
2
Architecture Overview Specification

The overall architecture defines all required components and subsystems,
their basic functionality and behaviour, as well as their interfaces and inter-
action patterns in accordance with the user stories and the requirements
specified in the project. The detailed specification of the i3-MARKET
components and interfaces are reported in the chapters below.

In particular, the high-level architecture covers:

a) the i3-MARKET Backplane solutions with its core functionalities;
b) the interaction of existing data spaces and marketplaces with the i3-

MARKET Backplane and each other (for secure data access) based on
open interfaces;

c) the engagement of data providers, consumers, owners via smart wallets
and applications, and the interactions with the i3-MARKET Backplane
for the sake of privacy preservation and access control to their personal
or industrial data assets.

2.1 Architecture

We describe the architecture in the 4 + 1 architectural view model. This is a
standard model, commonly used for documenting software architectures.

The complete architecture is available on the i3-MARKETWiki pages. It
is available to all partners to be viewed or modified. The drawing tool used is
either Gliffy or Draw.io.

2.1.1 The 4 + 1 architectural view

The 4 + 1 architectural view model contains different views [1] as depicted
in Figure 2.1.

The 4 + 1 architectural view model was adapted to fit our purposes.
To make sure the different interfaces and the communication between our
proposed system and the external systems are analysed, the so-called context
view is added to the view model.

Table 2.1 describes the different views of the adapted 4 + 1 architectural
view model.

3



4 Architecture Overview Specification

Figure 2.1 4 + 1 Architectural view model.

Table 2.1 Views of the adapted 4 + 1 architectural view model.
Architectural view Description Diagrams to use

Context view • System as a blackbox
• Interfaces and communication
between blackbox and external
systems

Context diagrams

Logical view • Functionality that the system pro-
vides to end-users

Class and state dia-
grams

Process view • Dynamic aspects of the system
• System processes
• Runtime behaviour of the system

Sequence, commu-
nication, and activ-
ity diagrams

Development/
implementation
view

• System from a programmer’s per-
spective

• Software management

Component
diagrams

Physical/deployment
view

• System from a system engineer’s
point of view

• Topology of software components
on the physical layer (and their
communication)

Deployment
diagrams

Scenarios/use case view • Sequence of interactions between
objects and between processes

• To identify architectural elements
and to illustrate and validate the
architecture design.

• Starting point for tests

Use case diagrams

2.2 Context View

The context view shows a system as a whole and its interfaces to external
factors. System context diagrams represent all external entities that may



2.2 Context View 5

interact with a system; such a diagram pictures the system at the centre, with
no details of its interior structure, surrounded by all its interacting systems,
environments, and activities. The objective of the system context diagram is
to focus attention on external factors and events that should be considered in
developing a complete set of system requirements and constraints.

System context views are used early in a project to get agreement on the
scope of the system. Context diagrams are typically included in a require-
ments document. These diagrams must be agreed on by all project stakehold-
ers and thus should be written in plain language so that the stakeholders can
understand items within the document.

The so-called system of interest, the i3-MARKET Backplane, is the
centre of this diagram but is considered as a grey-box, showing only little
internal details of the system.

The focus of this view is the external actors that have interfaces to sys-
tems. In this case, the external actors are the three pilots of the i3-MARKET
project:

Figure 2.2 Context view with i3-MARKET as a blackbox.



6 Architecture Overview Specification

• i3-MARKET automotive pilot
• i3-MARKET wellbeing pilot
• i3-MARKET industrial pilot

Figure 2.2 shows how data consumer and data provider exchange data
via the data access API. The marketplace interacts with the i3-MARKET
Backplane via an SDK. Both the API and the SDK were developed in the
project.

The three pilot boxes also show some internal elements of the pilots. Each
pilot has their own internal structure, but they share the same interface to the
i3-MARKET Backplane. This enables seamless data exchange between all
marketplaces.

2.3 Logical View

The logical view represented in Figure 2.3 shows the functionality that the
system provides to end-users.

The objective of the logical view is twofold. On one hand, this view shows
the i3-MARKET system (green box) and the link between the stakeholders
and the marketplaces. On the other hand, the logical view pursues showing the
internal decomposition of i3-MARKET system into the logical subsystems
and components, which implement the i3-MARKET Backplane API and
secure data access API (SDA API).

