3

iI3-MARKET Trustworthy Design

3.1 Objectives

Today, users’ identities and related data are stored in siloes on centralized
servers across organizations and are vulnerable to hacking. Repetitive account
creation for different applications (e.g., marketplaces) and personal informa-
tion (often outdated) stored in various services are some other drawbacks of
that approach. Distributed/self-sovereign identities supported by decentral-
ized systems come as a solution to those issues and facilitate interoperability,
ensuring security and compliance with the privacy regulation.

Figure 3.1 shows the overall architecture of i3-MARKET. We imple-
mented the reference implementation for the identity and access management
system of i3-MARKET Backplane based on the self-sovereign identity
paradigm.

The idea behind these specifications is to provide self-sovereign identity
capabilities, based on distributed identity and Verifiable Credentials concepts,
maintaining the most used authentication and authorization flows and stan-
dards in this moment, to facilitate the integration of stakeholders’ applications
and incentivize a wide adoption.

The final implementation of the i3-MARKET IAM system is based on
the selected open-source technologies for SSI (Veramo), OIDC (panva/node-
oidc-provider), and standard IAM.

The user-centric authentication is provided by the Verifiable Credentials
micro service and the OIDC SSI Auth micro service developed using the
Veramo framework.

The choice of Veramo as SSI technology has been driven from the
maturity and readiness level of the uPort technology with respect to the other
state-of-the-art technologies evaluated (Hyperledger Aries, Sidetree) and for
the compatibility to the blockchain chosen for i3-MARKET (Hyperledger
BESU), and then, after the uPort company announced the launch of this
new technology (which makes uPort deprecated), we evaluated it as a very
promising framework and decided to adopt it for the final implementation.

21

i3-MARKET Trustworthy Design

22

-aamoayyore ouejdyoeg ¢ danSiy

(& sonemuews

@ NVIRISS

@ walsAs Aoeaud pue AUndas Isni|

©
©
[i)
washsqns warhsqns
abeiols
uonensayn
@ JnueLWwas @ Ble(Q pazi|enuasag
walshsqng
uawabieue warAsan
@— W walsAsqns . ans
ejepelay abeiols
abeio
s @ Eled pa1nqulsig
walsqng waifsqns Jnuewss
@ uoneznauoy eleq @ SIJBNUOD WBWS @ i ke SliBug Steas walshs abeiols eleq
wayhsqns wayfsqns ﬁ nﬂ

@ $S802Y EleQ

waphsqns
Jwabeuey

@ walsAs ss300y EleQ

—0H

wahsqns

@ femalen

walshs auejdyoeg

MIoMmSLWEl 4 JeHIBNE]

N
|dY 55800 EleQ 8INJsS

Y
IdY sueidoeg

3.1 Objectives 23

Finally, the user-centric authentication components were integrated with
the i3-MARKET Smart Wallet, implementing the pairing flow and modifying
the issuing and request of Verifiable Credentials in the registration and login
flows.

The following are the high-level capabilities provided by the SSI and IAM
subsystems:

1. User-centric authentication: authentication of users based on the self-
sovereign identity paradigm.

2. Service-centric authentication: authentication of clients and users based
on a standard OIDC/OAuth identity and access management system.

3.1.1 Context

The SSI and IAM subsystem block interacts with the following three building
blocks:

- Data storage system: The SSI and IAM subsystem uses the data stor-
age system, in particular the decentralized data storage component, for
recording a DID document.

- Backplane system: The SSI and IAM subsystem is used from the
Backplane system for authenticating and authorizing users and clients.

- Data access system: The SSI and IAM subsystem is used from the data
access system for authenticating and authorizing users and clients.

3.1.2 Building block big picture
The specific SSI and IAM component diagram is shown in Figure 3.2.

SSIZIAM E

Subsytem

User-centric E Service-centric
Authication Authication

Figure 3.2 SSI and IAM components.

24 i3-MARKET Trustworthy Design

The SSI and IAM subsystem is in charge of providing both “user-centric
authentication” and “service-centric authentication” capabilities.
Inside, we can find the following:

- A “user-centric authentication” component, responsible for providing
the management of self-sovereign identity based on DID and VC and
the compatibility with the OIDC standard.

- A “service-centric authentication” component, responsible for provid-
ing authentication and authorization of users and client with standard
OIDC/OAuth flows, integrating the user-centric authentication compo-
nent.

3.2 Technical Requirements

The list of technical requirements was not within an elicitation process
to ensure the collection of not only technical needs but also service and
application needs from the different stakeholders (actors) as it is described
in each table from Table 3.1.

3.2.1 Actors

Table 3.1 Actors of the system.

Name Description Labels
Data provider Actor who receives raw data from data | Data provider
owners and push it to the marketplace
Data owner Actor who generates the data and therefore | Data owner

the ultimate owner of the data. Data own-
ers have to accept data requests to generate
contracts, which leads to share the data
with data consumers

Data consumer Consumer data shared from data owners | Data consumer
has to create data requests through the
data discovery in order for data owners to
accept them. Data consumers receive only
the data they want

Administrator Manages the marketplace and its users Administrator

3.2 Technical Requirements 25

3.2.2 User-centric authentication

The human in the loop, also known as the human-centric approach, is a design
consideration that is considered in i3-MARKET. The design consideration

and requirements are described in Tables 3.2 and 3.3.

3.2.2.1 Epics

Table 3.2 Epics of user-centric authentication.

Name
DID management

Description

A decentralized system that enables
several key actions by three distinct
entities: the controller, the relying
party, and the subject. Controllers
create and control DIDs, while rely-
ing parties rely on DIDs as an
identifier for interactions related to
the DID subject. The subject is the
entity referred to by the DID, which
can be anything: a person, an organi-
zation, a device, a location, or even
a concept. Typically, the subject is
also the controller.

Verifiable Creden-
tials management

Verifiable Credential is a tamper-
evident credential that has author-
ship that can be cryptographically
verified though a proof. It can be
used to share and prove something
about the identity of a user.

OIDC client com-
patibility

e Staying backward compatible
with existing OIDC clients and
OPs that implement the OIDC
specification to reach a broader
community.

