
3
i3-MARKET Wallets

3.1 Objectives

i3M-Wallets is a set of technologies that facilitate the interaction of
the different i3-MARKET stakeholders with the Backplane API. It man-
ages i3-MARKET identities, data agreements (with signature verifica-
tion/generation), non-repudiation proofs (generation/verification), and secrets
for data encryption/decryption.

All the code has been made publicly available at the i3M-Wallet
monorepo [2]. Several packages are provided in this repo, but a standard
i3-MARKET user/developer is likely only needing:

• i3M Server Wallet: It is an interactionless wallet implementation
not requiring any user interaction. It has been designed to be oper-
ated by a “machine” or service. Current implementation is in Type-
Script/JavaScript and can be easily imported to any JS project with
NPM/Yarn.

• i3M-Wallet Desktop App: It is a desktop application (Windows,
MacOS, and Linux) thought to be operated by end-users. The app can
be securely paired to any application, allowing the application to interact
with the wallet through an HTTP API. Wallet actions requested by any
application will require explicit confirmation of the end-user through the
app interface (window).

• i3M-Wallet Protocol API: A TypeScript/JavaScript library that can be
used to easily connect to an i3M-Wallet Desktop App. It wraps all the
functionalities provided by the wallet’s HTTP API into convenient class
methods. It works in Node.js (both ESM and CJS) and browsers. Follow
the pairing example to properly pair your JS application to the wallet
and start using the Wallet API.

• i3M-Wallet OpenAPI Specification: In order to get a better under-
standing of what functionalities of the wallet are provided to paired

23

24 i3-MARKET Wallets

applications, a developer should analyse the i3M-Wallet OpenAPI
Specification [39] or just visualize it online at editor.swagger.io1.

The complete documentation of every package is provided in every
package’s README of the open-source public repositories.

3.2 Technical Requirements

i3M-Wallets implement the following requirements:

Identity management:
The wallet implements key functionalities for enabling the self-sovereign
identity (SSI) solution of i3-MARKET. These functionalities are described
below.

DID management:
The i3-MARKET identity subsystem heavily relies on the use of distributed
identifiers (DID) [40]. The wallet should then be able to manage DIDs,
specifically:

• Create DID: The wallet should be able to create a DID and the comple-
mentary cryptographic key for managing it. The keys must be securely
stored/managed.

• Present DID: The wallet should be able to present a DID upon request
and prove ownership of it.

• Resolve DID: The wallet should be able to retrieve the public data
associated with a DID, including (but not limited to) the public keys
associated with the DID.

• Verify asset signature: The wallet should be able to verify signatures
using the DID of the signer.

• Sign assets: The wallet should be able to sign assets using the private
key associated with a DID.

• Deactivate DID: The wallet should be able to deactivate a DID.

Verifiable Credentials management:
i3M-Wallets handle i3-MARKET identities, which, in the end, are DIDs and
a set of Verifiable Credentials issued for those DIDs. A Verifiable Credential
[41] is a tamper-evident credential that can be cryptographically verified and

1https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-Publi
c-Repository/SP3-SCGBSSW-I3mWalletMonorepo/public/packages/wallet-desktop-openap
i/openapi.yaml

3.3 Solution Design/Blocks 25

stores claims about an identity issued by different entities. An example of
a Verifiable Credential could be a university diploma issued to a student.
The specific requirements implemented by the i3M-Wallets with regard to
the management of Verifiable Credentials are:

• Verify Verifiable Credential:Verify the validity of a Verifiable Creden-
tial by verifying the signatures of the issuers.

• Share Verifiable Credential: Share an owned Verifiable Credential
upon request and prove ownership.

• Store Verifiable Credential: Store Verifiable Credentials associated
with owned identities.

Secure data exchanges:
For a secure data exchange to happen, the i3M-Wallet should support
the management of the cryptographic material needed for the secure data
exchange, including the storage and verification of the data sharing agree-
ments, the verifiable proofs for the non-repudiation protocol, and the crypto-
graphic material associated with every data exchange. Please refer to Chapter
14 for better understanding the flow of a secure data exchange.

Specifically, an i3M-Wallet implements the following requirements
regarding secure data exchanges.