In general terms, i3-MARKET supports actors with the i3-MARKET
Backplane functionality by means of the two following main entry points:

- The Backplane API and SDA API (depicted as green lines in the picture),
or in other words, the direct access to the i3-MARKETBackplane. These
two APIs enable access to all integrated building blocks. This is the use
case of these actors which follow a more ad-hoc integration with i3-
MARKET.

- The i3-MARKET SDK (i3M SDK) (depicted as pink boxes in the
picture), to support the end-users’ developers with the integration of
Backplane API and SDA API. This product is intended for these actors
that pursue a more “assisted” support.

Regarding the link with the stakeholder and marketplaces, in the case of
the data marketplace actors, i3-MARKET assists them with a full version
of the Backplane API and the i3M SDK (Backplane module), which gives
support for interacting with the Backplane API.



2.3 Logical View 7

Figure 2.3 Logical view with i3-MARKET.

In the case of the data owners, data providers, and data consumers, the
normal operating mode is the access to i3-MARKET Backplane through their
own data marketplace. However, for some particular data marketplace cases,
data owners, data providers, and data consumers will have the possibility to
directly interface with i3-MARKET system through the available SDKs and
APIs. More specifically, i3-MARKET will allow direct communication with
the stakeholder by means of the following components:

- Data owner, through the i3M SDK (Backplane module), which gives
support for interacting with the Backplane API (light green lines in the
picture).

- Data provider, through the i3M SDK-Backplane module which gives
support for interacting with the Backplane API (light green lines in the
picture) and the i3M SDK-secure data access API, which gives support



8 Architecture Overview Specification

for interacting with the secure data access API (dark green lines in the
picture).

- Data consumer, through the i3M SDK-Backplane module, which gives
support for interacting with the Backplane API and the i3M SDK-secure
data access API, which gives support for interacting with the secure data
access API.

In order to guarantee the authentication mechanisms proposed by i3-
MARKET, a Wallet Client should be installed into the end-user side in order
to store the user private keys.

2.4 i3-MARKET Microservice-based Architecture

i3-MARKET Backplane is mostly a set of semi-independent subsystems with
self-contained functionalities such as the identity and access management
system, the semantic engine subsystem, data access subsystem, etc. Most
of these subsystems have broken down their functionalities into atomic and
loosely coupled sub-components exposing their functionality through a REST
API, which yields a microservice-based nature to the i3-MARKET system.

This microservice-based architecture brings i3-MARKET a set of very
well-known benefits such as:

- facilitating the communication between the components in a system;
- have been independently developed and deployed into a more efficient
management;

- facilitating the identification of dependencies between the components;
- modular architecture allows each application to use only those function-
alities that are needed;

- helps to manage the complexity of the overall system.

Figure 2.4 shows a detailed landscape of the current set of microser-
vices (cubes), APIs (little yellow rectangles), components (blue rectangles),
and storages (white rectangles) on i3-MARKET. Each arrow in the picture
denotes a dependency between the subject and object involved in the arrow.
Finally, for linking each of the service/microservices/library depicted in the
diagramwith the component diagrams in section development view “develop-
ment view”, we have categorized each service/microservice/library according
to the system (green dashed boxes) and subsystems (brown dashed boxes)
they belong. Finally, remark that the RPC distributed ledger is one and single
instance, but it has been put as several instances for picture legibility.



2.4 i3-MARKET Microservice-based Architecture 9

Figure 2.4 i3-MARKET microservice layout.

Figure 2.5 shows the identified dependencies between i3-MARKET
components:

- SDK system: For a more grounded view of this subsystem, refer to
Chapter 17 on i3-MARKET SDK and marketplace reference implemen-
tation.

◦ SDK-core libraries for making easier the development of applica-
tions that make use of the Backplane API. It interfaces with the
Backplane gateway.

◦ SDK-RI future common pilots-driven complex workflows based on
the Backplane services. It interfaces with the SDK-core library.

- Trust, security, and privacy system:

◦ SSI and IAM subsystem (label A). For a more grounded picture
of this subsystem, see “SSI and IAM subsystem” in Chapter 3 on
“i3-MARKET identity and access management”.