¢ Adding scopes and validation
rules based on VC for OIDC
clients to make full use of DIDs.

¢ Not relying on any intermediary
such as a traditional centralized
public or private OP while still
being OIDC-compliant.

Labels
Data Consumer
Data Marketplace
Data Provider
Data Owner

Data Marketplace
Data Consumer
Data Provider
Data Owner

Data Marketplace

26 i3-MARKET Trustworthy Design

3.2.2.2 User stories

Table 3.3 User stories of user-centric authentication.

Name
Create DID

Description
As a subject, I want to create a DID so that I can
manage my identity
Subject: Data Consumer, Data Provider, and
Data Owner

Present DID

As a user, | want to present my DID to a relying
party so that I can identify myself

User: Data Consumer, Data Provider, Data
Owner

Relying party: Data Marketplace, Data Provider

Rotate DID

As a user, I want to change the ownership of
my DID so that I can maintain my identity if I
change the identity provider

Delegate DID

As a user, I want to delegate my DID so that I
can make other DIDs able to act on behalf of me

Recover DID

As a user, [want to recover my DID so that I can
maintain my identity even if I lose my proof of
control
User: Data Consumer, Data Provider, Data
Owner

Sign assets

As a user, [want to sign my assets so that [can
demonstrate the authenticity of the asset

User: Data Consumer, Data Provider, Data
Owner

Verify asset sig-
nature

As a user, [want to verify asset signature so that
I can authenticate the asset
User: Data Consumer

Deactivate DID

As a user, [want to deactivate my DID so that [
can delete my identity

User: Data Consumer, Data Provider, Data
Owner

Resolve DID

As a data marketplace, I want to resolve DID
so that I can retrieve from a DID document the
information to authenticate a DID subject and
verify data asset signature

Authenticate
DID

As a relying party, I want to authenticate DID so
that I can verify the DID ownership
Relying Party: Data Marketplace/Data Provider

Labels
User Story
Data Consumer
Data Provider
Data Owner
Data Consumer
Data Owner
Data Provider
User Story

User Story
Data Consumer
Data Provider
Data Owner
User Story
Data Consumer
Data Provider
Data Owner
User Story
Data Consumer
Data Provider
Data Owner

User Story
Data Consumer
Data Provider
Data Owner
User Story
Data Consumer

User Story
Data Consumer
Data Provider
Data Owner
Data
Marketplace
Data Provider
User Story
User Story
Data
Marketplace
Data Provider

3.2 Technical Requirements 27

Table 3.3 Continued.

Name Description Labels
Create Verifiable | As a data marketplace, I want to create a Veri- [EHSENII87
Credential fiable Credential so that I can provide a user an [HBEI#!

attestation of his/her role

Issue Verifiable

As a data marketplace, I want to issue a Veri-

Marketplace
User Story

Credential fiable Credential so that I can attest something [SBEIES

about my users Marketplace
Receive As a user, I want to receive a Verifiable Creden-
Verifiable tial so that I can access the data marketplace Data
Credential Marketplace

Store Verifiable

As user, [want to store a Verifiable Credential so

Data Provider
User Story

Credential that I can use and keep it and use it towards any [SIBEIENEIEIGEH
relying party Data Provider
Data Owner
Request As a data marketplace/data provider, I want to FHEESERI0E]
Verifiable request Verifiable Credentials for the authenti- [BEIENGJIHIIICE
Credential cated user so that I can give the right access to [SIBEIERZOUTIE

my resources

Share Verifiable

As a user, [want to share a Verifiable Credential

OIDC authenti-
cation

As a relying party (RP), I want to authenticate
users based on OIDC standards so that I do not
have to change my OIDC clients

User Story

Data Owner
User Story

User Story
Data
Marketplace
Data Provider

Credential so that I can attest something towards a relying [BEIEN@ IS¢
party Data Provider
Data Owner
Verify Verifiable | As a user, I want to receive a Verifiable Creden- [SOES#NI{)31
Credential tial so that I can access a data marketplace Data
Marketplace
Data Provider
Keep track of | As an issuer, I want to keep track of issued [MOKESENIY
issued Verifiable | Verifiable Credentials so that I can monitor and [SIBEI%
Credentials revoke them Marketplace
Revoke As an issuer, I want to revoke a Verifiable Cre- [HEES#SI0RY
Verifiable dential so that it cannot be used Data
Credential Marketplace

RP: Data Marketplace, Data Provider

3.2.3 Service-centric authentication

The design of i3-MARKET also includes service-centric consideration;
today, micro services are a trend, but this may change. Thus, the design
principles are described in Tables 3.4 and 3.5.

28 i3-MARKET Trustworthy Design

3.2.3.1 Epics

Table 3.4 Epics of service-centric authentication.
Description Labels
Existing identity | Run a standard OpenID Connect relaying party [S=i(e

provider (or OAuth2 client) on the Backplane API Data
integration Marketplace

3.2.3.2 User stories

Table 3.5 User stories of service-centric authentication.
Name Description Labels
Existing identity | As a data marketplace, I want to authenticate my OESEI0%
provider authen- | users using approved external identity providers [SBEi#!

tication Marketplace

3.3 Solution Design
3.3.1 User-centric authentication

In order to provide authentication and authorization with distributed identity
and Verifiable Credentials, we implemented two Node.js micro services. The
Verifiable Credential micro service provides the APIs that implement the core
functions to manage Verifiable Credentials, namely issuing, verifying, and
revoking Verifiable Credentials, and a utility function. The OIDC SSI Auth
micro service provides the API to perform the authorization code flow with
PKCE using Verifiable Credentials as a proof method.

To implement the solution, we have chosen Veramo_(https://veramo.io/),
a framework that replaces the previous implementation of the uPort library,
which is deprecated.

Both components (OIDC SSI Auth and Verifiable Credential micro ser-
vice) integrate the Veramo framework and take advantage of its features to
manage DID and Verifiable Credentials in Figure 3.3.

The i3-MARKET network is composed of different data marketplaces
running an instance of the i3-MARKET Backplane connector. Each of them
has its own OIDC SSI Auth Service and its own Verifiable Credential

3.3 Solution Design 29

Nns34d

2B
i

NID07 +=——
ONIQ4VOENO

“AIMPAYOIR JOTARS YNV [SS DAIO €€ In31Lg

JA BNSs|

oA MIIBA owresen @

92IAIBS DA

IAALIBA

aluedo ..