• Store data sharing agreements: Store data sharing agreements asso-
ciated with one of the identities managed by the wallet. The data
sharing agreements are verified (both schema and signatures) before they
are stored. The cryptographic material associated with the agreement,
including the freshly created agreement-specific keys are also verified
and stored.

• Sign data sharing agreements: Sign a data sharing agreement using
one of the owned identities.

• Store non-repudiation proofs: For the conflict-resolution system to
work, the wallet should store non-repudiation proofs for every data
exchange, which can later be used to unequivocally prove that the data
exchange happened and what was exchanged. Non-repudiation proofs
are verified before being stored.

3.3 Solution Design/Blocks

The development of i3M-Wallets is organized in different packages/modules
providing different functionalities. All the packages have been made publicly
available at the i3M-Wallet monorepo, namely:

26 i3-MARKET Wallets

• Base Wallet: base-wallet [42]
• SW Wallet: sw-wallet [43]
• BOK Wallet: bok-wallet [44]
• Wallet Desktop: wallet-desktop [45]
• Server Wallet: server-wallet [46]
• Wallet OpenAPI: wallet-desktop-openapi [47]
• Wallet Protocol: wallet-protocol [48]
• Wallet Protocol API: wallet-protocol-api [49]
• Wallet Protocol Utils: wallet-protocol-utils [50]

The Base Wallet [42] package is a high-level implementation of the
i3M-Wallet functionalities. It internally uses a crypto wallet. For such a
purpose, it uses the so-called KeyWallet interface, which currently has several
implementations:

• SW Wallet [43]: A software implementation of a hierarchically deter-
ministic wallet, which can be recomputed with a seed.

• BOK Wallet [44]: A software implementation of a wallet implemented
as a bag of (independent) keys.

• HW Wallet: A package allowing the use of IDEMIA’s i3-MARKET
HW Wallet as the internal KeyWallet. The implementation of this pack-
age involves IDEMIA’s proprietary code implementing the open-source
KeyWallet interface. A video demonstrating how it is used with the
i3M-Wallet Desktop application can be watched at [51].

• Wallet Desktop [45] is the i3M-Wallet Desktop application providing a
secure and convenient user interface to the i3-MARKET Base Wallet. It
can be defined as a cross-platform facility tool that eases the communi-
cation between a wallet (software or hardware) and the i3-MARKET
SDK via an HTTP API. Furthermore, it provides some features like
wallet synchronization using a secure cloud vault. It also has a user
interface (UI) to display the information of the selected wallet and ask
for user consent if any wallet operation needs it. The Figure 3.1 shows
an example of the Wallet UI.

If the wallet is to be run by a service instead of an actual person,
the Server Wallet [46] should be used instead, which is distributed as a
JavaScript/TypeScript library that can be easily instantiated from server code.

Both the Server Wallet and the Wallet Desktop expose some functionali-
ties that can be used programmatically from paired applications. The Wallet
OpenAPI [47] defines the internal HTTP API that is exposed (more details
in section of Interface Description). However, for security reasons, the API is

3.3 Solution Design/Blocks 27

Figure 3.1 Wallet Desktop UI.

not directly available via HTTP. Indeed, it is encapsulated inside a secure
session that is established after successful pairing of the wallet with an
application.

Creating a secure session requires the execution of the Wallet Protocol
[48], which implements the i3M-Wallet pairing protocol and the agreement
of a secure (both encrypted and authenticated) session between the wallet and
the paired application.

The Wallet Protocol enables any application to securely connect to the
wallet. It solves two problems: the discovery of the wallet and the secure
channel creation. The i3M-Wallet pairing protocol is designed to pair appli-
cations running in the same machine and to not require any external entity for
the process, and it is heavily inspired in the Bluetooth Secure Simple Pairing
protocol in use since Bluetooth 2.1 [52]. The protocol has been carefully
designed and validated with a formal security analysis using Tamarin’s prover
[53], a tool that has also been used to validate TLS1.3, among other security
protocols. The complete description and design are available in open access
repositories.

In order to ease the use of the Wallet Protocol a set of libraries have been
developed for both Node.js and browser JavaScript.Wallet Protocol Utils [50]
defines a set of utilities for the pairing, including dialogs for setting the PIN
in browser JS apps and Node.js, and session managers for properly managing

28 i3-MARKET Wallets

wallet-protocol’s sessions obtained after a successful pairing. Moreover,Wal-
let Protocol API [49] is a TypeScript/JavaScript library that wraps all the
in-session encapsulated calls to the wallet’s HTTP API into convenient class
and methods.

