

Technical Innovation, Solving the
Data Spaces and Marketplaces

Interoperability Problems for the
Global Data-Driven Economy

i3-MARKET Series - Part III: The i3-MARKET
FOSS Handbook

RIVER PUBLISHERS SERIES IN COMPUTING AND INFORMATION
SCIENCE AND TECHNOLOGY

Series Editors:

K.C. CHEN
National Taiwan University, Taipei, Taiwan
University of South Florida, USA

SANDEEP SHUKLA
Virginia Tech, USA
Indian Institute of Technology Kanpur, India

The “River Publishers Series in Computing and Information Science and Technology” covers
research which ushers the 21st Century into an Internet and multimedia era. Networking suggests
transportation of such multimedia contents among nodes in communication and/or computer
networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and implemen-
tation of wired/wireless networking are all within the scope of this series. Based on network
and communication science, we further extend the scope for 21st Century life through the
knowledge in machine learning, embedded systems, cognitive science, pattern recognition, quan-
tum/biological/molecular computation and information processing, user behaviors and interface,
and applications across healthcare and society.

Books published in the series include research monographs, edited volumes, handbooks and
textbooks. The books provide professionals, researchers, educators, and advanced students in the
field with an invaluable insight into the latest research and developments.

Topics included in the series are as follows:-

• Artificial intelligence
• Cognitive Science and Brian Science
• Communication/Computer Networking Technologies and Applications
• Computation and Information Processing
• Computer Architectures
• Computer networks
• Computer Science
• Embedded Systems
• Evolutionary computation
• Information Modelling
• Information Theory
• Machine Intelligence
• Neural computing and machine learning
• Parallel and Distributed Systems
• Programming Languages
• Reconfigurable Computing
• Research Informatics
• Soft computing techniques
• Software Development
• Software Engineering
• Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

Technical Innovation, Solving the
Data Spaces and Marketplaces

Interoperability Problems for the
Global Data-Driven Economy

i3-MARKET Series - Part III: The i3-MARKET
FOSS Handbook

Editors

Martín Serrano
Achille Zappa

Waheed Ashraf
Pedro Maló

Márcio Mateus
Edgar Friess

Iván Martínez
Alessandro Amicone
Justina Bieliauskaite

Marina Cugurra

River Publishers

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

www.riverpublishers.com

ISBN: 978-87-7004-173-7 (Hardback)
978-87-7004-172-0 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2024. This book is published open
access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, a link is provided to the Creative Commons license
and any changes made are indicated. The images or other third party material in
this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publica-
tion. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper.

Contents

Preface xi

Who Should Read this Book? xiii

What is Addressed in the i3-MARKET Book Series? xv

What is Covered in this i3-MARKET Part III Book? xvii

Acknowledgements xix

List of Figures xxi

List of Tables xxv

List of Contributors xxvii

List of Abbreviations xxxi

1 i3-MARKET Overview 1
1.1 Context . 1

2 General Description 3
2.1 Deployment and Operational Concepts 3

2.1.1 Consider the requirements of the software 3
2.1.2 Evaluate the deployment environment 3
2.1.3 Consider automation and orchestration 4
2.1.4 Evaluate containerization options 4

v

vi Contents

2.1.5 Consider monitoring and reporting tools 4
2.2 Deployment Specification 4
2.3 Terminology . 5
2.4 i3-MARKET Artifacts Overview 6
2.5 Deployment Architecture View 8
2.6 i3-MARKET Network Infrastructure 10
2.7 Software Stack . 10
2.8 i3-MARKET Master Environment 12
2.9 i3-MARKET Pilot Environment 15

3 Backplane API Gateway 19
3.1 Objectives . 19
3.2 Solution Design/Blocks . 20

3.2.1 Authentication and authorization 20
3.2.1.1 Authentication 21
3.2.1.2 Authorization 22

3.2.2 Subsystem implementation 23
3.2.3 Data flows . 24
3.2.4 Service Integration Manager 24
3.2.5 Automatic integration mechanism 25
3.2.6 Subsystem OAS repository 25
3.2.7 Backplane repository 26

3.2.7.1 Remote images 27
3.2.8 Final deployment 28
3.2.9 Multiple environments support 29

3.3 Interfaces . 31
3.3.1 Developers . 31
3.3.2 OIDC discovery 31
3.3.3 OIDC core . 31
3.3.4 RegistryBlockchainController 31
3.3.5 RegistryController 32
3.3.6 AuthController . 32
3.3.7 Conflict-resolver service 32
3.3.8 FarewellController 32
3.3.9 HelloController . 33
3.3.10 OpenApiController 33
3.3.11 Notifications . 33
3.3.12 Queues . 34
3.3.13 Subscriptions . 34

Contents vii

3.3.14 PingController . 35
3.3.15 Cost-controller . 35
3.3.16 Price-controller . 35
3.3.17 RatingService . 36
3.3.18 Agreement . 36
3.3.19 Explicit user consent 37
3.3.20 Registration-offering 37
3.3.21 TokenizerController 40
3.3.22 Credential . 41
3.3.23 Issuer . 41

4 Deployment Guides 43
4.1 Artifact Deployment Guides 43
4.2 MDS1: Manual Deployment 44
4.3 ADS1: Automatized Deployment with Ansible Scenario One 45
4.4 ADS2: Automated Deployment with Ansible and CI/CD

GitHub Pipelines Two . 46
4.5 ADS3: Automated Deployment with Docker Compose . . . 47
4.6 Tagging Releases Strategy 50
4.7 Deployment Process . 50

4.7.1 Docker Compose 51
4.7.2 Technical Requirements 52
4.7.3 Specification and configurations 53
4.7.4 Deployment . 54

5 Operative Specification 57
5.1 Libraries . 57
5.2 i3-MARKET APIs . 58
5.3 SDKs . 62
5.4 User Interfaces . 63
5.5 Install i3M Wallet . 64
5.6 Create a Wallet and a Consumer and/or Provider Identity in

the Wallet . 65
5.7 Creating a Wallet 2/3 . 66
5.8 Register a New OIDC Client 66
5.9 SDKs . 74

6 SDKs and WEB-RI 79
6.1 Approach . 79

viii Contents

6.2 SDK-Core Specification 80
6.2.1 SDK-core implementation 82
6.2.2 Core technology 82

6.3 SDK Reference Implementation (SDK-RI) 85
6.4 WEB-RI . 90

6.4.1 Purpose . 90
6.5 IMPLEMENTATION . 92
6.6 Navigation: . 95

7 Deployment Tools 103
7.1 Solution Design . 103

7.1.1 MDS1: manual deployment 105
7.1.2 ADS1: automated deployment with Ansible 106
7.1.3 ADS2: automated deployment with Ansible and

CI/CD GitHub pipelines 107
7.1.4 ADS3: automated deployment with Docker Compose 108

7.2 i3-MARKET: Onboarding Process 110

8 SDK-RI Specification 113
8.1 Objectives . 113
8.2 Technical Requirements . 113
8.3 SDK Reference Implementation 113
8.4 Core Technology . 114
8.5 Continuous Integration and Deployment 114

9 SDK-RI Installation using Docker 117
9.1 Setup . 118
9.2 Running the SDK-RI with Docker 118
9.3 Configuring and using SDK-RI 118

10 WEB-RI 121
10.1 Purpose . 121
10.2 Architecture . 121
10.3 Sitemap . 123
10.4 Run WEB-RI in Docker . 124

11 Central Administration Guide 125
11.1 Cloud Management . 125
11.2 Infrastructure Monitoring 126

Contents ix

12 Repositories and Open Source 129
12.1 GitLab/GitHub . 131
12.2 GitLab Repository . 132
12.3 GitHub Repository . 132
12.4 Developers’ portal with MKDocs framework 133
12.5 Open-Source Portal . 134

12.5.1 Developers, users, and respective roles 136
12.5.2 Roles and activities of developers and experts in the

governance model 137

13 Other Content 139
13.1 Local Development using Node.js 139
13.2 Local Development using Docker 140

13.2.1 Development scripts in the docker container 140

14 Conclusions 141

References 145

Index 151

About the Editors 153

Preface

Data is the oil in today’s global economy. The vision in the i3-MARKET
book series is that the fast-growing data marketplaces sector will mature,
with a large number of data-driven opportunities for commercialization and
activating new innovation channels for the data.

A new data-as-a-service paradigm where the data can be traded and com-
mercialized securely and transparently and with total liberty at the local and
global scale directly from the data producer is necessary. This new paradigm
is the result of an evolution process where data producers are more active
owners of the collected data while at the same time catapulting disruptive
data-centric applications and services. i3-MARKET takes a step forward and
provides support tools for this maturity vision/process.

i3-MARKET is a fully open-source backplane platform that can be used
as a set of support tools or a standalone platform implementation of data
economy support services. i3-MARKET is the result of shared perspectives
from a representative global group of experts, providing a common vision
in data economy and identifying impacts and business opportunities in the
different areas where data is produced.

Data economy is commonly referring to the diversity in the use of data
to provide social benefits and have a direct impact in people’s life. From a
technological point of view, data economy implies technological services to
underpin the delivery of data applications that bring value and address the
diverse demands on selling, buying, and trading data assets. The demand
and the supply side in the data is increasing exponentially, and it is being
demonstrated that the value that the data has today is as relevant as any other
tangible and intangible assets in the global economy.

xi

xii Preface

This publication is supported with EU research funds under grant agree-
ment i3-MARKET-871754. Intelligent, Interoperable, Integrative and deploy-
able open source MARKETplace with trusted and secure software tools
for incentivising the industry data economy and the Science Foundation
Ireland research funds under grant agreement SFI/12/RC/2289_P2. Insight
SFI Research Centre for Data Analytics. The European Commission and
the SFI support for the production of this publication does not constitute an
endorsement of the contents, which reflect the views only of the authors, and
the Commission, the SFI or its authors cannot be held responsible for any use
which may be made of the information contained therein.

Dr. J. Martin Serrano O.
i3-MARKET Scientific Manager and Data Scientist
Adjunct Lecturer and Senior SFI Research Fellow at University of Galway
Data Science Institute - Insight SFI Research Centre for Data Analytics
Unit Head of Internet of Things, Stream Processing and Intelligent Systems
Research Group
University of Galway, www.universityofgalway.ie | Ollscoil na Gaillimh
<jamiemartin.serranoorozco@universityofgalway.ie>
<martin.serrano@insight-centre.org>
<martin.serrano@nuigalway.ie>

Who Should Read this Book?

General Public and Students

This Book is a unique opportunity for understanding the future of data spaces
and marketplace assets, their services, and their ability to identify different
methodologies indicators and the data-driven economy from a human-centric
perspective supports the digital transformation.

Entrepreneurs and SMEs

This Book is a unique opportunity for understanding the most updated
software tools to innovate, increase opportunities, and increase the power of
innovation into small and entrepreneurs to meet its full potential promoting
participation across the data economy values and evolution of society towards
a single digital strategy.

Technical Experts and Software Developers

This book is a guide for technolgy experts and open source enthusiast that
includes the most recent experiences in Europe towards innovating software
technology for the financial and banking sectors.

Data Spaces & Data Markeplaces Policy Makers

This Book represent a unique offering for non-technical experts but that par-
ticipates in the data economy process and the core data economy servicesto
enable the sharing of innovation and new services across data spaces and
marketplaces such as policy makers and standardisation organisatiosna and
groups.

xiii

What is Addressed in the i3-MARKET Book
Series?

“Concepts and Design Innovations for the Digital Transformation of Spaces
and Marketplaces”

In the first part of the i3-MARKET book series, we begin by discussing
the principles of the modern data economy that lead to make the society
more aware about the value of the data that is being produced everyday by
themselves but also in a collective manner, i.e., in an industrial manufacturing
plant, a smart city full of sensors generating data about the behaviours of
the city and their inhabitants and/or the wellbeing and healthcare levels of a
region or specific locations, etc. Data business is one of the most disruptive
areas in today’s global economy, particularly with the value that large corpo-
rates have embedded in their solutions and products as a result of the use of
data from every individual.