92IAIDS
yiny ISS 0dI0

JA 2NSS|

u9¥01ss9008E
1senbay

OA Ewoo<

19y IeW-¢ EmoD_co

19¥JeW-gl uISoT . .ﬁ.

JA}sanbay

Sulieysjuasuog m

30 i3-MARKET Trustworthy Design

micro service to generate, verify, and revoke Verifiable Credentials. In rela-
tion to the roles of the W3C Recommendations on verifiable credentials
(https://www.w3.org/TR/vc-data-model/), the OIDC SSI Auth Service is the
verifier, the Verifiable Credential micro service is the issuer (with some extra
features), and the user is clearly the holder of his Verifiable Credentials.
Each instance of the Verifiable Credential micro service has its own DID
(https://www.w3.org/TR/did-core/) and private key used to sign Verifiable
Credentials. In this way, each Verifiable Credential has as its issuer the DID
of the micro service that generated it. Similarly, for revocation, only the micro
service that generated a credential has the privilege to revoke it.

The user saves the Verifiable Credentials in his wallet and gives an explicit
consent to share them with the OIDC SSI Auth Service when requested
during the authentication phase.

The modules and detailed workflows are presented in the following
subsections.

e DID management:

DID management is provided by Hyperledger BESU blockchain and the
Veramo Ethr-DID library.

This library conforms to ERC-1056 and is intended to use Ethereum
addresses as fully self-managed decentralized identifiers (DIDs).

Ethr-DID provides a scalable identity method for Ethereum addresses,
which gives any Ethereum address the ability to collect on-chain and off-
chain data.

This particular DID method relies on the Ethr-Did-Registry. The Ethr-
DID-Registry is a smart contract that facilitates public key resolution for off-
chain (and on-chain) authentication. It also facilitates key rotation, delegate
assignment, and revocation to allow third-party signers on a key’s behalf, as
well as setting and revoking off-chain attribute data. These interactions and
events are used in aggregate to form a DID document using the Ethr-Did-
Resolver as shown in Figure 3.4.

DID management supports the proposed decentralized identifiers spec
from the W3C Credentials Community Group.

This library has been integrated both in OIDC SSI Auth and Verifiable
Credentials micro services to resolve and authenticate DID interacting with
the user’s wallet.

3.3 Solution Design 31

'@context': 'https://w3id.org/did/v1’,
id: 'did:ethr:@xb9c5714089478a327f09197987116f9e5d936e8a",
publicKey: [{
id: 'did:ethr:0xb9c5714089478a327709197987T1619e5d936e8a#owner ",
type: 'Secp2sekilverificationkeyze1s',
owner: 'did:ethr:0xb9c5714089478a327f09197987f1619e5d936e8a",
ethereumAddress: '@xboc5714889478a327109197987f161%9e5d936e8a"}],
authentication: [{
type: 'Secp256klSignatureAuthentication2018’,
publicKey:
'did:ethr:exb9c5714089478a327f09197987f16f9e5d936e8a#owner’ }]

}

Figure 3.4 Example of a DID document resolved.

The library has been used by the Verifiable Credentials micro service to
create and manage the distributed identity issuing the credentials while the
distributed identities of the users must be created and managed by the user’s
wallet.

e Verifiable Credential management:

For the Verifiable Credential management, the Verifiable Credentials
micro service uses the Veramo framework to generate the credentials and
call the i3-MARKET Wallet API to provide the credential to the user.

e Issue a Verifiable Credential:

The first scenario in which a data marketplace issues a Verifiable Creden-
tial to a user is the registration process. In this scenario, the micro service has
to authenticate the DID of the user and then issue for this DID a Verifiable
Credential that certifies the role of the user, which can be a data consumer, a
data provider, or both. The workflow for the registration process is described
in Figure 3.5. The entities involved are the following:

o the identity holder, which is the i3-MARKET user;

o the user agent, which is also the client of the OIDC (i3-MARKET data
marketplace website);

o the i3-MARKET wallet, which is the wallet in which credentials are
stored;

o the Verifiable Credential micro service (i3-MARKET data marketplace
instance);

32

Identity Holder
(i3Market user)

start |
S|

i3Market Data
Marketplace (DM)

1) start the registration

i3-MARKET Trustworthy Design

i3Market Smart
Wallet

Verifiable
Credential

|

11) save new credential
as a resource

11) send acceptance

i

11) redirect to callbackUrl specified in the request

process s 2) redirect to Verifiable Credential
'[GET fer feredential)/calibackUrl i} il
1 T
Pairing 3) ask user to start the pairing prnloﬁol
Process !
4) use wallet pairing function to generate OTP
4) generate OTP
4) present genergted OTP to the user
4) insert OTP into the form presenied by Verifiable Credential
5) start secure session and
ask for DID disclosure
6) present share request and ask for user acceptance
7) confirm; DID disclosure 8) send DID to Verfiale
Credentials microservice
Credential 9) create and sign
Release H the credential
10) send the credential to wallet
and ask for acceptance
10) ask user to accept the credential
L 11) accept credential

Figure 3.5 User registration flow.

o the i3-MARKET data marketplace backend.

The user registration flow is shown in Figure 3.5. At the beginning, the
user enters his registration data, relating to a data consumer user or a data
provider. When a user is registered as a data consumer or data provider, he
is registered for all the sites of the i3-MARKET network. For this reason,
these two Verifiable Credentials are issued exclusively by the i3-MARKET
data marketplace entity. These data are entered on registration forms in a

dedicated section of the i3-MARKET powered data marketplace.

In order to know for which DID the Verifiable Credential should be
issued, the i3-MARKET data marketplace must obtain the DID of the user.
This part of the flow involves the wallet-protocol session API, which is

3.3 Solution Design 33

specifically designed to open a secure connection (“paring”’) with the wallet
(see deliverables in “Trust, Security and Privacy Solutions for Securing Data
Marketplaces” at https://www.i3-market.eu/research-and-technology-library/
for more details), using a generated OTP, to retrieve the DID of the user. In
particular, the i3-MARKET data marketplace performs a GET to the issue
API of the Verifiable Credentials micro service passing as parameters a
callbackUrl (which indicates the URL where to redirect the user after the
issue of the credential) and the credential formatted as JSON encoded object.

