
5
Distributed Data Storage System

Considerations

5.1 Objectives

Every federated information system requires means to store and share data
securely. The i3-MARKET network is not an exception; hence, a well-
thought solution that is secure, reliable, and usable by all entities in the
i3-MARKET network is needed. The aim of data storage is to store com-
mon data in a federated network of data marketplaces. The common data
shared between participating data marketplace instances may include iden-
tity information, shared semantic models, meta-information about datasets
and offerings, semantic queries, sample data, smart contract templates and
instances, crypto tokens, and payments. No single party should fully control
the data storage system and there shall be no single point of failure. In order
to fulfil the needs of the aforementioned data types, two separate storage
solutions are used: the decentralized and the distributed one.

The former supports the management of distributed identities and smart
contracts. However, the latter has an important role in data synchronization
between different i3-MARKET nodes and, optionally, storage of datasets on
sale. Moreover, the distributed storage supports non-repudiation service and
auditable accounting features of i3-MARKET.

The design of the distributed storage has been an iterative process.
Data storage system takes full advantage of available base technolo-

gies and builds on top of these in order to satisfy i3-MARKET needs and
requirements, with a focus on federated system architecture. The underlying
technologies chosen for decentralized and distributed storage means are
Hyperledger BESU and CockroachDB, respectively.

The federated query engine index (SEED Index) management solution is
available and integrated into the i3-MARKET network, deployed as a smart
contract on Hyperledger BESU. Moreover, a solution called verifiable data

119



120 Distributed Data Storage System Considerations

integrity has been implemented on top of auditable accounting to further
increase the reliability of data. And, finally, access management solution
governing the data access has been designed and implemented, depending
on reliable and secure key management solution.

The common data shared between participating data marketplace
instances may include identity information, shared semantic models, meta-
information about datasets and offerings, semantic queries, sample data,
smart contract templates and instances, crypto tokens, and payments. No
single party should fully control the data storage system and there shall be
no single point of failure.

The high-level capabilities that the data storage aims to provide are:

1. Decentralized storage
2. Distributed storage

The decentralized storage shall provide the highest available security
guarantees in a federated network. The decentralized storage subsystem is
built on a secure Byzantine fault-tolerant consensus-based distributed ledger.
Due to high security requirements, the performance and storage space of such
a system may be relatively limited compared to conventional databases.

The distributed storage shall provide a database-like subsystem that is
scalable, deployed on all i3-MARKET nodes, has a rich query interface
(SQL), and can handle large amounts of data, while the i3-MARKET shall
rely on the API of the decentralized storage provided out-of-box.

5.2 Solution Design/Blocks

The storage system consists of two main subsystems for implementing
the decentralized storage and distributed storage features, respectively. The
subsystems are relatively independent of other systems and also with each
other.

The diagram of a decentralized storage subsystem is shown in Figure 5.1.
The decentralized storage subsystem is implemented as a blockchain-based
distributed ledger network. The software implementation is Hyperledger
BESU in a permissioned setup using IBFT 2.0 consensus. Hyperledger BESU
uses internally an embedded RocksDB instance for storing linked blocks
(the journal of transaction) and world state (the ledger). Hyperledger BESU
can instantiate and execute smart contracts for supporting the use cases of
i3-MARKET framework (Figure 5.1).



5.2 Solution Design/Blocks 121

Figure 5.1 Decentralized storage subsystem.

The components depending on the decentralized storage subsystem uses
Hyperledger BESU’s native JSON-RPC-based interface. A separate interface
layer for accessing (or limiting access to) decentralized storage is not planned,
as the nodes of the decentralized storage will already validate all transactions
submitted to the ledger. The diagram of a distributed storage subsystem is
shown in Figure 5.2. The subsystem consists of database nodes. The database
provides an SQL interface to other i3-MARKET framework components.
The software implementation database is CockroachDB that can be accessed
via PostgreSQL-compatible wire protocol for which a large number of client
libraries exist in different languages and platforms. Only secure access (TLS
with mutual authentication) to the database will be enabled; hence, all clients
need to use private keys and valid certificates to access the database.

Figure 5.2 Distributed storage subsystem.



