consumer billing
8. Provider billing

Parents:

1. REQ-B-005 − i3-MARKET will
ensure trust

2. REQ-B-008 − i3-MARKET will pro-
vide a payment solution

3. Semantic description of the SLS and the
subscription

V1
Epic
Data marketplace
Data consumer
Data provider
Data owner



4.3 Solution Design/Blocks 39

4.3 Solution Design/Blocks

The solution must be scalable and cost-efficient. In this regard, transaction
costs can be a considerable problem if, as it is expected, the number of
auditable registries that need to be stored in the blockchain is high. To over-
come this problem, it is a requirement to implement a transaction optimizer
to efficiently register substantial amounts of data in the blockchain without
incurring in excessive costs. To achieve this, we first store registries in an
internal database of the component and then aggregate the registries with a
Merkle tree to minimize the number of blockchain transactions and provide
the appropriate data for proving each individual registry.

The smart contract managed by the auditable accounting component is
used to store the necessary evidence of the aggregated registries from the
DSA. Once the registration process is complete, the auditable accounting
component will save a copy of all the information needed to verify that the
registration was successful in the blockchain. This information can be con-
sulted and obtained later by the marketplace users. The auditable accounting
component provides the functionality to trace registries and obtain “certifi-
cates” of them that can be publicly or privately used to prove that a certain
registry was performed. Users must be able to download these certificates and
validate the registry without further interaction with the auditable accounting
component having a proof that can be universally validated without the
intervention of any other entity or software component. The certificate of a
DSA will provide: the blockchain that has been used to create the auditable
data registration, the address of the smart contract used, and the “proof of
registry” of the associated data.

The auditable accounting component is a service that includes an API to
automate the process of logging and auditing interactions between compo-
nents and record the registries in the blockchain. As shown in Figure 4.1, in
general, the API of the AA module is accessed through the Backplane API
gateway. Additionally, the auditable accounting component can be accessed
directly from any internal component of the platform.

On the other hand, to allow external parties to check that logs have been
properly registered in the blockchain, interested parties need to obtain certain
data from the distributed ledger as well as some off-chain data provided
by the auditable accounting module via an API. This off-chain data are
essentially Merkle proofs for each individual record. It is important that the
off-chain data is provided with high availability. For this reason, the auditable
accounting module uses the distributed storage component. In this way, high



40 Auditable Accounting

availability and data replication is provided to the relevant off-chain data
required to store the registries and verify auditable logs.

Database model:

The database model proposed for this component is based on two SQL tables.
The first one is the related one with the blockchain. It contains the transactions
prepared or sent to the blockchain. Figure 4.2 shows the deployed columns
as follows:

Figure 4.2 Auditable accounting library distribution.

• Id: Primary key to link with the other table.
• Nonce: Nonce from the account to build the transaction.
• Txhash: Hash of the transaction.
• Timestamp: Exact date of the creation of the transaction.
• Registrationstate: Status of the transaction.

◦ Unregistered: Transaction not created.
◦ Pending: Transaction created but not sent to the blockchain.
◦ Mined: Transaction sent with less than 12 block confirmations.
◦ Confirmed: Transaction sent with more that 12 block confirma-
tions.

On the other hand, the registry table is responsible to store the proofs of
the data hashes that want to be validated against the blockchain.



4.4 Diagrams 41

It contains the following columns:

• Id: Primary key to link with the other table.
• Dateofreception: Date when the data is received.
• Datahash: Cryptographic hash function of the data. It is one of the
leaves of the Merkle tree.

• Merkleroot: Root of the Merkle tree.
• Merkleproof: Concatenated hashes that allow to validate the datahash
to the root of the tree.

• Readyforregistration: Boolean to indicate if the tree is built and ready
to be deployed in the blockchain.

Smart contract:

The smart contract deployed for this component just stores the root of the
Merkle tree that summarizes all the data hashes stored in the database. It
only allows to modify that value by the owner of the smart contract, which
shares the same account with the auditable accounting. Also, it includes the
capability to subscribe to an event that notifies you about a new root released.
The Solidity code is the following:



42 Auditable Accounting

4.4 Diagrams

The workflow to register auditable data is shown in Figure 4.3.

Figure 4.3 Auditable accounting flow.

The hash of the data to be registered is sent to the API using the end-
point/registries. Each hash to be registered is stored by the auditable account-
ing module in distributed storage. Then, the endpoint /calculateMerkleRoot
has to be called. When called, this endpoint creates the structure that is going
to be registered in the blockchain. In more detail, this structure is a Merkle
hash tree. The controller of the endpoint computes the Merkle root with all
the pending registries, computes an individual proof for each registry, and
stores these proofs in the distributed storage. Additionally, a transaction to be
sent to the blockchain is created and stored in the blockchain SQL table in
the distributed storage. Next, the endpoint /updateRegistries can be called
to store the Merkle root of the registries in the blockchain via the smart
contract. We would like to stress that the endpoints /calculateMerkleRoot



4.5 Interfaces 43

and /updateRegistries can be called with a “cron job” or similar to schedule
registrations in the blockchain at the desired frequency. Finally, if a party
wants to verify a certain registry, it can call the endpoint /registry/:id to obtain
the corresponding Merkle proof, compute the Merkle root from this proof,
and compare it to the root registered in the smart contract. If both are the
same, this means that the registry is valid.

4.5 Interfaces

The component is built from a Loopback 4 framework, which facilitates the
management of the smart contract and the database generating an API that
allows to integrate the procedures with the Backplane. But, as a high-level
definition, the endpoints are divided into two controllers.
Firstly, the RegistryBlockchain controller manages the smart contract inter-
actions and has the following endpoints:

• /calculateMerkleRoot: Gets the pending registries from distributed
storage that are not included in the current root and computes the new
one.

• /getCurrentRoot: Gets the current root from the smart contract.
• /updateRegistries: Updates the status of the stored transactions and
computes a new transaction.

On the other hand, there is the registry controller, which is responsible to
manage the data hashes that are included in the auditable accounting system.



44 Auditable Accounting

• GET /registries/count: Returns the number of stored registries.
• PUT /registries/{id}: Forces the creation of a specific registry.
• PATCH /registries/{id}: Updates a specific registry.
• GET /registries/{id}: Returns the value of a specific registry.
• DELETE /registries/{id}: Removes a specific registry.
• POST /registries: Generates a new registry.
• GET /registries: Returns the value of the registries.

4.6 Background Technologies

• Solidity:

Solidity is an object-oriented, high-level language for implementing smart
contracts. Smart contracts are programs that govern the behaviour of accounts
within the Ethereum state. It is a curly-bracket language. It is influenced by
C++, Python, and JavaScript and is designed to target the Ethereum virtual
machine (EVM).

Solidity is used to develop the smart contract deployed on the blockchain,
which is responsible to store the root of the Merkle hash tree.

• PostgreSQL:

PostgreSQL is a powerful, open-source object-relational database system
with over 30 years of active development that has earned it a strong reputation
for reliability, feature robustness, and performance.

PostgreSQL is used to store the registries and the Merkle proofs of each
registry.

• Loopback 4:

LoopBack 4 is an award-winning, highly extensible, open-source Node.js
and TypeScript framework based on Express. It enables you to quickly create
APIs and microservices composed from backend systems such as databases
and SOAP or REST services. Also, it allows to manage custom data sources
like a smart contract.

Loopback is used to generate the API that manages the registration of
the data, the computation of the Merkle hash trees, and the smart contract
executions.