The i3-MARKET data marketplace initiates this API call, and the Veri-
fiable Credential micro service uses the “pairing” protocol to connect to the
wallet and asks for an OTP to connect to the i3-MARKET Smart Wallet.

The user generates a new OTP, using the related wallet function and
presents it to the Verifiable Credential to start a secure session (Figure 3.6).
Then the Verifiable Credential sends a share request to retrieve user DID.

At this point, the user receives the disclosure request through the wallet
and decides whether to accept or not to share the requested identity (DID)

Connecting to your wallet..,

| Syncronize |

Figure 3.6 OTP request to start the “pairing” process.

34 i3-MARKET Trustworthy Design

Authentication required. Please, select an identity to proceed.

Write here to search an option...

my_alias

Figure 3.7 i3-MARKET Smart Wallet request to disclose the DID.

(Figure 3.7). If the user agrees to share the DID, the i3-MARKET Smart
Wallet sends the following access token to the Verifiable Credentials micro
service via callback. At this point, the Verifiable Credentials service decodes
the access token to extract the DID of the user who has authenticated.

The second part of the flow relates to the issue of a Verifiable Credential
to certify that the user is a data consumer. At a high level, issuing a Verifiable
Credential involves two steps:

e Cryptographically signing the credential data.
e Sending the signed credential as a JWT (https://datatracker.ietf.org/doc
/html/rfc7519) to the i3-MARKET Smart Wallet.

In order to create a Verifiable Credential, the Verifiable Credential micro
service performs an internal API call to the POST/credential/issue/{DID}
endpoint, communicating the user’s DID just retrieved and the credential as
form-data in the following format:

{

"data_consumer": true

}

The 13-MARKET data marketplace may request the issuance of creden-
tials only relating to the registration process, i.e., data consumer and data
provider. All other credentials, relating to the purchase of assets or services,
can be requested by Data Providers. When the API is called, the Verifiable
Credential micro service performs the Veramo createVerifiableCredential
function, provided by the DID agent of the Veramo Core library as shown
in Figure 3.8.

When the i3-MARKET Smart Wallet receives the credential, it verifies
its signature. Each signed message has an “iss” attribute that contains a DID
of the issuer. To resolve the public key of the message, a DID-resolver is
used. The Veramo DID agent currently supports many DID methods, such as

3.3 Solution Design 35

Do you want to add the following verifiable credential:
- provider: true

Yes
No

Oy
N7

Figure 3.8 Verifiable Credential acceptance.

“did:ethr” (based on ERC-1056), “did:web” (in conjunction with blockchain-
based DID, it can bootstrap trust using a web domain’s existing reputation),
and “did:key” (self-certifying DID method, which does not require any exter-
nal utility such as blockchain). More details about supported DID methods
can be found in Veramo documentation.

Being Hyperledger Besu the reference blockchain, the users’ DID is
“did:ethr”.

After the signature verification, the wallet asks the user to accept the
credential. When the user accepts the credential, it will be saved in his wallet
and then be present and visible in the resources tab, which contains the list of
the credentials registered in the app as shown in Figure 3.9.

At this point, the user will be redirected to the callbackUrl, previously
specified.

Wallets + Details

e Id: 36ccc132-afel-4432-88
iBmarket

Type: Verifiable Credential
test2 ype .
iBmarket_demo From identity: my_alias

my_new_wallet Issuer:

Identities didethri3m:0x2e3592788eb9154914187e4bb82011042aad5da8

my_alias

Issuance date:

2021-09-27T16:07:56.000Z

Claim "provider": true

Credentials

36cec132-afe1-4432-8536-
6a99719eedd1

Figure 3.9 Credentials list.

36 i3-MARKET Trustworthy Design

Once a user has saved some credentials in his wallet, he can disclose them
in authentication requests, in order to certify that he holds the credentials
needed to access resources or services.

e Revoke a Verifiable Credential:

As part of the process of working with Verifiable Credentials, it is not only
necessary to issue credentials, but sometimes it is also necessary to revoke
them. The ability to revoke a credential when it is no longer valid is a core
function in a Verifiable Credential ecosystem. For example, suppose an i3-
MARKET data provider issues a credential to access a service, and a data
consumer violates the terms of use. The data provider determines that the
user has violated the terms of use and, consequently, wants to suspend access
to the service. In this way, the status of the Verifiable Credential needs to
be changed and the next time a relying party checks the status, they will be
able to see that the user is no longer valid and consequently not authorized
to access the service. In order to satisfy this requirement, an API to revoke
credentials has been implemented and the workflow to revoke a credential is
described with Figure 3.10.

At the beginning of the flow, the data provider calls the API of the Veri-
fiable Credentials micro service (1) communicating that a specific credential
belonging to a user must be marked as revoked. The Verifiable Credential
to be revoked is passed through the body parameter in the form {“JWT”:
“eyJhbGc ... }.

As an implementation choice, it was decided that only those who issued
a credential are allowed to revoke it. To satisfy this requirement, a check

) Verifiable Smart Contract
F'J3m"“f;k'9t g:tla Credentials service Revocation Registry
rovider (DP1) {DP1 instance)

1) POST /credentialfrevoke .
{"JWT": "eyJnbGe..."}

h 4

2) mark the credential as revoked

...‘r..................

h
]
|
|
|
i
|
1
i
|
i response
|
|
|
|
h
|
|
|
|
|

Figure 3.10 Revoke Verifiable Credential flow.