122 Distributed Data Storage System Considerations

The distributed storage component is an internal component with no
external access. That is to say that it will have connections only with other
trusted services within the i3-MARKET Backplane. Even though this sim-
plifies the necessary measures in terms of authentication and authorization,
it is still needed to secure machine-to-machine connections between the
i3-MARKET services since they can be deployed on shared infrastructure.

The authentication and authorization solution relies on providing the
distributed storage behind a TLS server endpoint and requiring TLS client
certificates for the different connecting services. The setup guarantees end-
to-end security between the distributed storage service and any of its client
services.

The governance of the certificates has followed up to now the keep it
simple approach. The distributed storage system is in charge of issuing the
servers’ and clients’ certificates, unless the instance has its own certificate
authority (CA), in which case the CA is responsible for issuing server certifi-
cates to the distributed storage server component and client certificates to the
clients.

5.2.1 Service availability

The storage subsystem is a critical component of the i3-MARKET network
contributing to the proper functioning of the platform. Hence, appropriate
measures in the form of design, choice of technologies, and deployment
have to be applied. Fortunately, the two main subsystems used in the storage
solution already have strong built-in availability features that are summarized
below.

5.2.1.1 Distributed storage
The distributed storage solution is based on a CockroachDB server. Initially,
the database was deployed as a global cluster of database nodes; however,
after the initial testing of the entire network, a couple of issues were dis-
covered. First, the deployment of a CockroachDB instance and connecting it
to a cluster is not an automated process, but rather manual as configuration
steps must be tightly coordinated between the nodes. This contradicts with
the overall concept of i3-MARKET, which should be operable without any
central administration.

The second and far greater problem, which was eventually acknowledged,
is that each node in a CockroachDB cluster has equal rights with full admin-
istrative privileges over the cluster. This is a problem because any node can



5.2 Solution Design/Blocks 123

alter data and there is no consensus mechanism to agree on the changes.
Furthermore, in case of the rise of a rogue node could potentially lead to
full erasure or silent corruption of the entire database.

Therefore, a decision was made to replace the global cluster with inde-
pendent clusters deployed at each i3-MARKET instance. In this deployment
mode, each instance is responsible for its own operation and a configuration
mistake in one instance, or a malicious act cannot affect the stored data at
other instances. There was only one implication to this change – SEED Index
would not work in such a setup anymore. As a result, the index was migrated
from the distributed storage to the decentralized storage.

5.2.1.2 Decentralized storage
The decentralized storage used in the platform is a Hyperledger BESU
network, which uses the IBFT 2.0 (proof of authority) consensus protocol. In
this network, there are four validator nodes based on the genesis configuration
stored in the corporative Nexus. In this configuration, there are three accounts
to be used by the i3-MARKET federation.

The federated search engine index service uses the Hyperledger BESU
blockchain as its storage backend. For this purpose, a smart contract storing
the endpoints of all SEED instances along with the associated data categories
has been deployed on the blockchain.

In this scenario, different components like auditable accounting, SEED
Index, etc., are capable to deploy and manage smart contracts and transactions
over those accounts.

5.2.2 Verifiable database integrity

The purpose of the VDI is to provide an infrastructure for data to be stored
in a way that its presence, or lack thereof, can be cryptographically proven.
It takes advantage of the blockchain technology to determine the integrity of
the data it contains.

The VDI component consists of a library that implements a Compact
Sparse Merkle Tree (CSMT)1 and exposes an API that allows for data to be
inserted, retrieved, updated, and removed. The API consumer can later obtain
proofs of membership/non-membership and verify those proofs against the
existing Merkle tree.

1 Compact Sparse Merkle Trees: https://eprint.iacr.org/2018/955.pdf



124 Distributed Data Storage System Considerations

Figure 5.3 VDI integration with auditable accounting.

This data structure works on the same principles of verifiable maps2,
periodically generating a root hash that, after been made public, can guarantee
the integrity of the data at that point in time. Membership or non-membership
of any given key can be cryptographically proven against the Merkle tree.

• Integration:

The VDI is not a separate application on its own but is integrated into
the auditable accounting component, as can be seen in Figure 5.3. The
MerkleTreeService class exposes methods to create a CSMT tree from the
array of hashes obtained from registries. The individual proofs are then stored
along with their corresponding root hash into the registries repository in the
database. The unregistered blockchain record is also stored in the database
along with the serialized Merkle tree data itself.