• “User-centric authentication” component, responsible of pro-
viding the management of self-sovereign identity based on
DID and VC and the compatibility with OIDC standard.
Microservices:

• Verifiable Credential microservice, which provides DID,
Verifiable Credential management, and compatibility



10 Architecture Overview Specification

with OIDC standard. It interfaces with the wallet because
the Verifiable Credential assumes that the user created and
controls with his crypto wallet their identities and with
the RPC ledger storage for updating the revocation of
credential.

• “Service-centric authentication” component, responsible for
providing authentication and authorization of users and client
with standard OIDC/OAuth flows, integrating the user-centric
authentication component. Microservices:

• OIDC provider microservice, which implements the
OIDC compatibility (based on Verifiable Credential). It
interfaces with the Verifiable Credential for allowing the
token creation based on the Verifiable Credentials and
with the wallet for sending the credentials.

◦ Smart Wallet subsystem (label B). For a more grounded picture of
this subsystem, see “Smart Wallet subsystem” in Chapters 4 and 5.

• Wallet APP for storing user private keys. It interfaces on the
RPC ledger storage.

◦ Smart contract subsystem (label C). For a more grounded picture
of this subsystem, see “smart contract subsystem” in Chapter 4 and
Chapter 7 in Book Series Part II.

• Smart contract manager component/microservice responsible
for providing a gateway to access the smart contracts. It was
conceived mainly for managing the SLA and DSA smart
contract (business smart contracts), and the extension of its
purpose for other smart contracts is still under discussion. It
interfaces with the RPC ledger storage for storing the data
sharing agreement object and the semantic engine for creating
data purchase.

• Auditable accounting component/microservice component
responsible for logging and auditing interactions between
components and recording the registries in the blockchain.
It interfaces with the RPC ledger storage for registering
auditable data and in the future might be connected with the
distributed storage for storing proofs.



2.5 i3-MARKET Core Functionality 11

◦ Data monetization subsystem (label D). For a more grounded
picture of this subsystem, see “data monetization subsystem” in
Text on “i3-MARKET Crypto token and data monetization”.

◦ Non-repudiation protocol library. It interfaces with the Backplane
API for interacting with auditable accounting.

- Semantic system:

◦ Semantic system service responsible for managing the offer-
ings/discovery and semantic data model in the i3-MARKET. It
interfaces with contract manager managing contractual parame-
ters, and it depends on the registry DB store and the distributed DB
service’s API. It might interact with ledger for Verifiable Creden-
tials and DID IDs. And it interacts with the notification manager
service for reporting new data offerings. For a more grounded
picture of this component, see Chapter 4 “i3-MARKET Seman-
tic Models” and Chapter 9 in Book Series Part II “i3-MARKET
Semantic Model Repository and Community.”

- Data access system:

◦ Data access service in charge of providing the means for allowing
the transfer of data between data provider and the data consumer. It
interacts with the non-repudiation protocol library and Backplane
(API) for enforcing smart contract. For a more grounded picture of
this system, see Chapter 6 on data access & transfer – system.

- Storage system:

◦ Distributed storage subsystem (label D):

1. Distributed storage component/microservice responsible of
storing i3-MARKET offerings index. Other uses of the dis-
tributed storage are still under discussion. Its interaction with
the RPC ledger storage for storing proof for reliability of data
is still under discussion.

- Backplane gateway component responsible for providing a gateway for
all the internal services conforming to the Backplane. This gateway is
the single-entry point for all clients. For more details about this compo-
nent, see Chapter 3 in Book Series Part III Backplane API gateway. It
depends on the availability of all the services masked behind it.



12 Architecture Overview Specification

F
ig
ur
e
2.
5

H
ig
h-
le
ve
lv

ie
w
of

th
e
i3
-M

A
R
K
E
T
B
ac
kp

la
ne

ar
ch
ite

ct
ur
e
an
d
bl
oc
ks

fo
r
sy
st
em

s
an
d
ar
te
fa
ct
s.



2.5 i3-MARKET Core Functionality 13

2.5 i3-MARKET Core Functionality

i3-MARKET provides a set of core components in charge of providing the
following capabilities:

1. Authentication-identity/authorization-access: i3-MARKET should
allow users to authenticate themselves and get authorization to access
the blockchain, secure and centralized data storage, and secured services
on i3-MARKET.