3.3 Solution Design 37

is made, if the issuer of the credential is the address of the issuer, then it
proceeds; otherwise, it immediately blocks the flow. When the Verifiable
Credentials micro service receives the API call, it writes the credential
hash through a transaction in a smart contract named RevocationRegistry
(2), in order to keep track of the action performed. Since the i3-MARKET
blockchain is an Ethereum-type blockchain, the smart contract is written in
solidity and its code is the following:

1 pragma solidity "0.5.8;
: contract RevocationRegistry {
mapping(bytes32 => mapping(address => uint)}) private revocations;

function revoke(bytes32 digest) public {
require (revocations[digest] [msg.sender] == 0);
revocations[digest] [msg.sender] = block.number;
emit Revoked(msg.sender, digest);

}

function revoked(address issuer, bytes32 digest) public view returns (uint) {
return revocations[digest] [issuer];
¥

T event Revoked(address issuer, bytes32 digest);
s }

The smart contract RevocationRegistry provides two functions:

e a public function to revoke a credential;
e a public function to check if a credential is in the revocation list, i.e., it
has been revoked.

The revoke function takes as input a string of 32 characters and writes
a record associating it with the sender of the transaction, i.e., the address
commits the line. In order to always have 32 characters, the credential before
being marked on the smart contract is processed by a SHA-3 cryptographic
hash algorithm and the 32-character digest is written on the smart contract.

The data structure of the smart contract is a private array of digest-address
associations, named revocations (line 5). Whenever a credential is added
to the register, it is mapped via the credential digest and the issuer of the
transaction, i.e., the message sender. On that mapping, the block number is
written, i.e., the transaction counter ID.

As an implementation choice, it was decided that only the service that
issued a Verifiable Credential can revoke it. This is to prevent third parties
from revoking Verifiable Credentials that they have not issued. In fact, it

38 i3-MARKET Trustworthy Design

is reasonable that only the provider who grants access to the service can
eventually revoke it.

As it is possible to notice from the smart contract code, another require-
ment to be able to add a Verifiable Credential in the smart contract is the fact
that it is not already present in the register (line 8), i.e., in the corresponding
mapping, there is not a block number indicating which transaction added the
credential. If it has not already been added, then it is possible to write it (line
9). When the transaction is successfully added, an event is emitted (line 11),
which communicates the issuer of the transaction and the digest of the newly
added credential in the register (line 17).

A possible problem is the fact that this smart contract trusts that what
is written to the registry is actually a valid digest of a credential in JWT
format. In this implementation, there is no kind of access control list that
allows only some addresses to write in the smart contract. In fact, once a
smart contract is deployed in blockchain, its public methods can be called
from any valid address. It is therefore possible that any address can call these
methods and write non-consistent information to the register. This problem
can be solved with a list of trusted issuers of transactions. In fact, it is possible
to consider an issuer as trusted if it also implements the correct cryptographic
hash algorithms on the Verifiable Credential before writing it to the register.

e Verify a Verifiable Credential:

The verification is the process of evaluation of a Verifiable Credential, in
order to determine whether it is authentic and timely valid for the issuer or
the presenter. This process includes the following checks:

e the credential conforms to the specification;

e the proof method is satisfied, i.e., the cryptographic mechanism used to
prove that the information in a Verifiable Credential was not tampered;

e the credential is not marked as revoked in the smart contract registry.

The Veramo credential library provides the methods for the first two
checks, while for the third it is necessary to implement a call to the
smart contract registry. The flow for verifying a credential is described in
Figure 3.11.

In the implemented solution, in step (1) the data provider calls the Veri-
fiable Credentials micro service, specifying the credential in JWT format to
be verified in the request body. Since verifying the presence of a Verifiable
Credential on the registry is an operation that does not change the status of
the credential, this can be done by any instance of the micro service. In step

3.3 Solution Design 39
i3Market Data Verifiable Smart Contract
Provider (DP1) Credentials service RevocationRegistry

1) POST feredentialiverify

"JWT": "eyJhbGe..."
{ ey e} 2) check specification
and proof method

3) check the credential in the smart contract

response
response | e
3

Figure 3.11 Verify Verifiable Credential flow.

(2), the Verifiable Credentials micro service checks that the issuer is valid
and that the credential is in a format that complies with the data provider’s
specifications. If there is no problem with the credential, then it computes the
hash of the credential using a SHA-3 cryptographic hash algorithms, which
produces a 32-character digest. Then, in step (3), the Verifiable Credential
micro service calls the “revoked” method of the smart contract registry,
specifying the issuer of the Verifiable Credential and the 32-character digest.

The credential issuer is specified in the JWT and since only the issuer
of a credential has the permissions to revoke it, it is sufficient to check that
only his address, associated with the credential, is not present in the register.
As it is possible to see in the solidity code of the smart contract, detailed
in the previous section, this method returns the block number when it was
revoked by the “issuer”, or 0 if it was not. In this way, it is possible to know
if the credential has been revoked or not. This information is then returned
as a response to the data provider, who will decide for himself what the next
steps will be, for example requesting the issuance of a new valid credential or
informing the user that he can no longer request access to that data or service.
This API is used in the integration of the OIDC identity provider. In fact, to
authenticate a user on the basis of the revealed credentials, a further check on
the registry is necessary to ensure that the credential is not revoked.

e OIDC compatibility:
The use of Verifiable Credentials allows the distributed and decentralized

management of users. In particular, users can use Verifiable Credentials
issued as a certificate to obtain a token necessary to access specific services

40 i3-MARKET Trustworthy Design

or protected resources within the marketplace. In order to retrieve the Ver-
ifiable Credentials and use them in an authorization process, a certified
open-source Open ID Connect provider (https://github.com/panva/node-oidc-
provider) has been enhanced with wallet API library. In this way, users can
be authenticated and authorized based on the Verifiable Credentials they hold
as shown in Figure 3.12.

In step (1), the user wants to access a resource or service in the mar-
ketplace. The resources and services are made available by data providers,
who expect to receive a valid access token and ID token, with the necessary
scope to access the resource or service. So, the first thing a data provider
website does is to initialize the authentication flow (2). The authentica-
tion with authorization code flow + PKCE is done through an OAuth 2.0
SDK (https://github.com/IdentityModel/oidc-client-js), which first generates

1gentrty Holder 13Market SMarket Smart Open1D aMarke! Protected (Ventavie Credential Smart Contract
(Market user) Client Walet Connect Frovider Resources Service [Revocation Registry

start | jaccesstoapuotecied |
resource -
2) generate Cooe Veniner
H and Code Chasenge
3) if not present. redirect to GET /auth &
Pairing) ask user to start the pairing protocol
Process

4) use wallet pairing uction 1o generate CTP

4) generate OTE

4) present generated OTP to the user

4) insert OTP into the form presented by Veriiable Credential

5) stan secure session ana
ask for DID disclosure

6) present share request and ask
for user acceptance.