The library3 is implemented in TypeScript and distributed as a node
package. The main data structure of the VDI is a class called CSMT. This
class keeps a map of all the nodes that are stored in the tree as well as the
tree’s root hash. On an empty tree, the root hash is initialized as a zero node.
Data (in key-value format) can then be inserted into the tree, producing new
nodes and updating the root hash.

What follows is a summary of the functions that are available for the
consumers of the CSMT class.

2 Verifiable data structures, p. 2: https://continusec.com/static/VerifiableDataStructures.pdf
3 https://github.com/i3-MARKET-V3-Public-Repository/SP4-VerifiableDatabaseIntegrity



5.2 Solution Design/Blocks 125

• Add:

This method adds a given key-value pair to the tree. The key has to be in
byte array format. The value can be any arbitrary string and is optional. If the
provided key already exists in the tree, an error is returned, and no duplicate
keys are allowed. The data is combined in a new array that contains the key in
a hexadecimal format, the hash of the value and an entry mark that flags this
as a leaf node. This data is then inserted into the nodes map, where the hash
of the data is, in itself, the key for this record in the map. Finally, the tree’s
root hash is recalculated.

• Insert:

This is a convenient method to insert data in bulk to the tree. This method
just validates the data and calls the method add above on each individual
element.

• Get:

This method looks up for a given key in the nodes map. It returns the hash
of the corresponding value for the key, or undefined if the key is not present.

• Delete:

This method looks up for a given key in the nodes map and removes it.
The tree’s root hash is then recalculated based on the remaining nodes. If no
key is found, an error is returned.

• Create proof:

This method looks up for a given key in the nodes map and creates a
new proof object. The proof object contains the data itself (if present), the
chain of additional nodes along the tree traversal, the root hash of the tree,
and a membership flag (true if the given key is present in the tree, false
otherwise).

• Verify proof:

When the consumer has a proof object, it can verify whether that proof
matches against the existing tree by calling this method. It verifies whether
the root hashes and node chain (in case of membership) matches with what
the CSMT class has stored internally. It returns true if the proof matches. If it
returns false, it means that either the proof does not belong to this tree or that
the proof was tampered with.



126 Distributed Data Storage System Considerations

5.2.3 Federated query engine index management

The decentralized storage sub-component of data storage provides function-
ality to manage an index used for semantic data discovery. The federated
query engine index supports federated queries, a concept implemented by the
semantic engine. The distributed storage plays a vital role in supporting the
verifiable data integrity, non-repudiation service, and auditable accounting.

Decentralized storage implements two main use cases – managing the
index and querying the index – in order to provide the required functionality
to the semantic engine for accessing the content of the index.

The index is a collection of data categories together with the endpoint
location addresses of the corresponding semantic engines. One semantic
engine is not limited to storing offerings belonging to one category but to
several of them. Hence, the index contains one to many relationships, linking
a specific semantic engine to a set of data categories.

Each semantic engine instance has a private key, while the corresponding
public key serves as an identifier that is associated with a set of SEED Index
records. The private key is needed to update corresponding index records.
Moreover, in order to pay for update transaction, the SEED account must
have enough resources. The owner of the SeedsIndexStorage smart contract
can assign administrator roles to other keys that can update records stored
under any public key.

Every new marketplace joining the i3-MARKET network will connect to
the decentralized storage through a semantic engine. If the marketplace has
been around for a while, the marketplace has most probably stored offerings
metadata. This metadata should also be stored in the SEED to participate in
federated queries. Therefore, such a marketplace would have to populate the
index by inserting category information to the decentralized storage.

• Manage:

In order to provide the most recent and accurate information to the
semantic engines in the i3-MARKET network, the index must be kept up
to date at all times. Therefore, functions – insert, update, and delete − to
maintain the index are required. All these activities are limited to registered
i3-MARKET nodes only and the authentication uses self-signed certificates.

• Insert:

Before an i3-MARKET instance receives any data offering registrations,
the semantic engine has no reason to insert any content into the index.
Although it is possible to insert an empty entry containing the endpoint
address and an empty category list to the index, it is recommended to keep the



5.3 Diagrams 127

index clean of unnecessary information. After receiving the first data offering,
the semantic engine inserts the first entry to the index, revealing to other i3-
MARKET instances the category of offerings stored in that specific semantic
engine.