“Systems and Implemented technologies for Data-driven Innovation,
Addressing Data Spaces and Marketplaces Semantic Interoperability Needs”

In the second i3-MARKET series book, we start reviewing the basic
technological principles and software best practices and standards for imple-
menting and deploying data spaces and data marketplaces. The book provides
a definition for data-driven society as: The process to transform data pro-
duction into data economy for the people using the emerging technologies
and scientific advances in data science to underpin the delivery of data
economic models and services. This book further discusses why data spaces
and data marketplaces are the focus in today’s data-driven society as the
trend to rapidly transforming the data perception in every aspect of our

xv

xvi What is Addressed in the i3-MARKET Book Series?

activities. In this book, technology assets that are designed and implemented
following the i3-MARKET backplane reference implementation (WebRI)
that uses open data, big data, IoT, and AI design principles are introduced.
Moreover, the series of software assets grouped as subsystems and composed
by software artefacts are included and explained in full. Further, we describe
i3-MARKET backplane tools and how these can be used for supporting
marketplaces and its components including details of available data assets.
Next, we provide a description of solutions developed in i3-MARKET as
an overview of the potential for being the reference open source solution to
improve data economy across different data marketplaces.

“Technical Innovation, Solving the Data Spaces and Marketplaces
Interoperability Problems for the Global Data-driven Economy”

In the third i3-MARKET series book, we are focusing on including the
best practices and simplest software methods and mechanisms that allow the
i3-MARKET backplane reference implementation to be instantiated, tested,
and validated even before the technical experts and developers community
decide to integrate the i3-MARKET as a reference implementation or adopted
open source software tools. In this book, the purpose of offering a guide book
for technical experts and developers is addressed. This book addresses the so-
called industrial deployment or pilots that need to have a clear understanding
of the technological components and also the software infrastructures, thus
it is important to provide the easy-to-follow steps to avoid overwhelm the
deployment process.

i3-MARKET has three industrial pilots defined in terms of data resources
used to deploy data-driven applications that use the most of the i3-MARKET
backplane services and functionalities. The different software technologies
developed, including the use of open source frameworks, within the context
of the i3-MARKET are considered as a bill of software artefacts of the
resources needed to perform demonstrators, proof of concepts, and prototype
solutions. The i3-MARKET handbook provided can actually be used as input
for configurators and developers to set up and pre-test testbeds, and, therefore,
it is extremely valuable to organizations to be used properly.

What is Covered in this i3-MARKET Part III
Book?

“The i3-MARKET FOSS Handbook”

Technology deployment tools, software development frameworks and
testbed tools (sandboxes) are popular these days, to facilitate the complexity
of deploying applications and services based on complex software packages,
from a practical point of view the deployment and testing of software technol-
ogy should not be an burden anymore as per the large number of technologies
that exist but also because the evolution of these software tools is indicating
sooner than later this will only relay in having powerful systems capable
to run such complex frameworks and the rest is just provide few steps to
configure and execute the deployment. The reality is a bit different, while
there are excellent tools to deploy and run software virtually everywhere, the
technology must run in specific computing infrastructures with well-defined
specifications and functionalities.

In this third i3-MARKET series book we are focusing in including the
best practices and simplest software methods and mechanisms that allow the
i3-MARKET backplane reference implementation to be instantiated, tested
and validated even before the technical experts and developers’ commu-
nity decide to integrate the i3-MARKET as a reference implementation or
Adopted Open-Source Software tools. At this book the purpose of offering a
guidebook for technical experts and developers is addressed, the so-called
industrial deployment or pilots need to have clear understanding of the
technological components but also the software infrastructures, alike the steps
to be followed to avoid overwhelm the deployment activity.

xvii

xviii What is Covered in this i3-MARKET Part III Book?

i3-MARKET has three industrial Pilots defined in terms of data resources
used to deploy datadriven applications that uses the most of the i3-MARKET
backplane services and functionalities. The different software technologies
developed, including the use of open-source frameworks, within the context
of the i3-MARKET is considered as a bill of software artefacts of the
resources needed to perform demonstrators, proof of concepts and prototype
solutions. The i3-MARKET handbook provided can actually be used as input
for configurators

Acknowledgements

Immense thanks to our families for their incomparable affection, jollity, and
constant understanding that scientific career is not a work but a lifestyle,
for encouraging us to be creative, for their enormous patience during the
time away from them, invested in our scientific endeavours and responsi-
bilities, and for their understanding about our deep love to our professional
life and its consequences − we love you!

To all our friends and relatives for their comprehension when we had no
time to spend with them and when we were not able to join in time because we
were in a conference or attending yet another meeting and for their attention
and the interest they have been showing all this time to keep our friendship
alive; be sure, our sacrifices are well rewarded.

To all our colleagues, staff members, and students at our respective insti-
tutions, organizations, and companies for patiently listening with apparent
attention to the descriptions and progress of our work and for the great
experiences and the great time spent while working together with us and
the contributions provided to culminate this book series project. In partic-
ular, thanks to the support and confidence from all people who believed this
series of books would be finished in time and also to those who did not trust
on it, because, thanks to them, we were more motivated to culminate the
project.

To the scientific community, who is our family when we are away and
working far from our loved ones, for their incomparable affection, loyalty,
and constant encouragement to be creative, and for their enormous patience
during the time invested in understanding, presenting, and providing feedback
to new concepts and ideas − sincerely to you all, thanks a million!

Martín Serrano on Behalf of All Authors

xix

List of Figures

Figure 2.1 i3M ecosystem deployment diagram. 9
Figure 2.2 i3M ecosystem deployment diagram. 11
Figure 2.3 i3M SW stack four layers. 12
Figure 2.4 i3M centralized software stack layers. 13
Figure 2.5 i3M pilots’ software stack layers. 15
Figure 3.1 Backplane gateway architecture. 20
Figure 3.2 Backplane authentication flow overview. 21
Figure 3.3 Backplane authorization flow overview. 22
Figure 3.4 Service integrator process overview. 25
Figure 3.5 Subsystem OAS automatic integration mechanism

overview. 26
Figure 3.6 Backplane automatic integration mechanism

overview. 28
Figure 3.7 Ansible playbook run overview. 29
Figure 3.8 Server election process example. 30
Figure 4.1 MDS1. 44
Figure 4.2 ADS1. 45
Figure 4.3 Ansible playbook example. 46
Figure 4.4 ADS2. 46
Figure 4.5 i3-MARKET CI/CD with Ansible and GitHub. . . 47
Figure 4.6 Requirement.txt for semantic engine repository. . 51
Figure 5.1 Services and queues common services. 58
Figure 5.2 Alerts common services. 58
Figure 5.3 Conflict resolution common services. 59
Figure 5.4 Contracts common services. 59
Figure 5.5 Contracts common services. 60

xxi

xxii List of Figures

Figure 5.6 Exchange common services. 60
Figure 5.7 Notification common services. 60
Figure 5.8 Offering common services. 61
Figure 5.9 Pricing common services. 62
Figure 5.10 Tokens common services. 62
Figure 5.11 Implementation pyramid. 64
Figure 5.12 Creating a wallet 1/3. 65
Figure 5.13 WEB-RI interface. 66
Figure 5.14 Creating a wallet 3/3. 66
Figure 5.15 OIDC client configuration. 67
Figure 5.16 Registering an OIDC Client 1/4. 67
Figure 5.17 Registering an OIDC client 2/4. 68
Figure 5.18 Registering an OIDC client 3/4. 68
Figure 5.19 Registering an OIDC client 4/4. 69
Figure 5.20 OIDC client registered. 69
Figure 5.21 Username screen. 70
Figure 5.22 Pairing wallet. 70
Figure 5.23 Configuring wallet 1/2. 71
Figure 5.24 Configuring wallet 2/2. 71
Figure 5.25 Login in WEB-RI. 72
Figure 5.26 Selective disclosure. 72
Figure 5.27 Signing with the wallet. 73
Figure 5.28 Accessing WEB-RI. 73
Figure 5.29 SDK-generator approach. 75
Figure 5.30 SDK generator supported programming languages. 76
Figure 5.31 SDK-core CI/CD pipeline. 76
Figure 6.1 SDK layered approach. 80
Figure 6.2 SDK-core interactions. 81
Figure 6.3 SDK-generator approach. 83
Figure 6.4 SDK-generator supported programming

languages. 83
Figure 6.5 SDK-core CI/CD pipeline. 84
Figure 6.6 SDK-core playbook internal workflow. 84
Figure 6.7 Services and queues common services. 85
Figure 6.8 Alerts common services. 86
Figure 6.9 Conflict resolution common services. 86
Figure 6.10 Contracts common services. 86
Figure 6.11 Credentials common services. 87
Figure 6.12 Exchange common services. 87

List of Figures xxiii

Figure 6.13 Notification common services. 87
Figure 6.14 Offering common services. 88
Figure 6.15 Pricing common services. 89
Figure 6.16 Token common services. 89
Figure 6.17 WEB-RI architecture. 91
Figure 6.18 WEB-RI sitemap. 92
Figure 6.19 WEB-RI registration page. 93
Figure 6.20 WEB-RI register with wallet. 94
Figure 6.21 WEB-RI login page. 94
Figure 6.22 WEB-RI login with wallet. 95
Figure 6.23 WEB-RI navigation (provider). 95
Figure 6.24 WEB-RI navigation (consumer). 96
Figure 6.25 WEB-RI home page. 96
Figure 6.26 WEB-RI offerings page. 97
Figure 6.27 WEB-RI offering details page. 98
Figure 6.28 WEB-RI offering registration page. 99
Figure 6.29 WEB-RI offering purchase page. 100
Figure 6.30 WEB-RI search page. 101
Figure 6.31 WEB-RI notifications page. 102
Figure 7.1 Four-layer i3M SW stack. 104
Figure 7.2 MDS1. 105
Figure 7.3 ADS1. 106
Figure 7.4 Ansible playbook example. 107
Figure 7.5 ADS2. 107
Figure 7.6 CI/CD with Ansible and GitHub. 108
Figure 8.1 SDK-RI Implementation Technologies Used. . . . 114
Figure 8.2 SDK-RI pipeline based on Ansible AWX. 115
Figure 8.3 SDK-core/RI playbook internal workflow. 116
Figure 10.1 WEB-RI architecture. 122
Figure 10.2 WEB-RI sitemap. 123
Figure 11.1 Ansible Tower dashboard view. 125
Figure 11.2 Ansible resource inventory definition view. 126
Figure 11.3 Ansible Tower metrics data flow. 127
Figure 11.4 i3-MARKET Zabbix instance. 128
Figure 12.1 Open-source developers portal with MKDocs. . . 134
Figure 12.2 Code repository. 134
Figure 12.3 Open-source governance. 135
Figure 12.4 Public repository governance. 137