3.4 Diagrams

Wallet Desktop:

Figure 3.3 shows the start-up flow of the Wallet Desktop. The first thing it
does is loading the application configuration. It is a JSON file whose path
depends on the operative system running the Wallet Desktop:
%APPDATA%\wallet-desktop\config.json on Windows
$XDG_CONFIG_HOME/wallet-desktop/config.json or ∼/.config/wallet
-desktop/config.json on Linux
∼/Library/Application Support/wallet-dektop/config.json on macOS

Then the Wallet Desktop initializes the user interface and the so-called
extra features, which nowadays is just an encrypted storage for supplementary
data (cryptographic material is securely stored/managed by the KeyWallet).
Figure 3.2 shows the UI asking for the encrypted storage password.

Figure 3.2 UI password request for the encrypted storage.

3.4 Diagrams 29

Figure 3.3 Wallet start-up flow.

The wallet factory oversees instantiating and the wallet modules. Wallet
modules have an entry function that returns a wallet object. On the start-up,
it will use the configuration file to select the current wallet.

Finally, it initializes the HTTP API. From now on, the application will
listen to the user interface and the HTTP port in parallel; being securely
encapsulated inside the HTTP connection, the wallet will receive calls to
the internal HTTP API defined by the Wallet OpenAPI. The complete flow
diagram is as defined in Figure 3.3.

As an example of invoking one of the wallet’s API functionalities, let us
follow the flow for generating a signature depicted in Figure 3.4.

As the Wallet Desktop receives an HTTP request in a Wallet Protocol’s
session, the request encapsulates (both encrypted and authenticated) an HTTP
call to perform a signature; the OpenAPI Validation express module uses
the OpenAPI definitions present in the package wallet-desktop-openapi to
validate the request body. If the request is valid, the sign API handler gets the
current wallet selected by the user and it calls its sign function. The current
wallet can be any kind of hardware or software wallet supported by Wallet
Desktop.

30 i3-MARKET Wallets

Figure 3.4 Wallet signature flow.

BaseWallet is a class present in the base-wallet package that offers a
default implementation of a wallet. Nonetheless, it requires an object imple-
menting the KeyWallet interface to work. KeyWallet defines the low-level
implementation of the wallet: it can store keys and use them to sign. Note that
by splitting the wallet in BaseWallet and KeyWallet, software wallet (SW)

3.4 Diagrams 31

and hardware wallet (HW) can share high-level wallet functionalities, such
as signature formatting or key recovering.

To perform a signature, an account must be selected. If the API request
does not contain an account ID, the Wallet Desktop will show the list of
accounts inside the wallet so that the user can select one. Then, the Base-
Wallet will check the application configuration to check if signatures need
user consent. If true, the wallet application will show a dialog.

Once the account ID is retrieved and the user consents the signature, the
KeyWallet is now able to perform a signature. First, it will get the private key
associated with the current account ID, and then it will sign the requested
message.

Since the signature format is a common functionality of any wallet,
KeyWallets must return signatures in DER encoding so that the BaseWallet
can format it in the requested format.

Finally, the Wallet Desktop application builds the response message. On
development, the OpenApi Validation module uses the OpenApi definitions
to verify the response format (Figure 3.4). If it is correct, the response is
sent back to the application encapsulated inside the Wallet Protocol’s secure
session.

OIDC Authentication:

Wallet Desktop can be used in conjunction with the i3-MARKET OIDC
provider to authenticate users. This flow is added here so that views of
flows using the Wallet are in this book. However, more detailed information
should be available at deliverables in “Trust, Security and Privacy Solutions
for Securing Data Marketplaces” at https://www.i3-market.eu/research-and-
technology-library/.

Figure 3.5 shows how to perform this authentication flow. As a summary,
it specifies how the OIDC provider uses the i3-MARKET SDK to create a
selective disclosure request asking a set of verifiable claims to the Wallet
Desktop. If the user has them and accepts the disclosure, the Wallet Desktop
will answer with a list of verifiable claims along with a proof of ownership.
This proof consists of a signature of the disclosure response using the private
key of the user DID.