2. User management: i3-MARKET should allow data providers and
consumers to register, update, or delete from the system. In particular, i3-
MARKET assists the data marketplaces and stakeholders with following
functionalities: identity creation, user registration, identity update, and
user deletion (which ensures that his identity on the blockchain can-
not be mapped to his real identity anymore. → automatically consent
termination/cancellation).

3. Offering registration: i3-MARKET must provide mechanisms for
data providers to publish their datasets on i3-MARKET. i3-MARKET
provides semantic data models to describe data offerings and data
subscriptions/demands.

4. Offering discovery: i3-MARKET must provide mechanisms to allow
data consumers to perform data queries based on the provided seman-
tic models. It will have two variants: discover and retrieve locally
or discover and retrieve in federated i3-MARKET data marketplaces
network.

5. Data subscription: i3-MARKET must provide mechanisms to allow
data consumers to express the intention of buying data and to request an
SLA/SLS between the data consumer and a data provider, after a match
was encountered.

6. Consent: i3-MARKET has to provide the mechanisms in order for
the data owner to consent access for enabling the trading of data
assets across domains and stakeholder boundaries, without the need
for developers of an application (data consumer) to learn about the
meaning of the data from the data provider or through manual analysis
or experimentation with the data.

a. Explicit consent: i3-MARKET must provide mechanisms to allow
the data owner to give his consent before his data is transferred
(data owner). When a user is deleted, all the data and metadata
related to the user should be removed from any platform.



14 Architecture Overview Specification

b. Consent termination/cancellation: i3-MARKET must provide the
mechanisms for ending the commercialization between involved
parties on a smart contract. i3-MARKET provides the mechanisms
to end running smart contracts at any time.

7. Contracting: i3-MARKET has to provide mechanisms that allow to
complete data sharing agreements (SLA/SLS) between the data provider
and the data consumer. The smart contracts are then generated from the
SLA/SLS, which the participants agreed upon (data provider and data
consumer).

8. Data access: i3-MARKET provides a data access API enabling an
authorization of the data provider and the data consumer to allow a
secure data transfer (peer-to-peer or i3-MARKET-channel subscription).
The data access API provides a mechanism to monitor the data transfer
and is tightly coupled with the signed smart contracts. This functionality
was broken down into the following modules:

i. Authentication and authorization
ii. Data transfer transparency
iii. Data management
iv. Secure data transfer and anonymization

On the other hand, i3-MARKET supports the following types of data
transfer:

a. On-demand→ Data stream (see common vocabulary below).
b. Subscription → Data batch transfer (see common vocabulary

below).

9. Data monetization/payment: i3-MARKET provides functionality for
data monetization, which aligns based on the pricing model defined in
the offering description and amount consumed.

These capabilities have been validated in the i3-MARKET basic work-
flows (described in the following section). In concrete:

- “User management”: For all end-users (data providers and data
consumers), an identity should be created in advance for getting
authentication-identity and authorization-access. Therefore, a user man-
agement activity will take place as pre-requisite for starting any interac-
tion with any i3-MARKET instance.



2.6 i3-MARKET Basic Workflows 15

- “Authentication-identity/authorization-access” is used as starting point
for initiating any connection with i3-MARKET instances. Therefore,
the process of authentication (and authorization) can be reflected at the
beginning of most of the workflows. These are:

◦ “Registering a new offering”: The workflow starts with the authen-
tication of the data provider as described in the diagram “authen-
tication with end-user interaction” in Chapter 4 “i3-MARKET
Semantic Models”.

◦ “Purchase data”, “create and manage search alerts”, and “transfer
operational data”: The workflow starts with the authentication
of the data provider and data consumer, as described in the
diagram “authentication with end-user interaction” in Chapter 4
“i3-MARKET Semantic Models”.

- “Offering registration”, the behaviour of the offering registration capa-
bility is directly shown in the “register a new offering” workflow.

- “Offering discovery”, “data subscription”, and “contracting” capabilities
take place in the “purchase data” workflow.

- “Data access” and “data monetization” are the most significant steps in
the “transfer operational data” workflow.