Thconfin B89 dsclusure 8)send DID 1o Venfianie

Credentials microsenvice
e T 5

5) autnenticate disclose
l response

10) POST /creBentiavventy

11) eheck specrication
and proot memoa

respanse
response. T

[,__13) authorization code

14) POST noken

H 15) validate Code Verfier
i |ana Code Challange
i 16 rewm 1D token ana
! Actess token
17) request for the protected resource:
I validate access
H token
’j 17) request for he protected resource.
end i

Figure 3.12 Authorization flow.

3.3 Solution Design 41

a code verifier and a code challenge. Specifically, the OAuth 2.0 SDK creates

a cryptographically random code verifier and from this generates a code

challenge. After that, the authorization code + PKCE flow is initialized with

the first call/authorize. The main difference of this Open ID Connect provider

compared to traditional ones is that it requires the disclosure of Verifiable

Credentials. To specify the credentials to be revealed, the scope field is used.
The Open ID Connect provider has the following static scopes:

e openid: Mandatory for the Open ID Connect standard. It returns the sub-
field of the ID token, and its value is the user DID.

e profile: It adds information about the user profile into the ID token.

e vc: It adds the field verifiable claims into the ID token. Useful when the
relying party wants to check any information about the verifiable claims
asked.

Compared to the standard scope of Open ID Connect, the scopes added
are vc and vce. On the other hand, the standard email scope, which returns
the user’s email, is not present.

There are two different types of scopes:

e vc:vc name: It asks the user for the specific verifiable claim vc name.
It is optional; so the user can decide whether to append it or not. If the
issuer of the verifiable claim is not trusted, it will be added into untrusted
verifiable claims array of the ID token. These arrays are described at the
end of this section.

e vce:vc name: It asks the user for the essential verifiable claim with name:
vc name. It is mandatory; so if the user does not provide it or the issuer
is untrusted, the login and consent process will be cancelled.

After specifying in the scope field which credentials need to be disclosed,
the OAuth SDK initializes the authentication process, performing the call to
the /authorize endpoint (3).

The Open ID Connect provider performs a selective disclosure request
(5), using the Veramo libraries, ask to pair i3-MARKET Smart Wallet, using
“pairing” protocol (4).

At this point, a notification will appear on the wallet with the authenti-
cation request (Figure 3.13), specifying the credentials that must be revealed
(6).

After the disclosure of the required credentials, a callback to the Open
ID Connect provider (9) follows. The Open ID Connect checks if all the

42 i3-MARKET Trustworthy Design

Selective disclosure

did:ethr:i3m:0x0233b419098c41da6200fc057h7a7811b24296842be9526e545e7a
7f2{10d6430e has requested the claim provider.You have the following claim/s
that meet the request.

Select the claim to disclouse or leave empty for not disclousing it.

Step1of 2

Write here 1o search an opion... 1>

Don't disclose
provider=true (by did:ethr:i3m:0x2e35...ad5da8)

Figure 3.13 Disclosure of the data provider credential.

required Verifiable Credentials are present and if the Verifiable Credential
issuer is trusted (10). Subsequently, it remains to check that the credentials
are valid and not revoked. In particular, the credentials are sent in JWT
format through the verify (11) API, which checks that they have not expired,
calculates the hash, and checks if they are present in the Revocation Registry
(12). It then returns the array of revoked or invalid credentials as a response.
If the response array is empty, then all credentials are valid. If all credentials
are valid, the Open ID Connect provider returns the authorization code to
the OAuth SDK of the i3-MARKET Data Provider Client (13). The Data
Provider SDK performs POST /token (14). The code verifier and code chal-
lenge are checked (15) and the ID token and the access token are returned
to the Data Provider website (16). Now that the Data Provider website has a
valid access token, it can get the resource (17). When the authorization and
authentication process finishes, two tokens are returned: access token and ID
token. Through the ID token, it is possible to know which of the revealed
Verifiable Credentials are verified (trusted) or not (untrusted).

3.4 Diagrams

The following diagrams describe the processes involving the components of
the SSI and IAM subsystem.

The diagrams assume that the user created and controlled with his crypto
wallet a distributed identity using Ethereum DID management.

3.4 Diagrams 43

3.4.1 Identity authentication

The process in Figure 3.14 describes how a self-sovereign identity is authen-
ticated as managed by a crypto wallet using Ethereum DID management.

The user-centric authentication component create a challengeRequest
to retrieve the user’s DID and then check the challengeResponse (signed
by user’s wallet) to verify if the user controls the DID retrieving the
corresponding DID document.

Client App Backplane SDK : Backplane API : Data Storage :
User-Centric User-Centric blockchain
Authentication Authentication

Authentication request™

:
i i
i]
i i
1 1
i i !
i ') create challengeRequest
i i i
' i i
| i _ challengeReguest |
] il i
i challengeRequest ;
authenticate?! !
] i
Yes i i
4’ 1
E createChallengeResponse(challengeRequest) i
h i
’ :
Wallet sign j
: |
i i
i challengeResponse i
i “d——————P | ETHRDIDresole |
i i —p
i i
i i
i i
i i
i i
i i DID document
i i T
i i i
i E) verify challerigeResponse
b
i i i
] 1 1
i i) generate i3m|_token
i i -
Ly Authentication response i
g i T i
i i

Figure 3.14 Identity authentication process.

44 i3-MARKET Trustworthy Design

3.4.2 User registration

The process illustrated in Figure 3.15 describes how a client application can
register a self-sovereign identity as i3-MARKET user issuing a Verifiable
Credential attesting his role.

| Client App Backplane SDK : Backplane APl : Data Storage :
User-Centric User-Centric blockchain

Authentication Authentication

Identity Authentication

Identity : register{role)

POST mger-cenh'ic{di:‘.ifcredenli al {key rolekey, vallerole)
.
Ll

oleCredential

3 create and sign

roleCredential

3

tial

b verify roleCred

roleCredential

<
Accept credential?