List of Tables

Table 2.1 i3M proprietary conceptual artifacts. 7
Table 2.2 i3M centralized cloud management and monitoring

software. 13
Table 2.3 i3M centralized DevOps software. 14
Table 2.4 i3M centralized third-party software. 14
Table 2.5 I3M centralized proprietary software. 15
Table 2.6 i3M pilots’ core artifacts. 16
Table 2.7 i3M pilots’ third-party artifacts. 17
Table 4.1 Deployment scenarios and i3M user roles mapping. . 44
Table 4.2 i3m-pilots-docker-compose.yml. 48
Table 7.1 Deployment scenarios and i3M user roles mapping. . 105

xxv

List of Contributors

Achille, Zappa, NUIG, Ireland

Alessandro, Amicone, GFT, Italy

Andrei, Coman, Siemens SRL, Romania

Andres, Ojamaa, Guardtime, Estonia

Angel, Cataron, Siemens SRL, Romania

Antonio, Jara, Libellium/HOPU, Spain

Birthe, Boehm, Siemens AG (Erlangen), Germany

Borja, Ruiz, Atos, Spain

Bruno, Almeida, UNPARALLEL, Portugal

Bruno, Michel, IBM, Switzerland

Carlos Miguel, Pina Vaz Gomes, IBM, Switzerland

Carmen, Pereira, Atos, Spain

Chi, Hung Le, NUIG, Ireland

Deborah, Goll, Digital SME, Belgium

Dimitris, Drakoulis, Telesto, Greece

Edgar, Fries, Siemens AG (Erlangen), Germany

Fernando, Román García, UPC, Spain

Filia, Filippou, Telesto, Greece

xxvii

xxviii List of Contributors

George, Benos, Telesto, Greece

German, Molina, Libellium/HOPU, Spain

Hoan, Quoc, NUIG, Ireland

Iosif, Furtuna, Siemens SRL, Romania

Isabelle, Landreau, IDEMIA, France

Ivan, Martinez, Atos, Spain

James, Philpot, Digital SME, Belgium

Jean Loup, Depinay, IDEMIA, France

Joao, Oliveira, UNPARALLEL, Portugal

Jose, Luis Muñoz Tapia, UPC, Spain

Juan Eleazar, Escudero, Libellium/HOPU, Spain

Juan, Hernández Serrano, UPC, Spain

Juan , Salmerón, UPC, Spain

Justina, Bieliauskaite, Digital SME, Belgium

Kaarel, Hanson, Guardtime, Estonia

Lauren, Del Giudice, IDEMIA, France

Luca, Marangoni, GFT, Italy

Lucas, Asmelash, Digital SME, Belgium

Lukas, Zimmerli, IBM, Switzerland

Márcio, Mateus, UNPARALLEL, Portugal

Marc, Catrisse, UPC, Spain

Mari, Paz Linares, UPC, Spain

Maria Angeles, Sanguino Gonzalez, Atos, Spain

Maria, Smyth, NUIG, Ireland

Marina, Cugurra, ETA Consulting

Marquart, Franz, Siemens AG (Munich), Germany

Martin, Serrano, NUIG, Ireland

List of Contributors xxix

Mirza, Fardeen Baig, NUIG, Ireland

Oxana, Matruglio, Siemens AG (Munich), Germany

Pascal, Duville, IDEMIA, France

Pedro, Ferreira, UNPARALLEL, Portugal

Pedro, Malo, UNPARALLEL, Portugal

Philippe, Hercelin, IDEMIA, France

Qaiser, Mehmood, NUIG, Ireland

Rafael, Genés, UPC, Spain

Raul, Santos, Atos, Spain

Rishabh, Chandaliya, NUIG, Ireland

Rupert, Gobber, GFT, Italy

Stefanie, Wolf, Siemens AG(Erlangen), Germany

Stratos, Baloutsos, AUEB, Greece

Susanne, Stahnke, Siemens AG (Munich), Germany

Tanel, Ojalill, Guardtime, Estonia

Timoleon, Farmakis, AUEB, Greece

Tomas, Pariente Lobo, Atos, Spain

Toufik, Ailane, Siemens AG (Erlangen), Germany

Víctor, Diví, UPC, Spain

Vasiliki, Koniakou, AUEB, Greece

Yvonne, Kovacs, Siemens SRL, Romania

List of Abbreviations

AI Artificial intelligence
API Application program interface
APP Mobile application/web application
CA Certificate authority
CSMT Compact sparse merkle tree
DB Data base
DCAT Data catalog vocabulary
DID Decentralized identifier
DLT Distributed ledger technology
DSA Data sharing agreement
ECDSA Elliptic curve digital signature algorithm
HMAC Hash-based message authentication code
IAM Identity and access management
IDM Identity management
IoT Internet of things
IRI Information reuse and integration
JWT JSON web token
KOS Knowledge organization system
NAL Nexus authorization logic
O-CASUS Ontology for control, access, save, use and

security
OIDC OpenID connect
OSS Open source software
PAV Privacy, anonymity, and verifiability
PDU Protocol data unit
PoO Proof of origin

xxxi

xxxii List of Abbreviations

PoP Proof of publication
PoR Proof of reception
QoS Quality of service
RP Relying party
RSA Rivest-Shamir-Adleman cryptosystem
SDA Secure data access
SDK Software development kit
SKOS Simple knowledge organization system
SLA Service level agreement
SLS Service level specification
SME Small and medium-sized enterprises
SQL Structured query language
SSI Self-sovereign identity
TLS Transport layer security
URI Uniform resource identifier
VC Verifiable credentials
VDI Verifiable database integrity
VoID Vocabulary of interlinked datasets

1
i3-MARKET Overview

The i3-MARKET project (i3-market.eu) solutions address the growing
demand for a single European Data Market and Data Economy.

i3-MARKET addresses the data economy challenge by innovating mar-
ketplace platforms, demonstrating with industrial implementations that the
data economy growth is possible. The i3-MARKET solutions aim at provid-
ing technologies for trustworthy (secure and reliable), data-driven collabo-
ration and federation of existing and new future marketplace platforms, with
special attention on industrial data. The i3-MARKET architecture is designed
to enable secure and privacy-preserving data sharing across data spaces and
marketplaces, through the deployment of a Backplane across operational data
marketplaces.

In i3-MARKET, we are not trying to create another new Marketplace,
but we are implementing the Backplane solutions that allow other data
marketplaces and data spaces to expand their market, facilitate the registra-
tion and discovery of data assets, facilitate the trading and sharing of data
assets among providers, consumers, and owners, and provide tools to add
functionalities they lack for better data sharing and trading processes.

The i3-MARKET project has built a blueprint open-source soft-
ware architecture called “i3-MARKET Backplane” (www.open-source.i3-
MARKET.eu) that addresses the growing demand for connecting multiple
data spaces and marketplaces in a secure and federated manner.

The i3-MARKET Consortium is contributing with the developed software
tools to build the European Data Market Economy by innovating marketplace
platforms, and demonstrating with three industrial reference implementations
(pilots) that a decentralized data economy and more fair growth is possible.

1.1 Context

A software deployment guide is a document that outlines the process and
best practices for deploying software to a production environment. It is

1

2 i3-MARKET Overview

an essential resource for developers, system administrators, and operations
teams who are responsible for deploying software in a reliable and efficient
manner.

Overall, a well-written software deployment guide is an invaluable
resource for ensuring that software is deployed in a reliable and efficient man-
ner. By following best practices and established procedures, organizations can
minimize the risk of downtime and ensure that their software is delivering the
intended benefits to end-users.

2
General Description

i3-MARKET leverages on blockchain technologies (e.g. Hyperledger and
Ethereum) to build a trusted, interoperable, and decentralized substrate
(backplane) allowing to create a federated data market where data spaces
and marketplaces are able to trade data assets among each other. The i3-
MARKET is mostly a set of independent subsystems with a self-contained
functionality such as the identity and access management system, the seman-
tic engine subsystem, data access subsystem, etc. Most of these subsystems
have broken down their functionality into atomic and loosely coupled com-
ponents exposing their functionality through a REST API, which yields a
microservice-based nature to the i3-MARKET system

2.1 Deployment and Operational Concepts

Help to choose the right technologies to be used:
Choosing the right technologies for software deployments can be a complex
process, but here are some general guidelines to help you make informed
decisions:

2.1.1 Consider the requirements of the software

The first step in choosing the right technologies for a deployment is to
consider the requirements of the software being deployed. This includes
factors such as the operating system, the programming language used, the
database management system, and any dependencies or third-party libraries
required.

2.1.2 Evaluate the deployment environment

The deployment environment will also play a key role in determining the
appropriate technologies to be used. Consider factors such as the hardware

3

4 General Description

and software infrastructure, the network configuration, and the security
requirements.

2.1.3 Consider automation and orchestration

Automation and orchestration tools can help to streamline the deployment
process and minimize the risk of errors or inconsistencies. Consider using
tools such as Ansible, Chef, or Puppet to automate the deployment process.

2.1.4 Evaluate containerization options

Containerization technologies such as Docker and Kubernetes can help to
simplify the deployment process and make it more portable across differ-
ent environments. Consider using containerization technologies to deploy
software in a consistent and repeatable way.

2.1.5 Consider monitoring and reporting tools

Monitoring and reporting tools can help to ensure that the software is per-
forming as expected and can alert teams to potential issues before they
become critical. Consider using tools such as Nagios, Prometheus, or Grafana
to monitor and report on key metrics.

2.2 Deployment Specification

The i3-MARKET architecture specification is based on the 4 + 1 architectural
view model approach. One of these views, physical view, is the scope of this
document. Physical view depicts the system from a system engineer’s point
of view. It concerns the topology of software components on the physical
layer as well as the physical connections between these components. This
view is also known as the deployment view. UML diagrams used to represent
the physical view must include the deployment diagram.

Considering this in the i3-MARKET context, the deployment specifi-
cation should define execution architecture of systems that represent the
assignment (deployment) of software artifacts (i3-MARKET building blocks)
to deployment targets (usually nodes).

Nodes represent either hardware devices or software execution environ-
ments. They could be connected through communication paths to create net-
work systems of arbitrary complexity. Artifacts represent concrete elements
in the physical architecture.

2.3 Terminology 5

Once the deployment has been provided, a complementary specification
would be necessary to define how to deploy software within the i3-MARKET
ecosystem. In the context of i3-MARKET, we will be referring to this
specification as management operative specification.

Finally, an end-user operative specification is provided, defining the
interaction with i3-MARKET from a stakeholder point of view.

2.3 Terminology

The key terms behind i3-MARKET deployment terminology are the
following:

Artifact:
As it is described in [?], an artifact is a classifier that represents some
physical entity, a piece of information that is used or is produced by a software
development process, or by deployment and operation of a system. Artifact
is a source of a deployment to a node. A particular instance (or “copy”) of
an artifact is deployed to a node instance. The most common artifacts are as
follows:

• Source files
• Executable files
• Database tables
• Scripts
• DLL files
• User manuals or documentation
• Output files

Artifacts are deployed on the nodes. They can provide physical manifes-
tation for any UML element. Generally, they manifest components. Artifacts
are labelled with the stereotype <<artifact>>, and it may have an artifact
icon on the top right corner.

Each artifact has a filename in its specification that indicates the physical
location of the artifact. An artifact can contain another artifact. It may be
dependent on one another.

Artifacts have properties and behaviour that manipulate them.

Node:
As it is introduced in [?], a node is a computational resource upon which
artifacts are deployed for execution. A node is a physical thing that can
execute one or more artifacts. A node may vary in its size depending on the
size of the project.

6 General Description

Node is an essential UML element that describes the execution of code
and the communication between various entities of a system. It is denoted by
a 3D box with the node name written inside of it. Nodes help to convey the
hardware that is used to deploy the software.

An association between nodes represents a communication path from
which information is exchanged in any direction.

Generally, a node has two stereotypes as follows:

• << device >>: It is a node that represents a physical machine capable
of performing computations. A device can be a router or a server PC. It
is represented using a node with stereotype <<device>>. In the UML
model, you can also nest one or more devices within each other.

• << execution environment >>: It is a node that represents an
environment in which software is going to execute. For example, Java
applications are executed in Java virtual machine (JVM). JVM is con-
sidered as an execution environment for Java applications. We can nest
an execution environment into a device node. You can nest more than
one execution environments in a single device node.

The following sections report on the deployment strategy and the status
reached at the closure of the final release.

2.4 i3-MARKET Artifacts Overview

In the context of i3-MARKET, several artifacts have been developed, inte-
grated, and deployed. These artifacts have been built on top of a set of
third-party and open-source frameworks, which have been analysed and
deployed as tech-bed for the construction of the i3-MARKET backplane. For
the final release, the third-party artifacts included on i3-MARKET are:

◦ Hyperledger Besu: The blockchain framework.
◦ CockroachDB: Distributed database deployed on each node. Admin

Interface only accessible through node 1.
◦ RocksDB: Decentralized storage included with the blockchain network

(ledger).
◦ Loopback4: Framework supporting i3-MARKET backplane API.

Regarding the project-internal conceptual artifacts, i3-MARKET has
developed an extensive artifacts portfolio, mainly provided in WP3 and WP4,
for supporting the integration, registration, discovery, and transfer of reliable
trade of data. A detailed list of these artifacts (including artifact ID, artifact
name, artifact dependencies, and their status for the final release) can be seen
in Table 2.1.