2.6 i3-MARKET Basic Workflows

i3-MARKET includes the implementation of three pilots to validate the
functionalities of the i3-MARKET network. Even though every pilot has its
own way of how it works and its specific requirements, there are some basic
workflows, which apply to all of them. Those workflows are described for the
five most important scenarios.

The scenarios are:

- Generate data.
- Register new data offerings.
- Search, discover, and retrieve data offerings in local and federated
registry catalogues.

- Purchase data.
- Manage notifications.
- Access and transfer operational data.



16 Architecture Overview Specification

The scenarios are described in detail in i3-MARKET deliverables about
“Use Cases, Requirements and Overall i3-MARKET Architecture Spec-
ifications” available at https://www.i3-market.eu/research-and-technology-
library/.

For each of the scenarios (which are part of the problem space), technical
workflows have been derived. These workflows represent the technical real-
ization in the solution space. They represent the dynamic behaviour of the
system when stakeholders interact with it.

2.7 Process View

According to [2], the process view “takes into account some non-functional
requirements, such as performance and availability. It addresses issues of
concurrency and distribution, of system’s integrity, of fault-tolerance, and
how the main abstractions from the logical view fit within the process
architecture—on which thread of control is an operation for an object actually
executed”.

Following this approach, the i3-MARKET process view should show
the interaction between the process and threads of the system representing,
among others, non-functional characteristics, concurrency, synchronization,
availability, or performance.

From a diagram point of view, Booch stated “. . . the static and dynamic
aspects of this view are captured in the same kinds of diagrams as for the
design view – i.e. class diagrams, interaction diagrams, activity diagrams and
statechart diagrams, but with a focus on the active classes that represent these
threads and processes” [3].

A fine-grained detail is demanded for identifying the active objects
(process and threads), which are instances of active classes, and the way
they communicate between each other (synchronous/asynchronous) which is
needed for this view. Due to that, the i3-MARKET process view definition
was accomplished between the different technical task implementations.

2.8 Development View

According to [2], the development view “focuses on the actual software
module organization. . . The software is packaged in small chunks—program
libraries, or subsystems—that can be developed by one or a small number of



2.8 Development View 17

developers. The subsystems are organized in a hierarchy of layers, each layer
providing a narrow and well-defined interface to the layers above it”.

Therefore, the objective of the development view is twofold:

- Giving a system view from a programmer’s perspective, which might
help in the development process.

- Supporting the software management by monitoring the accomplish-
ment of subsystems and components depicted in the diagrams.

For the process of defining the development view, i3-MARKET has
followed the guidelines proposed by arc42 template [4] for architecture
construction and documentation, which is summarized in the following
section.

2.8.1 Approach

The i3-MARKET “development view” is documented following the “build-
ing block view” as depicted in Figure 2.6 from arc42 template. Following are
the cited instructions provided by the template:

• Content:

The building block view shows the static decomposition of the system
into building blocks (modules, components, subsystems, classes, interfaces,
packages, libraries, frameworks, layers, partitions, tiers, functions, macros,
operations, data structures, etc.) as well as their dependencies (relationships,
associations, etc.).
This view is mandatory for every architecture documentation. In analogy to
a house, this is the floor plan.

• Motivation:

Maintain an overview of your source code by making its structure under-
standable through abstraction.

This allows you to communicate with your stakeholder on an abstract
level without disclosing implementation details.

• Form:

The building block view is a hierarchical collection of black boxes and white
boxes (see Figure 2.6) and their descriptions.

Level 1 is the white box description of the overall system together with black
box descriptions of all contained building blocks.



18 Architecture Overview Specification

Figure 2.6 Building block hierarchy [3].

Level 2 zooms into some building blocks of level 1. Thus, it contains the white
box description of selected building blocks of level 1, together with black box
descriptions of their internal building blocks.

Level 3 zooms into selected building blocks of level 2, and so on.

In i3-MARKET, we have the following arc42-based templates for the
documentation of the Level 1 development view.



2.8 Development View 19

Here you describe the decomposition of the overall system using the
following white box template. It contains:

• an overview diagram;
• a motivation for the decomposition;
• black box descriptions of the contained building blocks (use a list of
black box descriptions of the building blocks according to the black box
template (see below). Depending on your choice of tool, this list could
be sub-chapters (in text files), sub-pages (in a Wiki), or nested elements
(in a modelling tool)”.