H i
es :" storeCredential(roleCredenfial)
\ 1

>
) store credenlialﬁncally

i
i
H
i
i
1
PUT fuser-centric/did i{aﬁrihutes}
.
Ll

DID METHOD update
-
>

result

result

result

4+—

-

Figure 3.15 User registration process.

3.4 Diagrams 45

After DID authentication and the verification of additional information
disclosed by the user, the client app issues a Verifiable Credential for that
DID, which attest the role of the user (data consumer, data provider, or both).
User’s wallet stores the credential locally and update the DID document.

3.4.3 OIDC authorization (authentication code + PKCE)

The following process (Figure 3.16) represents how a client application can
be authorized by an i3-MARKET user to access a protected API and obtain
information about the user using a standard OpenID Connect Authentication
code flow with PKCE.

User-centric authentication component is integrated in a standard OIDC
IAM as federated identity provider.

Client App Backplane SDK : Backplane AP : I 0IDC 1AM OIDC RP :
H User-Centric User-Centric H Protected API
| Authentication Authentication] H
H i '

i

access protected resogirce

»
e
] | D validate access_foken
i] i
: : : B
[not a valid access_token] O i i
' H 401 Unauthorized
s |
i 1 i H
|_redirect to /oidc-iam/authofize ?parameters(client_id, scope, ccdeﬁchallen&e.lg_dilecliun)
i f
redirect to Juser-centrid/authorize?parameters |
i
-t
il
Identity Authentication j

) create id_taken mapping veriifiable

) generate cdde fro (client_id. scope)

i redirect to redirect_uri?cédde=authorization_code}

H H
] H

POST joidc-iam/oauthioken {authentication_code, code_verifier}

t »

]
POST i] ication_code}
] +———

id_token »
i
i
i

i{access_token, id_token| refresh_token}
t

validate id_token
generate acchss] loken

e L E

access profected resburce

:) validate access_token

H
i protected resource

.-

Figure 3.16 OIDC authorization process.

46 i3-MARKET Trustworthy Design

When the client application tries to call a protected resource without a
valid access_token, it is redirected to the OIDC IAM authorization endpoint
and then to user-centric authentication authorization endpoint showing the
login page.

When the user logs in with a wallet, an id_token is created with the
DID and the VC associated to the requested scopes and an authentication
code is provided to the client to call the token endpoint and receive a valid
access_token, a refresh token, and the id_token.

3.5 Interfaces

The interfaces of the final version of Verifiable Credential micro service and
OIDC SSI Auth micro service, composing the user-centric authentication
component, are presented in Figures 3.17 and 3.18.

i3-market Verifiable Credential service AP ™

The AP1 of the i3Marke! Verifiable Credential service:

Apache 2.0

servers
{method):/{uri}{contextPath} - The url of the running instance in the server ~

Computed URL: nttp://localnost: 4200/ release2/ve

Server variables

method hitp

url Iocalhost: 4200

contextPath frelease2ivc.

Credential credential endpoint ~
©30 /credential/issue/{credential}/callbackUrl/{callbackUrl} Creste s new credential with Veramo framework and siore it in the waike (Ll flow) ~
ES0 /credential/issue/{did}/{credential} Generate 3 new cradeniial with Veramo framawark for 3 spacific did ~

/credential/revoke Revoke a crecantal by JWT ~
/credential/verify Verdy credental by JT ~

Issuer issuerendpoint ~
S5 /issuer/subscribe Subsenbethis issusrin the Bmarket fusted ssuers st ~
Z30l) /issuer/unsubscribe Unsubscrie this issuer from the iSmarket rusted issuers ist ~

E /issuer/verify Verty e subscrotion status of the issuer ~

Figure 3.17 Verifiable Credential micro service specification.

3.6 Background Technologies 47

i3-market OpenlID Connect Provider AP| ™2

The API of the i3Market OpeniD Connect Provider

Apache 2.0

servers

{method}:iffuri}{contextPath} - The url of the running instance in the server

Computed URL: nttp://localhost: 3380/ release2

Server variables

metnod ntip

url localhost: 3300

contextPath Irelease2

OIDC Core TheOpeniD Connect Gore 1.0 defi

s the core OpenlD Gonnect functionaiity: authentication buikt on top of OAUth 2.0 and the use of Claims to communicate information about the End.User. It also
describes the security and privacy consid

siderations for using OpenlD Connect

Joidc/juks Get JSON Web Key Set va
Joidc/auth request authorization code: v
1l /oidc/token reguest acoess token and id token vith suthorization ode or refresh token v a

q The OpenlD Connect Discovery 1.0 specification defines a mechanism for an OpenlD Connect Relying Party to discover the End-User's OpeniD Provider and obtain information needed
OIDC DiSCOVerY ;Fiuflin i inciuding ts Gauth 50 enpoin ocarons

/oidc/ .well-known/openid-configuration GetOpenlD Provider configurstion information v
Developers Developers endpoint. Developers can log in fo get a vaiid initial_aceess_token for regsitering new cients ~
Jdevelopers/login Obisin a valid initisl_scoess_ioken for registering = new chent v @

PR /iic/ g Registerng anew diert. - @

Figure 3.18 OIDC SSI Auth micro service specification.

3.6 Background Technologies
3.6.1 JSON Web Token (JWT)

The JSON Web Token (JWT) is an open standard (RFC 7519) that defines
a schema in JSON format for exchanging information between various ser-
vices. The generated token can be signed (with a secret key that only those
who generate the token know) using the HMAC algorithm or using a pair of
keys (public/private) using the RSA or ECDSA standards. JWTs are widely
used to authenticate requests in Web Services and OAuth 2.0 authentication
mechanisms where the client sends an authentication request to the server and
the server generates a signed token and returns it to the client who, from that
moment on, will use to authenticate subsequent requests. The structure of the
token consists of three fundamental parts:

48 i3-MARKET Trustworthy Design

e Header
e Payload
e Signature

The header contains two main information: the type of token (in this case
valued to JWT because it is a JSON Web Token) and the type of encryption
algorithm used.