2.4 i3-MARKET Artifacts Overview 7

Table 2.1 i3M proprietary conceptual artifacts.
Artifact

ID
Artifact Dependencies Final release use Notes

A1 Blockchain
framework

Decentralized
storage

Deployed and used Blockchain framework.
Deployed on each node.

A2 CockroachDB
(distributed

storage)

Deployed and used Distributed database
deployed on each node.

A3 Decentralized
storage

Blockchain
framework

Deployed and used Included with the
blockchain framework.

A4 User-centric
authentication

Deployed and used Each instance/pilot has its
own OIDC and VC service.

A5 Service-centric
authentication

Deployed and used Each instance/pilot has its
own Keycloak service.

A6 HW Wallet In progress
A7 Software Wallet Cloud Wallet

Client, Backplane
API (Cloud Wallet

server and
user-centric

authentication),
data access SDK,
and i3-MARKET

SDK

Deployed and used

A8 Smart contract
manager

SLA/SLE smart
contract

Deployed and used

A9 SLA/SLE smart
contract

Deployed and used

A10 Conflict resolution SCM and DS Deployed and used Integrated with Besu, smart
contract manager and

decentralized storage.
Each instance/pilot has its

own service.
A11 Explicit user

consent
Backplane API
(smart contract

manager,
distributed ledger,

and distributed
storage)

Deployed and used Integrated with the smart
contract manager.

A12 Auditable
accounting

Deployed and used

A13 Standard payment Backplane API
(auditable

accounting, conflict
resolution, smart

contract, and
SLA/SLE smart

contract)

Deployed and used Library to be integrated and
deployed in data access

SDK and data access API.
Library for the
i3-MARKET

non-repudiation protocol
that helps

generate/verifying the
necessary proofs and the
received block of data.

A14 Tokenization Backplane API
(user-centric

authentication,
smart contract, and

SLA/SLE smart
contract)

Deployed and used

8 General Description

Table 2.1 Continued.
Artifact

ID
Artifact Dependencies Final release use Notes

A15 Micro payment Deployed Integrated into the
Tokenizer. Low chance to
be used by i3-MARKET

because for data payments
is used fiat money and the

Tokenizer and the token are
just for the fees.

A17 Data access API Deployed and used Each node has its own
endpoint.

A18 Semantic data manager
(triple store)

Deployed and used

A19 Semantic models Deployed and used It is not software
component.

A20 Semantic engine Backplane API
(user IDs) and
decentralized

storage

Deployed and used This component includes
- Semantic model
management

- Offering and discovery
Each instance/pilot has

their own engine
A21 Backplane API All Deployed and used Each node has its own

endpoint
A22 i3-MARKET

SDK-generator
Deployed and used Endpoint at node 1

Deployed as Docker
container through Ansible

A26 SDK-RI (reference
implementation)

All Deployed and used Each marketplace has its
own SDK-RI

A27 SDK-core SDK-generatore
All

Deployed and used Available at Nexus

A29 Secure server (Keycloak) Deployed Available at Nexus
Integration with

user-centric authentication
component in progress

A30 Notification manager SDK-RI and
SDK-core

Deployed and used

A31 Rating Deployed and used

Finally, in the context of CI/CD, a set of tools has been used for the
automation and monitoring of the artifacts deployed on i3-MARKET. These
tools are listed in the deliverable D4.7 and in the sections below.

2.5 Deployment Architecture View

The i3-MARKET deployment view is depicted in the picture below. Four
nodes constituted the i3-MARKET R1 cluster. On each node, it will be
deployed a Backplane gateway system and an instance of all the rest i3-
MARKET main building blocks (trust, security, and privacy system, storage
system, and data access system) giving backend support to the Backplane
gateway system. In addition to that, node 4 will host all the components
related with the semantic engine building block.

2.6 i3-MARKET Network Infrastructure 9

F
ig

ur
e

2.
1

i3
M

ec
os

ys
te

m
de

pl
oy

m
en

td
ia

gr
am

.

10 General Description

2.6 i3-MARKET Network Infrastructure

Figure 2.1 shows the deployment diagram associated with the i3-MARKET
network for the last release. It can be appreciated that the deployment strategy
has evolved from the M18 centralized infrastructure (where a single and
centralized i3-MARKET instance gave support to all demonstrators) to a
“hybrid” decentralized infrastructure (where each of the pilot’s demonstrator
that joined the i3-MARKET ecosystem has its own i3-MARKET instance). It
is important to highlight the “hybrid” nature of the network because a master
instance is maintaining, among other reasons, some centralized services such
as the central Besu node, the notification manager, etc., and CI/CD tools
needed for the setup of the network.

Therefore, in this landscape, it can be appreciated the existence of
marketplaces, which are simple instances (yellow boxes) and the cen-
tral/master instances (green boxes). The most significant relationship among
the instances is the connection between each of the Besu nodes themselves
and their connection with the Besu central node.

It is important to mention that the number of nodes used for each of the
i3-MARKET pilot instances and the maintenance of these nodes is up to the
pilots’ criteria and responsibility. Thus, the node’s layout that appears on each
of the instances, depicted for hosting the i3-MARKET artifacts, Figures 2.1
and 2.2, is just an example and does not have to be the real picture of the
instances deployment.

2.7 Software Stack

For the final release, two types of software environments (understood as a set
of artifacts) can be found in i3-MARKET, which are aligned with the infras-
tructures presented in the previous section. On one hand, the marketplace-side
software stack (i3-MARKET pilot environment) and, on the other hand, the
stack landscape deployed in the centralized cluster (i3-MARKET master
environment), which acts as a master for the rest of marketplaces, adhere
to the i3-MARKET network.

A four-layer stack has been defined for i3-MARKET (Figure 2.3): at the
lowest layer, there is the Cloud provisioning and management layer. On top
of that, a DevOps software layer is placed for assembling all the software
used for the CI/CD process. Then, a third-party software layer is in charge of
giving support to the i3M Core Artifacts, which can be found at the top level
of the stack.

2.7 Software Stack 11

F
ig

ur
e

2.
2

i3
M

ec
os

ys
te

m
de

pl
oy

m
en

td
ia

gr
am

.

12 General Description

2.7 Software Stack
For the final release, two types of software environments (understood as a set of
artifacts) can be found in i3-MARKET, which are aligned with the infrastructures
presented in the previous section. On one hand, the marketplace-side software stack
(i3-MARKET pilot environment) and, on the other hand, the stack landscape
deployed in the centralized cluster (i3-MARKET master environment), which acts as
a master for the rest of marketplaces, adhere to the i3-MARKET network.

A four-layer stack has been defined for i3-MARKET (Figure 2.3): at the lowest layer,
there is the Cloud provisioning and management layer. On top of that, a DevOps
software layer is placed for assembling all the software used for the CI/CD process.
Then, a third-party software layer is in charge of giving support to the i3M Core
Artifacts, which can be found at the top level of the stack.

Figure 2.3. i3M SW stack four layers.

Depending on the environment to be deployed, it might deploy one layer or another. More
details on the specific software deployed on each environment are given in the following
sub-sections.

2.8 i3-MARKET Master Environment
The i3-MARKET centralized software stack, represented in Figure 2.4, is focused on

providing the minimum and centralized services for erecting an i3-MARKET network; these
are the “Cloud provisioning and management” layer, the “DevOps software” layer, master
nodes of the “Third-party software” layer, and the centralized i3-MARKET artifacts provided
in the “i3M centralized services” layer.

i3M Core
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure 2.3 i3M SW stack four layers.

Depending on the environment to be deployed, it might deploy one
layer or another. More details on the specific software deployed on each
environment are given in the following sub-sections.

2.8 i3-MARKET Master Environment

The i3-MARKET centralized software stack, represented in Figure 2.4, is
focused on providing the minimum and centralized services for erecting an
i3-MARKET network; these are the “Cloud provisioning and management”
layer, the “DevOps software” layer, master nodes of the “Third-party soft-
ware” layer, and the centralized i3-MARKET artifacts provided in the “i3M
centralized services” layer.

Cloud provisioning and management layer oversees providing and man-
aging all physical nodes that the i3-MARKET common infrastructure is
composed of. For the management of physical resources in a homogeneous
way, an Ansible Tower1 instance is deployed for the administration of said
physical resources, thus having their management centralized from Ansible.
On the other hand, for the monitoring and registering of the status of the
i3-MARKET central services, Zabbix is deployed as part of the central

1 Ansible Tower: https://www.ansible.com/products/tower

2.8 i3-MARKET Master Environment 13

Figure 2.4. i3M centralized software stack layers.

Cloud provisioning and management layer oversees providing and managing all physical
nodes that the i3-MARKET common infrastructure is composed of. For the management of
physical resources in a homogeneous way, an Ansible Tower1 instance is deployed for the
administration of said physical resources, thus having their management centralized from
Ansible. On the other hand, for the monitoring and registering of the status of the i3-
MARKET central services, Zabbix is deployed as part of the central environment. Table 2.2
shows some deployment aspects of the previously commented tools:

Table 2.2. i3M centralized cloud management and monitoring
software.

SW
Component

Building
block

Assigned
VM/PR

Type Technology

Ansible AWX Deployment I3M-PH-
Node2

Third-
party SW

Ansible AWX

Zabbix Monitoring I3M-PH-
Node4

Third-
party SW

Zabbix

i3-MARKET DevOps will be a set of practices that will combine software development and IT
operations, and it will aim to shorten the i3-MARKET system development life cycle and
provide continuous delivery with high software quality. Thus, the DevOps layer combines
software development and IT operations by means of the artifacts listed in Table 2.3.

Table 2.3. i3M centralized DevOps software.

1 Ansible Tower: https://www.ansible.com/products/tower

i3M
Centralized

Services

Third-party
Software

DevOps Stack

Cloud Provisioning and Management

Figure 2.4 i3M centralized software stack layers.

environment. Table 2.2 shows some deployment aspects of the previously
commented tools:

Table 2.2 i3M centralized cloud management and monitoring software.
SW
Component

Building
block

Assigned
VM/PR

Type Technology

Ansible AWX Deployment I3M-PH-Node2 Third-party SW Ansible AWX
Zabbix Monitoring I3M-PH-Node4 Third-party SW Zabbix

i3-MARKET DevOps will be a set of practices that will combine software
development and IT operations, and it will aim to shorten the i3-MARKET
system development life cycle and provide continuous delivery with high
software quality. Thus, the DevOps layer combines software development
and IT operations by means of the artifacts listed in Table 2.3.

Besides that, a set of artifacts from the i3-MARKET third-party software
is needed in the centralized environment to master some services:

• Master Besu node, which gives authorization to new member to the
blockchain network.

• Cockroach data base, which hosts the “Seed Index” for federating
queries.

• RocksDB, which is the central instance of the blockchain.
• Security services for allowing authentication and authorization capabil-

ities to the central node.

14 General Description

Table 2.3 i3M centralized DevOps software.
SW Com-
ponent

Building block Assigned
VM/PR

Type Technology

Ansible
AWX

Deployment I3M-PH-Node2 Third-
party SW

Ansible AWX

Docker
Swarm

Deployment I3M-PH-Node1,
I3M-PH-Node2,
I3M-PH-Node3,
and I3M-PH-
Node4

Third-
party SW

Docker
Swarm

GitLab
CI/CD
(Runners)

CI/CD GitLab (out of
i3M cluster)

Third-
party SW

GitLab

Nexus CI/CD I3M-PH-Node4 Third-
party SW

Nexus

NGINX Management/security I3M-PH-Node1,
I3M-PH-Node2,
I3M-PH-Node3,
and I3M-PH-
Node4

Third-
party SW

NGinx

MkDocs Documentation I3M-PH-Node4 Third-
party SW

MkDocs

Table 2.4 shows some deployment details regarding the before com-
mented artifacts.