• Update:

Over the course of the market lifecycle, data offerings of different data
categories are stored in a single marketplace. Upon the registration of a
data offering belonging to a category that is not yet present in the semantic
engine, the semantic engine updates the index with relevant information (data
category, endpoint address, etc.) by inserting a new entry to the database.

• Delete:

The final management activity of the index lifecycle allows the removal
of entries from the index. It is the responsibility of the semantic engine to
keep the index up to date; therefore, redundant and outdated information is
removed from the index. In the event of closing down of an i3-MARKET
marketplace instance, either temporarily for maintenance or indefinitely,
the semantic engine has to remove unavailable content from the index.
Moreover, this function should be accessible by a system administrator to
remove relevant entries from the index, in case of a sudden shut down of a
marketplace/i3-MARKET node.

• Query:

In case a semantic engine needs to perform a federated query among all
other instances in the i3-MARKET network, the index shall provide input
to the federated query. The semantic engine firstly queries the index with
relevant parameters (data category, description, etc.) and the distributed stor-
age shall return information from the index indicating which i3-MARKET
instance contains the data that the SEED is looking for.

5.3 Diagrams

Federated query engine index management:
The sequence diagram in Figure 5.4 shows the interaction of the decen-

tralized storage on the SEED regarding the federated query engine index
management. Each function – insert, update, delete, and query – has been
depicted on a single sequence diagram, as there is no relevant complexity to
be shown for each interaction. Index record identifiers (uuid in the figure)
are derived from node public keys via cryptographic hashing and all requests
must be signed with an authorized key (e.g., corresponding private key).



128 Distributed Data Storage System Considerations

Figure 5.4 Federated query engine index management.

Verifiable data integrity:
The sequence diagram in Figure 5.5 demonstrates the integration of

verifiable data integrity with the auditable accounting subsystem. All features
are displayed on a single diagram, as there is no specific complexity within
the functions.



5.4 Interfaces 129

Figure 5.5 Verifiable data integrity.

5.4 Interfaces

The distributed storage subsystem does not expose a bespoke API for internal
or external services. Each system within the Backplane uses the storage
component’s out-of-box means for connectivity.

Likewise, the API provided by the decentralized storage comes out-of-
box with the solution. The service can be accessed via JSON-RPC protocol
offered by Hyperledger BESU. Please refer to BESU Documentation4 for the
details of the API provided by Hyperledger BESU and client libraries.

The SEEDS Index solution consists of a Java library, called SeedsIn-
dex, which provides wrappers for the smart contract and utility functions for

4 Hyperledger BESU documentation, https://besu.hyperledger.org/en/stable/



130 Distributed Data Storage System Considerations

convenience. The SeedsIndex library uses Web3j5 library for accessing the
BESU network. The library interface is documented by extensive Javadoc
comments and a complete usage example included in the library.

5.5 Background Technologies

The decisions for the choice of selected technologies in order to satisfy the
high-level capabilities are:

- Hyperledger BESU to satisfy decentralized storage.
- CockroachDB6 to satisfy storage requirements.

Hyperledger BESU is an open-source Ethereum client. The decision to
select Hyperledger BESU to satisfy the needs for decentralized storage has
been made based on the following assumptions:

- Self-sovereign identity and access management has decided to base
the reference implementation on Veramo, which specifically requires
Ethereum-based blockchains.

- Auditable accounting and data monetization require smart con-
tract whose functionalities are easily satisfied on Ethereum-based
blockchains.

CockroachDB is a relational database management system. Cock-
roachDB has been chosen as the storage solution due to previous experience
of the technology by partners. Moreover, it is highly scalable, designed to
deliver fast access and resilient to network outages. The only shortcoming
of the chosen technology is the lack of features guaranteeing data integrity
in case of the presence of malicious (e.g., because of honest mistakes or
sophisticated external attacks) users. As all nodes of a CockroachDB cluster
that is a part of an i3-MARKET instance are under the control of that instance,
this shortcoming is not relevant in the i3-MARKET architecture. For client
authentication in CockroachDB, mutual TLS authentication is used.

The semantic search engine index is implemented as a smart contract
(written in Solidity programming language), which is deployed on BESU
blockchain for distributed access. Updates to the index are authorized with
digital signatures.

5 https://www.web3labs.com/web3j-sdk
6 CockroachDB, https://www.cockroachlabs.com/product/