{

"alg": "HS256",

"typ": "JWI"

}

The payload contains the interchange information. It is possible to
categorize them into three blocks:

e Registered parameters: They are predefined properties that indicate
information about the token (issuer, audience, expiration, issued at, and
subject).

e Private parameters: Here, it is possible to enter new fields, such as
verifiable claims, having full extensibility, thanks to the JSON structure.

e Public parameters: They refer to parameters defined in the IANA JSON
Web Token Registry, and they can be compiled at will by paying atten-
tion to the content that is entered to avoid conflicts with the registered
and private parameters.

{

"iss": "app_name",

"name": "Mario Rossi",

"iat": 1540890704,

exp": 1540918800,

"user": {

"profile": "editor"

}

}

The token is generated by encoding the header and payload in base 64 and
joining the two results by separating them by a “.”, and then the algorithm
indicated in the header is applied to the string obtained using a secret key. It
is possible to verify and unpack a JWT online using the official website.

Fortunately, it is not necessary to re-implement the encryption logic; there
are many libraries to generate JWT depending on the programming language.
Security is guaranteed by the fact that the token is signed with a server-side

3.6 Background Technologies 49

secret key; so if it is corrupted or modified by an external agent, it will not
pass validation.

3.6.2 OpenlD Connect (OIDC)

OpenID Connect 1.0 (https://openid.net/connect/) is a simple identity layer
on top of the OAuth 2.0 protocol. It allows clients to verify the identity
of the end-user based on the authentication performed by an authorization
server, as well as to obtain basic profile information about the end-user in an
interoperable and REST-like manner.

OpenlD Connect allows clients of all types, including Web-based, mobile,
and JavaScript clients, to request and receive information about authenticated
sessions and end-users. The specification suite is extensible, allowing partici-
pants to use optional features such as encryption of identity data, discovery of
OpenlD providers, and session management, when it makes sense for them.

3.6.3 Decentralized identity (DID)

Decentralized identifiers (DIDs) are a new type of identifier that enables
verifiable, decentralized digital identity. A DID identifies any subject (e.g.,
a person, organization, thing, data model, abstract entity, etc.) that the con-
troller of the DID decides that it identifies. In contrast to typical, federated
identifiers, DIDs have been designed so that they may be decoupled from cen-
tralized registries, identity providers, and certificate authorities. Specifically,
while other parties might be used to help enable the discovery of information
related to a DID, the design enables the controller of a DID to prove control
over it without requiring permission from any other party. DIDs are URIs that
associate a DID subject with a DID document allowing trustable interactions
associated with that subject.

3.6.4 Self-sovereign identity and blockchain

Today, users’ identities and related data are stored in siloes on centralized
servers across organizations and are vulnerable to hacking. Repetitive account
creation for different applications (e.g., marketplaces), and personal informa-
tion (often outdated) stored in various services are the disadvantages of that
approach.

Self-sovereign identities supported by decentralized systems come as a
solution for the following issues:

50 i3-MARKET Trustworthy Design

e Identity and personal data are stored with the user.

e Claims and attestations can be issued and verified between users and
trusted parties.

e Users selectively grants access to data.

e Data only needs to be verified a single time.

Blockchain technology, proving decentralization, immutability, and cryp-
tographic security allow the creation of credentials that could be issued
and verified without the need of a central certification authority and could
be owned by the end-users and directly shared with third parties without
involving the credential issuer.

3.6.5 Verifiable Credentials (VC)

As in the physical world, a credential is a set of information that identifies an
entity. In particular, the information represents:

e Information related to identifying the subject of the credential (for
example, a photo, name, or identification number).

e Information related to the issuing authority (for example, a city govern-
ment, national agency, or certification body).

e Information related to the type of credential this is (for example, a Dutch
passport, an American driving license, or a health insurance card).

e Information related to specific attributes or properties being asserted
by the issuing authority about the subject (for example, nationality, the
classes of vehicle entitled to drive, or date of birth).

e Evidence related to how the credential was derived.

e Information related to constraints on the credential (for example, expi-
ration date or terms of use).

A Verifiable Credential can represent all of the same information that a
physical credential represents (Figure 3.19). The addition of technologies,
such as digital signatures, makes Verifiable Credentials more tamper-evident
and more trustworthy than their physical counterparts.

Holders of Verifiable Credentials can generate verifiable presentations
and then share these verifiable presentations with verifiers to prove they
possess Verifiable Credentials with certain characteristics.

Both Verifiable Credentials and verifiable presentations can be transmit-
ted rapidly, making them more convenient than their physical counterparts
when trying to establish trust at a distance.

3.6 Background Technologies 51

Issuer Halder Verifier
Issues Issue Sror;q Pr s;nrs Send Requests, Verifies
Credentials A Presentation
— E—
Register
Identifiers and
Use Schemas
r
Verify Identifiers Verify Identifiers
and Use Schemas veri"ahle Data Registry and Schemas
Maintain Identifiers and Sehemas

Figure 3.19 Verifiable Credentials model.

Verifiable Credentials are useful in a self-sovereign identity ecosystem
because they assert information about the user to whom a credential is issued
and can be directly verified by any third-party by involving the issuer. In
the context of the project, users are asked to disclose Verifiable Credentials,
which attest particular attributes issued by a specific data marketplace. The
certified attributes and permissions are used to obtain an OAuth access token
that allows the use of Backplane services or access to resources in the
marketplace. Verifiable Credentials are therefore used as a proof method
in the authorization flow. If a credential is valid, it means that the user is
authorized to access a resource or service that requires the holding of that
credential. For this reason, a service that generates Verifiable Credentials is
necessary. Once a Verifiable Credential is saved by users in their wallets,
anyone who receives the Verifiable Credential and has access to the DID of
the users can then confirm that the Verifiable Credential has been issued by a
trusted server and has not been revoked for some reason.

To implement the solution, we have chosen to use Veramo, a framework
that replaces the previous implementation of the uPort library, which is
deprecated.

Both components (OIDC SSI Auth and Verifiable Credential micro ser-
vice) integrate the Veramo framework and take advantage of its features to
manage DID and Verifiable Credentials.