Table 2.4 i3M centralized third-party software.
SW Com-
ponent

Building block Assigned
VM/PR

Type Technology

Blockchain
framework
(central
node)

Blockchain network I3M-PH-
Node4

Third-party
SW

Hyperledger
Besu

Distributed
storage

Data storage I3M-PH-
Node4

Third-party
SW

CockroachDB

Decentralized
storage

Data storage I3M-PH-
Node4

Third-party
SW

RocksDB

Security
server

Trust, security, and
privacy

I3M-PH-
Node4

Third-party
SW

OIDC, VC, and
Keycloak

Finally, regarding the “i3-MARKET centralized services”, the notifica-
tion manager and the SDK-generator (which support the SDK-core generator)
have been designed to be centralized. Table 2.5 shows some deployment
details of them.

2.9 i3-MARKET Pilot Environment 15

Table 2.5 I3M centralized proprietary software.
SW Com-
ponent

Building
block

Assigned
VM/PR

Type Technology

Notification
manager

Data storage I3M-PH-Node4 i3-MARKET SW RabittMQ

SDK-
generator

Reference
implementa-
tion

I3M-PH-Node4 Hybrid artifact OpenAPI
Generator2

2.9 i3-MARKET Pilot Environment

The i3-MARKET pilots’ stack is represented in Figure 2.5 and it is composed
mainly of two layers: “Third-party software” layer and “i3M core services”
layer.

Figure 2.5. i3M pilots’ software stack layers.

The top layer is composed of all i3-MARKET core artifacts supplied by the project, which
might be deployed in a decentralized way. In other words, each marketplace willing to be
part of the i3-MARKET ecosystem might have one instance of these artifacts running on its
own i3-MARKET infrastructure. Table 2.6 shows more information about these
artifacts/components as well as the set of services provided by each of them (linked with the
Microservices View in D2.4). Other details that can be found in the table are:

 SW artifact/component name

 Associated building block (see internal deliverable I2.41 Error! Reference source
not found.)

 Artifact type

 Technology supporting artifact

Table 2.6. i3M pilots’ core artifacts.

SW
Component

Building
block

Services Type Technolog
y

User-centric
authentication

Trust, security,
and privacy

Verifiable
Credential
API

i3-MARKET
SW

Keycloak

i3M Core
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure 2.5 i3M pilots’ software stack layers.

The top layer is composed of all i3-MARKET core artifacts supplied by
the project, which might be deployed in a decentralized way. In other words,
each marketplace willing to be part of the i3-MARKET ecosystem might have
one instance of these artifacts running on its own i3-MARKET infrastructure.
Table 2.6 shows more information about these artifacts/components as well

16 General Description

as the set of services provided by each of them (linked with the Microservices
View in D2.4). Other details that can be found in the table are:

• SW artifact/component name
• Associated building block (see internal deliverable I2.41 [?])
• Artifact type
• Technology supporting artifact

Table 2.6 i3M pilots’ core artifacts.
SW
Component

Building block Services Type Technology

User-centric
authentication

Trust, security,
and privacy

Verifiable
Credential
API

i3-MARKET
SW

Keycloak

Service-centric
Authentication

Trust, security,
and privacy

OIDC
provider
API

i3-MARKET
SW

Cloud Wallet Trust, security,
and privacy

Wallet Cloud
Server and
Wallet APP

i3-MARKET
SW

HW Wallet Trust, security,
and privacy

i3-MARKET
SW

Smart contract
manager

Trust, security,
and privacy

Smart
contract
manager API
+ explicit user
consent

i3-MARKET
SW

Hyperledger
Besu,
Solidity

Conflict resolu-
tion

Trust, security,
and privacy

Conflict reso-
lution API

i3-MARKET
SW

Auditable
accounting

Trust, security,
and privacy

Auditable
accounting
API

i3-MARKET
SW

Monetization Trust, security,
and privacy

Pricing
manager API,
Tokenizer
API, and non-
repudiation
protocol
library

i3-MARKET
SW

Data access Data access Data access
API, standard
payments
system, and
data transfer

i3-MARKET
SW

2.9 i3-MARKET Pilot Environment 17

Table 2.6 Continued.
SW
Component

Building block Services Type Technology

Semantic Semantics Semantic
engine API
(metadata
registry
management,
data
offerings,
and federated
query
discovery)

i3-MARKET
SW

MongoDB

Backplane API Backplane i3-MARKET
SW

LoopBack4

SDK-RI Reference
implementation

i3-MARKET
SW

Java

Web-RI Reference
implementation

i3-MARKET
SW

Finally, the “Third-party SW” layer will be mainly in charge of providing
the software stack identified as software requirements by the i3-MARKET
system. These software requirements are: Hyperledger Besu, CockroachDB,
Loopback4, and Keycloak. The Table 2.7 summarise the i3M pilot third party
artifacts used.

Table 2.7 i3M pilots’ third-party artifacts.
SW Component Building

block
Type Technology

Blockchain framework Blockchain
network

Third-party SW Hyperledger Besu

Distributed storage Data storage Third-party SW CockroachDB
(deployed standalone)

Decentralized storage Data storage Third-party SW RocksDB
Security server Trust,

security,
and privacy

Third-party SW Keycloak

Regarding “DevOps Stack” and “Cloud provisioning and management”,
these two layers are out of scope of the stack provided by i3-MARKET on
each external instance. This is mainly because of two reasons:

• Each pilot is responsible for deciding, deploying, and using the nodes
management and service monitoring tools most suitable to its needs and

18 General Description

restrictions. Thus, for example, IBM pilot has decided to use Trivy3 for
scanning vulnerabilities in the deployment of its i3-MARKET instance.

• As it was commented in the infrastructure sections, self-management by
the pilot is assumed where to deploy each artifact. Therefore the “Cloud
provisioning and management” layer is now under the scope of the pilot
administrators.

3 https://www.aquasec.com/products/trivy/

3
Backplane API Gateway

3.1 Objectives

The Backplane gateway system is the building block in charge of offering
to all participants and marketplaces access to the Backplane system. The
goal of the Backplane API is therefore twofold: on the one hand, it serves
an integrated API endpoint for all the i3-MARKET services offered by i3-
MARKET and implemented in the respective building blocks. On the other
hand, it provides secure mechanisms for preventing not-allowed accesses.

In terms of internal connections with other i3-MARKET building blocks,
Backplane gateway system has secure communication with the rest of sub-
systems to integrate their services into the Backplane API, in order to provide
secure access to authorized clients.

The Backplane API is the set of endpoints exposed by the gateway. It
comprises all the publicly available endpoints of the subsystems integrated
with the Backplane, as well as a few other endpoints, belonging to the
Backplane itself, used in the authentication/authorization flows.

The API follows the OpenApi Specification 3.01. Furthermore, the end-
points corresponding to each subsystem are generated automatically based
on the subsystem’s own OpenApi specification, using the service integrator
engine, written in Dart.

In Figure 3.1, there is an overview of the overall Backplane gateway
architecture. It shows how the Backplane router incorporates all subsystem
endpoints; so it can redirect each query to the corresponding subsystem,
applying an authentication layer above to avoid unauthorized requests. Users
can access to the Backplane gateway via the Backplane API, which publishes
all available subsystems together with their endpoints, being totally agnostic
of its implementation and how to access the subsystem directly.

1https://swagger.io/specification/

19

20 Backplane API Gateway

Figure 3.1 Backplane gateway architecture.

The Backplane gateway exposes all subsystem endpoints through a single
Backplane API. This simplifies the user interaction with the system; further-
more, it provides an auto-generated documentation that follows the OpenApi
specification (OAS).

3.2 Solution Design/Blocks

3.2.1 Authentication and authorization

In the current Backplane API gateway implementation, OAuth 2.02 authen-
tication flow is used. Combined together with OpenID Connect (OIDC)3,
that provides a simple identity layer on top. Using OAuth Authorization
Code flow (see Figure 3.2), a JWT token is generated at the end of the
login flow, which, later, can be used in subsequent queries to authen-
ticate clients against subsystem endpoints, using the Backplane API as
gateway.

2https://oauth.net/2/
3https://openid.net/connect/

3.2 Solution Design/Blocks 21

3.2.1.1 Authentication
Clients are expected to request their JWT token through a given login
endpoint, to further request secured endpoints using those credentials.

Thanks to the OpenID Connect identity layer, scopes and claims can be
used. Each endpoint can declare a set of scopes, which will be later used
to ensure that the requesting user has enough privileges, in a claim-based
authorization fashion.

Figure 3.2 Backplane authentication flow overview.

There is a description of each connection considered during the authenti-
cation flow described in Figure 3.2:

1. Login browser redirect: When a user requests a Backplane authenti-
cated endpoint without providing the required credentials, it is redirected
to the identity provider authorization page (OIDC provider).

2. Auth grant issue: In case login succeeds, an authorization grant is
issued and provided to the client.

3. JWT request: The client requests an access token, providing the Auth
grant code.

4. Generate JWT: Now, the Backplane generates an access token JWT,
adding the user claims that are requested to our identity provider.

22 Backplane API Gateway

5. Request endpoint: The client uses the previously generated JWT to
authenticate their requests to the Backplane.

6. Redirect request: In case the user has enough privileges to access
the requested endpoint, checking the endpoint scope and user claims,
the Backplane will redirect the query to the corresponding subsystem
endpoint.

3.2.1.2 Authorization
After performing the whole authentication flow, clients will end up with two
JWT tokens:

• access_token: Contains the subject id, together with the scope.
• id_token: Contains information about the user itself, including the

Verifiable Credentials associated with the corresponding claims, based
on the user profile.

Clients are expecting to provide those tokens in the header part when
querying a secured endpoint. Figure 3.3 illustrates the authorization flow.

Figure 3.3 Backplane authorization flow overview.

1. Secured endpoint query: Clients are expected to include the
access_token and id_token headers when requesting a Backplane
authenticated endpoint.

3.2 Solution Design/Blocks 23

2. Retrieve JWKS4: The OIDC uses token asynchronous validation; so
the Backplane just needs to retrieve the JWKS, an array of public
cryptographic keys, in order to validate each token in offline mode using
EdDSA5, a public-key cryptography signature algorithm.

3. Validate tokens: The Backplane internally validates the tokens’ sig-
nature and verifies that the user has the required claims to access the
endpoint.

4. Query: The query is redirected to the subsystem, together with the
id_token header, containing a JWT token that describes the requester.

3.2.2 Subsystem implementation

While subsystems do not need to worry about authentication, they need to
indicate in their OAS specification which of their endpoints are protected and
which are not. To mark an endpoint as protected, it must include:

• JWT security reference: The endpoint specification must show that
JWT is used as a means of authentication. This is done by adding de JWT
schema to the security field, specifying if needed the claims required to
access the endpoint.

Figure 3.3. Backplane authorization flow overview.

1. Secured endpoint query: Clients are expected to include the access_token and
id_token headers when requesting a Backplane authenticated endpoint.

2. Retrieve JWKS4: The OIDC uses token asynchronous validation; so the Backplane
just needs to retrieve the JWKS, an array of public cryptographic keys, in order to
validate each token in offline mode using EdDSA5, a public-key cryptography
signature algorithm.

3. Validate tokens: The Backplane internally validates the tokens’ signature and
verifies that the user has the required claims to access the endpoint.

4. Query: The query is redirected to the subsystem, together with the id_token header,
containing a JWT token that describes the requester.

3.2.2 Subsystem implementation
While subsystems do not need to worry about authentication, they need to indicate in their
OAS specification which of their endpoints are protected and which are not. To mark an
endpoint as protected, it must include:

 JWT security reference: The endpoint specification must show that JWT is used as
a means of authentication. This is done by adding de JWT schema to the security
field, specifying if needed the claims required to access the endpoint.

“security”: [

 {

 “jwt”: [“consumer”]

 }

]

Then, clients must define the security schema as an ApiKey, expected to be presented in the
header id_token:

4 JSON Web Key Sets (https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-key-sets).

5 https://www.rfc-editor.org/rfc/rfc8032

Then, clients must define the security schema as an ApiKey, expected to
be presented in the header id_token:

• JWT security schema: Add the following security schema to the
subsystem OpenApi specification (OAS):

 JWT security schema: Add the following security schema to the subsystem
OpenApi specification (OAS):

"securitySchemes":{

 "jwt":{

 "type": "apiKey",

 "in": "header",

 "name": "id_token"

 }

},

Note: There is no need to define the access_token explained before, as it is only being used
by the Backplane itself; so, subsystems can ignore it.