The flow starts when an OpenID Connect relying party (OIDC RP)
redirects a user to the OIDC provider using a scope. The scope is a string
that specifies which verifiable claims are requested. The scope supported are:

32 i3-MARKET Wallets

Figure 3.5 OIDC authentication usingWallet Desktop and the i3-MARKET SDK (sequence
diagram).

• openid: The standard OpenID scope. It asks the OIDC provider to return
an idToken, which is a jwt token containing the user information.

• vc: This scope is used to add the verifiable claims inside the idToken.
• vc:<claim>: It notifies to the OIDC provider that users may want to
present an optional claim called <claim>. It is useful to ask optional
claims like some extra user profile information.

• vce:<claim>: It notifies to the OIDC provider that users must present
a valid claim called <claim> to proceed with the authentication. It can
be used to ask users to present a claim that demonstrates their role
(consumer, provider, data owner, etc.).

An example of scope is “openid vc vce:consumer vc:profile”. Using this
scope, the OIDC provider builds and signs a selective disclosure request. It
will be sent to the Wallet Desktop so as to obtain the required claims.

The Wallet Desktop HTTP API runs locally on the user computer. Cloud
servers cannot access it directly so that the disclosure request must be sent
by the user’s computer. An approach is to create a simple frontend that only
sends the selective disclosure request to the Wallet Desktop.

3.5 Interfaces 33

Figure 3.6 OIDC authentication using the wallet (activity diagram).

Then, the wallet displays a dialog to individually consent each verifiable
claim. If the user allows the disclosure, the accepted verifiable claims will
be sent back to the OIDC provider. After verifying all the claims, the OIDC
provider will deliver an idToken and an accessToken to the i3M provider.
Figure 3.6 is an equivalent diagram but putting more emphasis on where each
block acts.

3.5 Interfaces

All the i3M-Wallet packages, but the i3M-Wallet Desktop App, are pro-
vided as TypeScript/JavaScript packages. The code is properly commented
and TypeDoc has been used to convert comments in the TypeScript source
code into rendered HTML documentation. As a result, the documentation is
conveniently available when coding and also as HTML pages that can be
accessed from the package’s READMEs. As an example, Figure 3.7 shows a
fragment of the API for the Server Wallet package.

The Wallet Desktop application follows the Wallet OpenAPI Specifica-
tion. It is a REST-like API with four entities: identity, selective disclosure,
resource, and transaction. It also has a set of helper functions.

- Identity: It can be used to create or list the DID of the user.

34 i3-MARKET Wallets

Figure 3.7 A fragment of the Server Wallet API.

3.6 Background Technologies 35

- Selective disclosure: Used to get a set of resources proving its owner-
ship. They are signed with the requester private key.

- Resource: Besides identities and secrets, the wallet may securely store
arbitrary objects in a secure vault. The list of requests for resource is
shown in the following diagram:

- Transaction: Endpoints for deploying signed transactions to the DLT
the wallet is connected to.

- Utils: Additional helper functions.

3.6 Background Technologies

The Wallet Desktop application uses Electron [54] to build a cross-platform
application. Electron is a framework for creating native applications using
web technologies using chromium. It also has implemented the Node.js core
libraries so that the application can easily access to the operative system
functionalities.

The libraries of the wallet monorepo use Ethers.js and Veramo to
implement the integration of the Wallet with the i3-MARKET DLT:

– Ethers.js [55] is a complete and compact library for interacting
with the Ethereum blockchain. It was originally designed for use
with ethers.io and has since expanded into a more general-purpose
library.

36 i3-MARKET Wallets

– Veramo [56] is a JavaScript Framework for Verifiable Data that was
designed from the ground up to be flexible and modular, which makes
it highly scalable. It can run on several environments: node, mobile, and
browser. Its main utility is to make easy the use of DIDs, Verifiable
Credentials, and data-centric protocols to bring next-generation features
to users.

Wallet OpenAPI meets the OpenAPI specification [57]. Wallet Desktop
validates all inputs against the OpenAPI schema using express-openapi-
validator [58].

Documentation for the different packages has been made available, thanks
to TypeDoc [59].