With the above-stated OAS modifications, the service integrator engine will add the required
authorization mechanism to each endpoint, automatically, during Backplane deployment
pipeline, as described in Section 3.2.5.

3.2.3 Data flows
When a service is integrated into the Backplane, it means that its resources can be
accessed through the Backplane itself. So, when a client application accesses to a resource
into the Backplane, it will redirect the request to the final resource path, specified in the
resource provider OAS file.

Thanks to this approach, the client is agnostic of the final location of the required service,
being all handled by the Backplane.

The Backplane establishes a communication using JWT authentication between the
Backplane and the service to ensure data protection. This communication can also be easily
secured using certificates HTTPs/TLS.

3.2.4 Service Integration Manager
The service integration manager is one of the key components of the i3-MARKET
Backplane. It ensures the easy integration of any subsystem service to the i3-MARKET
Backplane, using OpenAPI specification as bridge.

The Manager is written in Dart6 and is the one responsible for external service integration to

the Backplane API; so it is capable of acting as a gateway for this new service. In Figure ,
there is an overview of how the service integration manager works, proceeding with the
following steps:

1. Generate resources: Given a new service OpenAPI specification, it runs the
Loopback CLI OpenAPI generator command7, which generates the specified
controllers and data sources that later will be integrated into the final Backplane API
Docker image.

2. Integrate + Build: As the Loopback CLI just provides a set of skeletons, some
modifications need to be performed to the previously generated sources, customizing

6 https://dart.dev/

7 https://loopback.io/doc/en/lb4/OpenAPI-generator.html

4JSON Web Key Sets (https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-
key-sets).

5https://www.rfc-editor.org/rfc/rfc8032

24 Backplane API Gateway

Note: There is no need to define the access_token explained before, as it
is only being used by the Backplane itself; so, subsystems can ignore it.

With the above-stated OAS modifications, the service integrator engine
will add the required authorization mechanism to each endpoint, automati-
cally, during Backplane deployment pipeline, as described in Section 3.2.5.

3.2.3 Data flows

When a service is integrated into the Backplane, it means that its resources
can be accessed through the Backplane itself. So, when a client application
accesses to a resource into the Backplane, it will redirect the request to the
final resource path, specified in the resource provider OAS file.

Thanks to this approach, the client is agnostic of the final location of the
required service, being all handled by the Backplane.

The Backplane establishes a communication using JWT authentication
between the Backplane and the service to ensure data protection. This
communication can also be easily secured using certificates HTTPs/TLS.

3.2.4 Service Integration Manager

The service integration manager is one of the key components of the i3-
MARKET Backplane. It ensures the easy integration of any subsystem ser-
vice to the i3-MARKET Backplane, using OpenAPI specification as bridge.

The Manager is written in Dart6 and is the one responsible for external
service integration to the Backplane API; so it is capable of acting as a
gateway for this new service. In Figure 3.4, there is an overview of how the
service integration manager works, proceeding with the following steps:

1. Generate resources: Given a new service OpenAPI specification, it
runs the Loopback CLI OpenAPI generator command7, which generates
the specified controllers and data sources that later will be integrated
into the final Backplane API Docker image.

2. Integrate + Build: As the Loopback CLI just provides a set of skeletons,
some modifications need to be performed to the previously generated
sources, customizing them for our use case. Then, it can be integrated
to the Backplane API base code, building the final Backplane Docker
image, ready to be used for deployment.

6https://dart.dev/
7https://loopback.io/doc/en/lb4/OpenAPI-generator.html

3.2 Solution Design/Blocks 25

Figure 3.4 Service integrator process overview.

3.2.5 Automatic integration mechanism

In order to provide an easy onboarding experience, it is mandatory to
build mechanisms to achieve easy and automated marketplaces and service
integration. In order to achieve these goals, the consortium decided to use
GitLab CI pipelines8 together with Ansible playbooks9, being GitLab respon-
sible of artifact generation and Ansible of the deployment to i3-MARKET
nodes.

3.2.6 Subsystem OAS repository

The integration process begins when an i3-MARKET maintainer validates
a given subsystem OAS (OpenApi specification) and, hence, merges a pull
request into the master branch adding or modifying a definition.

The lack of validation proofs hinders the i3-MARKET maintainer job,
causing sometimes the approval of OAS files with errors or incompatibilities,
which in the end break the Backplane. At this point, we found the need of
implementing a CI/CD pipeline with a job responsible for validating the
files, together with the correct integration within the Backplane base code,
as described in Figure 3.5, performing the following steps in order:

1. Validate the OAS file: All the OAS files are collected and the API
definition of each one is validated, using the npm swagger-cli10 utility.

8https://docs.gitlab.com/ee/ci/pipelines/
9https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

10https://www.npmjs.com/package/swagger-cli

26 Backplane API Gateway

2. Clone Backplane repository: In this step, we are cloning the Backplane
repository. This is a needed step in order to verify the OAS files are
compatible with the integrator and the Backplane itself.

3. Integrate OAS: In this step, using the latest integrator engine available,
we are integrating all the OAS files into the base Backplane code. In
case some error or incompatibly is reported, the whole pipeline fails and
notifies the i3-MARKET maintainer.

4. Integration test: This step starts a Backplane instance only accessible
locally. Then, using a tool called schemathesis11, we are testing all the
endpoints of the Greeter subsystem12, making sure none of them return
an error 5XX. Note the tool is not testing all the subsystem endpoints,
given the fact that we cannot assume the status of all of them. We found
out that scanning a single known subsystem is enough to detect common
failures.

5. Release new version: At this moment, we could say the OAS files are
safe to be deployed; so, a new tag is being created and pushed into the
Backplane repository. Triggering the Backplane automatic integration
pipeline is explained in the next section.

Figure 3.5 Subsystem OAS automatic integration mechanism overview.

3.2.7 Backplane repository

Validated updates on the subsystem OAS repository trigger the Backplane
automatic integration mechanism, described in Figure 3.6, performing the
following steps in order:

1. Run the service integrator engine: The engine artifact is collected
from the corresponding code repository, and the code components that

11https://github.com/schemathesis/schemathesis
12Mockup of an OAS subsystem, created as an example for the rest of partners.

3.2 Solution Design/Blocks 27

later will be integrated to the final Backplane artifact are generated. The
functionality of the service integrator is fully explained in the previous
section.

2. Check vulnerabilities: In this phase, a vulnerability check using Trivy13

is performed, a vulnerability scanner developed by AquaSecurity14. This
step scans NPM and OS libraries, marking the pipeline as failed in case
any critical vulnerability is found.

3. Integration test: This step verifies the functionality of the fully inte-
grated Backplane, as explained in the section before (subsystem OAS
repository).

4. Build image: Using the code stored in the Backplane repository,
together with the output of the service integrator, a new Docker image
for production deployment is generated and uploaded to the project
registry; so future deployment can easily be performed using Docker.

5. Deploy: The pipeline triggers the deployment Ansible playbooks, which
deploy the Backplane API using the Docker image built previously,
along with the i3-MARKET SDK Docker image.

6. Update the developer portal: In parallel to this process, because a new
OAS has been uploaded to the project, the developer portal must be
updated, triggering the documentation repository pipeline. It generates a
new developer portal artifact and deploys it using GitLab Pages15.

3.2.7.1 Remote images
All production-ready images can be found in the private and public repos-
itories managed by the consortium (GitLab and Nexus). Currently, we are
providing two different image flavours:

• Major.minor.patch: Base Backplane image, which includes the latest
subsystem OAS available at the build instant.

• Major.minor.patch-with-integrator: Built from the base image,
although it also includes the integrator binary under /integrator path.
This image provides a custom entry point that will check the existence
of custom OAS files under /home/node/app/specs. If affirmed, the inte-
grator will integrate those specs into the base Backplane image before

13https://github.com/aquasecurity/trivy
14https://www.aquasec.com/
15https://docs.gitlab.com/ee/user/project/pages/

28 Backplane API Gateway

Figure 3.6 Backplane automatic integration mechanism overview.

running the Backplane; otherwise, the integration phase will be skipped,
and the Backplane will be executed using the latest OAS definitions at
the image compilation instant.

Both image flavours can be pulled using the described versioning format
(major.minor.patch) or the latest tag to get the most recent version.

3.2.8 Final deployment

Final deployment phase, described in Figure 3.7, is orchestrated using a single
Ansible playbook triggered by the GitLab CI pipeline described before. Actu-
ally, during this testing phase, four i3-MARKET nodes are being considered,
each one performing the following tasks:

1. Get config files: Queries against i3-MARKET nexus repository are
being executed in order to obtain the required configuration files for each
node.

2. Get Backplane Docker image: The latest Backplane image is retrieved
from the GitLab Docker image registry used in the artifact construction
phase.

3. Start Backplane container: Now, the running container is replaced,
launching a new one with the latest image, configuring the volumes and
environment variables required.

3.2 Solution Design/Blocks 29

Figure 3.7 Ansible playbook run overview.

3.2.9 Multiple environments support

One of the limitations found in the current Backplane was the lack of support
for multiple environment deployments. Specific OAS files had to be written
for each environment, identical, except for the servers’ annotation, that might
differ based on the environment characteristics. Instead, we found out a way
to support this requirement without having to duplicate OAS definitions.

Right now, we are using the Open API “servers” specification to indicate
all servers providing the stated service, using custom tags to identify the ones
to be used in each environment. For example:

1. Get config files: Queries against i3-MARKET nexus repository are being executed

in order to obtain the required configuration files for each node.

2. Get Backplane Docker image: The latest Backplane image is retrieved from the

GitLab Docker image registry used in the artifact construction phase.

3. Start Backplane container: Now, the running container is replaced, launching a

new one with the latest image, configuring the volumes and environment variables

required.

Figure 3.7. Ansible playbook run overview.

3.2.9 Multiple environments support
One of the limitations found in the current Backplane was the lack of support for multiple
environment deployments. Specific OAS files had to be written for each environment,
identical, except for the servers’ annotation, that might differ based on the environment
characteristics. Instead, we found out a way to support this requirement without having to
duplicate OAS definitions.

Right now, we are using the Open API “servers” specification to indicate all servers providing
the stated service, using custom tags to identify the ones to be used in each environment.
For example:

{

 "servers": [

 {

 "url": "http://conflict-resolver-service:3000/",

 "x-tags": ["docker-compose"]

 },

 {

 "url": "http://node1.i3-MARKET.com:8888/",

 "x-tags": ["nodes"]

 },

 {

 "url": "http://node2.i3-MARKET.com:8888/",

 "x-tags": ["nodes"]

 }

],

}

In the previous definition, there are three different nodes providing the same service. Using
the “x-tags,” we can tag each server in order to choose at start-up time which set of servers
has to use the Backplane to redirect the queries for each service.

30 Backplane API Gateway

In the previous definition, there are three different nodes providing the
same service. Using the “x-tags,” we can tag each server in order to choose
at start-up time which set of servers has to use the Backplane to redirect the
queries for each service.

The Backplane can filter and choose the most convenient server based
on the SERVER_FILTER_TAGS environment variable definition, a comma
separated list of tags to indicate the servers to use.

Figure 3.8 shows one server that can be used to redirect queries; hence,
in case the previous selector gets multiple server options, a DNS resolution
probe is executed for each hostname to choose the first available option.
Given the heterogeneity of subsystems, the Backplane cannot assure avail-
ability of each server, as it lacks any liveness endpoint definition to test;
furthermore, the Backplane is agnostic of the service functionality that it
provides and its behaviour. Below, there is an example considering only the
nodes tagged with “node,” where node2 is being selected because node1
failed the DNS resolution.

Figure 3.8 Server election process example.

We are aware that this approach is quite naïve, as host DNS availability
does not prove there is a current API working in the server. However, it solves
common issues of multiple environment deployments.

In order to improve the server election mechanism, we would need to
enforce a liveness/readiness endpoint in marketplace definitions, which could
also lead to including algorithms to failback to an alternative server in case
the main one fails.

3.3 Interfaces 31

3.3 Interfaces

Backplane API for the i3-MARKET project:

3.3.1 Developers

The Backplane can filter and choose the most convenient server based on the
SERVER_FILTER_TAGS environment variable definition, a comma separated list of tags to
indicate the servers to use.

Figure 3.8 shows one server that can be used to redirect queries; hence, in case the
previous selector gets multiple server options, a DNS resolution probe is executed for each
hostname to choose the first available option. Given the heterogeneity of subsystems, the
Backplane cannot assure availability of each server, as it lacks any liveness endpoint
definition to test; furthermore, the Backplane is agnostic of the service functionality that it
provides and its behaviour. Below, there is an example considering only the nodes tagged
with “node,” where node2 is being selected because node1 failed the DNS resolution.

Figure 3.8. Server election process example.

We are aware that this approach is quite naïve, as host DNS availability does not prove
there is a current API working in the server. However, it solves common issues of multiple
environment deployments.

In order to improve the server election mechanism, we would need to enforce a
liveness/readiness endpoint in marketplace definitions, which could also lead to including
algorithms to failback to an alternative server in case the main one fails.

3.3 Interfaces
Backplane API for the i3-MARKET project:

3.3.1 Developers
GET/OpenIDConnectProvider/release2/developers/login

Obtain a valid initial_access_token for registering a new client

POST/OpenIDConnectProvider/release2/oidc/reg

Registering a new client

3.3.2 OIDC discovery
GET/OpenIDConnectProvider/release2/oidc/.well-known/openid-

configuration

Get OpenID Provider configuration information

3.3.2 OIDC discovery

The Backplane can filter and choose the most convenient server based on the
SERVER_FILTER_TAGS environment variable definition, a comma separated list of tags to
indicate the servers to use.

Figure 3.8 shows one server that can be used to redirect queries; hence, in case the
previous selector gets multiple server options, a DNS resolution probe is executed for each
hostname to choose the first available option. Given the heterogeneity of subsystems, the
Backplane cannot assure availability of each server, as it lacks any liveness endpoint
definition to test; furthermore, the Backplane is agnostic of the service functionality that it
provides and its behaviour. Below, there is an example considering only the nodes tagged
with “node,” where node2 is being selected because node1 failed the DNS resolution.

Figure 3.8. Server election process example.

We are aware that this approach is quite naïve, as host DNS availability does not prove
there is a current API working in the server. However, it solves common issues of multiple
environment deployments.

In order to improve the server election mechanism, we would need to enforce a
liveness/readiness endpoint in marketplace definitions, which could also lead to including
algorithms to failback to an alternative server in case the main one fails.

3.3 Interfaces
Backplane API for the i3-MARKET project:

3.3.1 Developers
GET/OpenIDConnectProvider/release2/developers/login

Obtain a valid initial_access_token for registering a new client

POST/OpenIDConnectProvider/release2/oidc/reg

Registering a new client

3.3.2 OIDC discovery
GET/OpenIDConnectProvider/release2/oidc/.well-known/openid-

configuration

Get OpenID Provider configuration information

3.3.3 OIDC core
3.3.3 OIDC core

GET/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController
POST/auditableAccounting/calculateMerkleRoot

GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

3.3.5 RegistryController
GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController
GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service
POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController
POST/greeter/farewell/body

GET/greeter/farewell/headerParams

3.3.4 RegistryBlockchainController

3.3.3 OIDC core
GET/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController
POST/auditableAccounting/calculateMerkleRoot

GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

3.3.5 RegistryController
GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController
GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service
POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController
POST/greeter/farewell/body

GET/greeter/farewell/headerParams

32 Backplane API Gateway

3.3.5 RegistryController

3.3.3 OIDC core
GET/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController
POST/auditableAccounting/calculateMerkleRoot

GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

3.3.5 RegistryController
GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController
GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service
POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController
POST/greeter/farewell/body

GET/greeter/farewell/headerParams

3.3.6 AuthController

3.3.3 OIDC core
GET/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController
POST/auditableAccounting/calculateMerkleRoot

GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

3.3.5 RegistryController
GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController
GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service
POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController
POST/greeter/farewell/body

GET/greeter/farewell/headerParams

3.3.7 Conflict-resolver service

3.3.3 OIDC core
GET/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController
POST/auditableAccounting/calculateMerkleRoot

GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

3.3.5 RegistryController
GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController
GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service
POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController
POST/greeter/farewell/body

GET/greeter/farewell/headerParams

3.3.8 FarewellController

3.3.3 OIDC core
GET/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4 RegistryBlockchainController
POST/auditableAccounting/calculateMerkleRoot

GET/auditableAccounting/getCurrentRoot

POST/auditableAccounting/updateRegistries

3.3.5 RegistryController
GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6 AuthController
GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7 Conflict-resolver service
POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8 FarewellController
POST/greeter/farewell/body

GET/greeter/farewell/headerParams

GET/greeter/farewell/pathParams/{name}/{age}

GET/greeter/farewell/queryParams

3.3.9 HelloController
GET/greeter/hello/authenticated

GET/greeter/hello/consumer

GET/greeter/hello/provider

GET/greeter/hello/unauthenticated/{name}

3.3.10 OpenApiController
GET/notification-manager-oas/api/v1/health

Version

GET/notification-manager-oas/api/v1/version

Version

3.3.11 Notifications
POST/notification-manager-oas/api/v1/notification/service

Notification service

GET/notification-manager-oas/api/v1/notification/unread

Get unread notifications

GET/notification-manager-

oas/api/v1/notification/user/{user_id}/unread

Get unread notifications by id

GET/notification-manager-oas/api/v1/notification/user/{user_id}

Get notification by Userid

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/read

Modify notification

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/unread

Modify notification

GET/notification-manager-oas/api/v1/notification/{notification_id}

Get notification

DELETE/notification-manager-

oas/api/v1/notification/{notification_id}

Delete notification

POST/notification-manager-oas/api/v1/notification

Notification user

GET/notification-manager-oas/api/v1/notification

Get notifications

3.3 Interfaces 33

3.3.9 HelloController

GET/greeter/farewell/pathParams/{name}/{age}

GET/greeter/farewell/queryParams

3.3.9 HelloController
GET/greeter/hello/authenticated

GET/greeter/hello/consumer

GET/greeter/hello/provider

GET/greeter/hello/unauthenticated/{name}

3.3.10 OpenApiController
GET/notification-manager-oas/api/v1/health

Version

GET/notification-manager-oas/api/v1/version

Version

3.3.11 Notifications
POST/notification-manager-oas/api/v1/notification/service

Notification service

GET/notification-manager-oas/api/v1/notification/unread

Get unread notifications

GET/notification-manager-

oas/api/v1/notification/user/{user_id}/unread

Get unread notifications by id

GET/notification-manager-oas/api/v1/notification/user/{user_id}

Get notification by Userid

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/read

Modify notification

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/unread

Modify notification

GET/notification-manager-oas/api/v1/notification/{notification_id}

Get notification

DELETE/notification-manager-

oas/api/v1/notification/{notification_id}

Delete notification

POST/notification-manager-oas/api/v1/notification

Notification user

GET/notification-manager-oas/api/v1/notification

Get notifications

3.3.10 OpenApiController

GET/greeter/farewell/pathParams/{name}/{age}

GET/greeter/farewell/queryParams

3.3.9 HelloController
GET/greeter/hello/authenticated

GET/greeter/hello/consumer

GET/greeter/hello/provider

GET/greeter/hello/unauthenticated/{name}

3.3.10 OpenApiController
GET/notification-manager-oas/api/v1/health

Version

GET/notification-manager-oas/api/v1/version

Version

3.3.11 Notifications
POST/notification-manager-oas/api/v1/notification/service

Notification service

GET/notification-manager-oas/api/v1/notification/unread

Get unread notifications

GET/notification-manager-

oas/api/v1/notification/user/{user_id}/unread

Get unread notifications by id

GET/notification-manager-oas/api/v1/notification/user/{user_id}

Get notification by Userid

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/read

Modify notification

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/unread

Modify notification

GET/notification-manager-oas/api/v1/notification/{notification_id}

Get notification

DELETE/notification-manager-

oas/api/v1/notification/{notification_id}

Delete notification

POST/notification-manager-oas/api/v1/notification

Notification user

GET/notification-manager-oas/api/v1/notification

Get notifications

3.3.11 Notifications

GET/greeter/farewell/pathParams/{name}/{age}

GET/greeter/farewell/queryParams

3.3.9 HelloController
GET/greeter/hello/authenticated

GET/greeter/hello/consumer

GET/greeter/hello/provider

GET/greeter/hello/unauthenticated/{name}

3.3.10 OpenApiController
GET/notification-manager-oas/api/v1/health

Version

GET/notification-manager-oas/api/v1/version

Version

3.3.11 Notifications
POST/notification-manager-oas/api/v1/notification/service

Notification service

GET/notification-manager-oas/api/v1/notification/unread

Get unread notifications

GET/notification-manager-

oas/api/v1/notification/user/{user_id}/unread

Get unread notifications by id

GET/notification-manager-oas/api/v1/notification/user/{user_id}

Get notification by Userid

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/read

Modify notification

PATCH/notification-manager-

oas/api/v1/notification/{notification_id}/unread

Modify notification

GET/notification-manager-oas/api/v1/notification/{notification_id}

Get notification

DELETE/notification-manager-

oas/api/v1/notification/{notification_id}

Delete notification

POST/notification-manager-oas/api/v1/notification

Notification user

GET/notification-manager-oas/api/v1/notification

Get notifications

34 Backplane API Gateway

3.3.12 Queues3.3.12 Queues
PATCH/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}/activate

Switch status queue

PATCH/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}/deactivate

Switch status queue

GET/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}

Get queues by id

DELETE/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}

Delete queue

POST/notification-manager-oas/api/v1/services/{service_id}/queues

Post queues

GET/notification-manager-oas/api/v1/services/{service_id}/queues

Get queues

GET/notification-manager-oas/api/v1/services/{service_id}

Get services by id

DELETE/notification-manager-oas/api/v1/services/{service_id}

Delete service

POST/notification-manager-oas/api/v1/services

Create service

GET/notification-manager-oas/api/v1/services

Get services

3.3.13 Subscriptions
GET/notification-manager-oas/api/v1/users/subscriptions/{category}

Returns a Json containing a list of users subscribed to that category

GET/notification-manager-oas/api/v1/users/subscriptions

Get all user subscriptions

PATCH/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/activate

Activate or deactivate user subscription

PATCH/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/deactivat

e

Activate or deactivate user subscription

GET/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

3.3.13 Subscriptions

3.3.12 Queues
PATCH/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}/activate

Switch status queue

PATCH/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}/deactivate

Switch status queue

GET/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}

Get queues by id

DELETE/notification-manager-

oas/api/v1/services/{service_id}/queues/{queue_id}

Delete queue

POST/notification-manager-oas/api/v1/services/{service_id}/queues

Post queues

GET/notification-manager-oas/api/v1/services/{service_id}/queues

Get queues

GET/notification-manager-oas/api/v1/services/{service_id}

Get services by id

DELETE/notification-manager-oas/api/v1/services/{service_id}

Delete service

POST/notification-manager-oas/api/v1/services

Create service

GET/notification-manager-oas/api/v1/services

Get services

3.3.13 Subscriptions
GET/notification-manager-oas/api/v1/users/subscriptions/{category}

Returns a Json containing a list of users subscribed to that category

GET/notification-manager-oas/api/v1/users/subscriptions

Get all user subscriptions

PATCH/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/activate

Activate or deactivate user subscription

PATCH/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/deactivat

e

Activate or deactivate user subscription

GET/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

3.3 Interfaces 35

Get user subscription by user_id and subscription_id

DELETE/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

Delete subscription by user_id and subscription_id

POST/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Create subscription to category

GET/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Get Subscriptions by Userid

3.3.14 PingController
GET/ping

GET/pingConsumer

GET/pingProvider

GET/pingUser

3.3.15 Cost-controller
GET/pricingManager/fee/getfee

Get I3M fee

PUT/pricingManager/fee/setfee

Set I3M fee

3.3.16 Price-controller
GET/pricingManager/price/checkformulaconfiguration

Check formula and parameter consistency

GET/pricingManager/price/getformulajsonconfiguration

Get configuration using Json format

GET/pricingManager/price/getprice

Get the price of data

PUT/pricingManager/price/setformulaconstant

Set formula constant

PUT/pricingManager/price/setformulajsonconfiguration

Set configuration using Json format

PUT/pricingManager/price/setformulaparameter

Set formula parameter

PUT/pricingManager/price/setformulawithdefaultconfiguration

Set formula with default values for constants and parameters

3.3.17 RatingService
GET/rating/api/agreements/{id}/isRated

3.3.14 PingController

Get user subscription by user_id and subscription_id

DELETE/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

Delete subscription by user_id and subscription_id

POST/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Create subscription to category

GET/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Get Subscriptions by Userid

3.3.14 PingController
GET/ping

GET/pingConsumer

GET/pingProvider

GET/pingUser

3.3.15 Cost-controller
GET/pricingManager/fee/getfee

Get I3M fee

PUT/pricingManager/fee/setfee

Set I3M fee

3.3.16 Price-controller
GET/pricingManager/price/checkformulaconfiguration

Check formula and parameter consistency

GET/pricingManager/price/getformulajsonconfiguration

Get configuration using Json format

GET/pricingManager/price/getprice

Get the price of data

PUT/pricingManager/price/setformulaconstant

Set formula constant

PUT/pricingManager/price/setformulajsonconfiguration

Set configuration using Json format

PUT/pricingManager/price/setformulaparameter

Set formula parameter

PUT/pricingManager/price/setformulawithdefaultconfiguration

Set formula with default values for constants and parameters

3.3.17 RatingService
GET/rating/api/agreements/{id}/isRated

3.3.15 Cost-controller

Get user subscription by user_id and subscription_id

DELETE/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

Delete subscription by user_id and subscription_id

POST/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Create subscription to category

GET/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Get Subscriptions by Userid

3.3.14 PingController
GET/ping

GET/pingConsumer

GET/pingProvider

GET/pingUser

3.3.15 Cost-controller
GET/pricingManager/fee/getfee

Get I3M fee

PUT/pricingManager/fee/setfee

Set I3M fee

3.3.16 Price-controller
GET/pricingManager/price/checkformulaconfiguration

Check formula and parameter consistency

GET/pricingManager/price/getformulajsonconfiguration

Get configuration using Json format

GET/pricingManager/price/getprice

Get the price of data

PUT/pricingManager/price/setformulaconstant

Set formula constant

PUT/pricingManager/price/setformulajsonconfiguration

Set configuration using Json format

PUT/pricingManager/price/setformulaparameter

Set formula parameter

PUT/pricingManager/price/setformulawithdefaultconfiguration

Set formula with default values for constants and parameters

3.3.17 RatingService
GET/rating/api/agreements/{id}/isRated

3.3.16 Price-controller

Get user subscription by user_id and subscription_id

DELETE/notification-manager-

oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

Delete subscription by user_id and subscription_id

POST/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Create subscription to category

GET/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Get Subscriptions by Userid

3.3.14 PingController
GET/ping

GET/pingConsumer

GET/pingProvider

GET/pingUser

3.3.15 Cost-controller
GET/pricingManager/fee/getfee

Get I3M fee

PUT/pricingManager/fee/setfee

Set I3M fee

3.3.16 Price-controller
GET/pricingManager/price/checkformulaconfiguration

Check formula and parameter consistency

GET/pricingManager/price/getformulajsonconfiguration

Get configuration using Json format

GET/pricingManager/price/getprice

Get the price of data

PUT/pricingManager/price/setformulaconstant

Set formula constant

PUT/pricingManager/price/setformulajsonconfiguration

Set configuration using Json format

PUT/pricingManager/price/setformulaparameter

Set formula parameter

PUT/pricingManager/price/setformulawithdefaultconfiguration

Set formula with default values for constants and parameters

3.3.17 RatingService
GET/rating/api/agreements/{id}/isRated

36 Backplane API Gateway

3.3.17 RatingService
GET/rating/api/agreements/{id}/isRated

Check if an agreement is rated

GET/rating/api/agreements/{id}/rating

Get the rating object of a specified agreement

GET/rating/api/consumers/{pk}/agreements

Get the terminated agreements of the consumer

GET/rating/api/consumers/{did}/ratings

Get the ratings of the consumer

GET/rating/api/providers/{pk}/agreements

Get the terminated agreements of the provider

GET/rating/api/providers/{did}/ratings

Get the ratings of the provider

GET/rating/api/providers/{did}/totalRating

Get the average rating of the provider

GET/rating/api/questions

Get all the questions

POST/rating/api/ratings/{id}/respond

Respond to a rating object

PUT/rating/api/ratings/{id}

Edit an existing Rating

GET/rating/api/ratings/{id}

Get a single rating.

DELETE/rating/api/ratings/{id}

Delete a single rating.

POST/rating/api/ratings

Create a new rating

GET/rating/api/ratings

Get all the ratings

3.3.18 Agreement
GET/sc-manager-oas/check_active_agreements

Check active agreements

POST/sc-manager-oas/check_agreements_by_consumer

Check agreements by consumer

GET/sc-manager-oas/check_agreements_by_data_offering/{offering_id}

Check agreements by data offering

POST/sc-manager-oas/check_agreements_by_provider

Check agreements by provider

3.3.18 Agreement

Check if an agreement is rated

GET/rating/api/agreements/{id}/rating

Get the rating object of a specified agreement

GET/rating/api/consumers/{pk}/agreements

Get the terminated agreements of the consumer

GET/rating/api/consumers/{did}/ratings

Get the ratings of the consumer

GET/rating/api/providers/{pk}/agreements

Get the terminated agreements of the provider

GET/rating/api/providers/{did}/ratings

Get the ratings of the provider

GET/rating/api/providers/{did}/totalRating

Get the average rating of the provider

GET/rating/api/questions

Get all the questions

POST/rating/api/ratings/{id}/respond

Respond to a rating object

PUT/rating/api/ratings/{id}

Edit an existing Rating

GET/rating/api/ratings/{id}

Get a single rating.

DELETE/rating/api/ratings/{id}

Delete a single rating.

POST/rating/api/ratings

Create a new rating

GET/rating/api/ratings

Get all the ratings

3.3.18 Agreement
GET/sc-manager-oas/check_active_agreements

Check active agreements

POST/sc-manager-oas/check_agreements_by_consumer

Check agreements by consumer

GET/sc-manager-oas/check_agreements_by_data_offering/{offering_id}

Check agreements by data offering

POST/sc-manager-oas/check_agreements_by_provider

Check agreements by provider

3.3 Interfaces 37

POST/sc-manager-

oas/create_agreement_raw_transaction/{sender_address}

Create agreement

POST/sc-manager-oas/deploy_signed_transaction

Deploy signed transaction

PUT/sc-manager-oas/enforce_penalty

Enforce penalty

POST/sc-manager-oas/evaluate_signed_resolution

Verify a signed resolution

GET/sc-manager-oas/get_agreement/{agreement_id}

Get agreement

GET/sc-manager-oas/get_pricing_model/{agreement_id}

Get agreement's pricing model

GET/sc-manager-oas/get_state/{agreement_id}

Get the state of the agreement

POST/sc-manager-oas/propose_penalty

Choose penalty

GET/sc-manager-oas/retrieve_agreements/{consumer_public_key}

Retrieve the active agreements, which start date is reached, based on consumer public key

GET/sc-manager-oas/template/{offering_id}

Request template with static and dynamic parameters

PUT/sc-manager-oas/terminate

Terminate agreement

3.3.19 Explicit user consent
GET/sc-manager-oas/check_consent_status/{dataOfferingId}

Check consent status

POST/sc-manager-oas/deploy_consent_signed_transaction

Deploy consent signed transaction

POST/sc-manager-oas/give_consent

Give consent

PUT/sc-manager-oas/revoke_consent

Revoke consent

3.3.20 Registration-offering
GET/semantic-

engine/api/registration/ActiveOfferingByCategory/{category}

Get a registered active data offerings by category

3.3.19 Explicit user consent

POST/sc-manager-

oas/create_agreement_raw_transaction/{sender_address}

Create agreement

POST/sc-manager-oas/deploy_signed_transaction

Deploy signed transaction

PUT/sc-manager-oas/enforce_penalty

Enforce penalty

POST/sc-manager-oas/evaluate_signed_resolution

Verify a signed resolution

GET/sc-manager-oas/get_agreement/{agreement_id}

Get agreement

GET/sc-manager-oas/get_pricing_model/{agreement_id}

Get agreement's pricing model

GET/sc-manager-oas/get_state/{agreement_id}

Get the state of the agreement

POST/sc-manager-oas/propose_penalty

Choose penalty

GET/sc-manager-oas/retrieve_agreements/{consumer_public_key}

Retrieve the active agreements, which start date is reached, based on consumer public key

GET/sc-manager-oas/template/{offering_id}

Request template with static and dynamic parameters

PUT/sc-manager-oas/terminate

Terminate agreement

3.3.19 Explicit user consent
GET/sc-manager-oas/check_consent_status/{dataOfferingId}

Check consent status

POST/sc-manager-oas/deploy_consent_signed_transaction

Deploy consent signed transaction

POST/sc-manager-oas/give_consent

Give consent

PUT/sc-manager-oas/revoke_consent

Revoke consent

3.3.20 Registration-offering
GET/semantic-

engine/api/registration/ActiveOfferingByCategory/{category}

Get a registered active data offerings by category

3.3.20 Registration-offering

POST/sc-manager-

oas/create_agreement_raw_transaction/{sender_address}

Create agreement

POST/sc-manager-oas/deploy_signed_transaction

Deploy signed transaction

PUT/sc-manager-oas/enforce_penalty

Enforce penalty

POST/sc-manager-oas/evaluate_signed_resolution

Verify a signed resolution

GET/sc-manager-oas/get_agreement/{agreement_id}

Get agreement

GET/sc-manager-oas/get_pricing_model/{agreement_id}

Get agreement's pricing model

GET/sc-manager-oas/get_state/{agreement_id}

Get the state of the agreement

POST/sc-manager-oas/propose_penalty

Choose penalty

GET/sc-manager-oas/retrieve_agreements/{consumer_public_key}

Retrieve the active agreements, which start date is reached, based on consumer public key

GET/sc-manager-oas/template/{offering_id}

Request template with static and dynamic parameters

PUT/sc-manager-oas/terminate

Terminate agreement

3.3.19 Explicit user consent
GET/sc-manager-oas/check_consent_status/{dataOfferingId}

Check consent status

POST/sc-manager-oas/deploy_consent_signed_transaction

Deploy consent signed transaction

POST/sc-manager-oas/give_consent

Give consent

PUT/sc-manager-oas/revoke_consent

Revoke consent

3.3.20 Registration-offering
GET/semantic-

engine/api/registration/ActiveOfferingByCategory/{category}

Get a registered active data offerings by category

38 Backplane API Gateway

GET/semantic-

engine/api/registration/ActiveOfferingByProvider/{id}/providerId

Get a registered active data offering by provider

GET/semantic-engine/api/registration/categories-list

Get a list of all categories

GET/semantic-engine/api/registration/contract-

parameter/{offeringId}/offeringId

Get contract parameters by offering id

POST/semantic-engine/api/registration/data-offering

Register a data offering

DELETE/semantic-engine/api/registration/delete-offering/{id}

Delete a data offering

GET/semantic-engine/api/registration/federated-

activeOffering/{id}/providerId

Get a registered active data offering by provider

GET/semantic-engine/api/registration/federated-

activeOffering/{category}

Get a registered active federated data offering by category

GET/semantic-engine/api/registration/federated-contract-

parameter/{id}/offeringId

Get contract parameters by offering id in federated search

GET/semantic-engine/api/registration/federated-

offering/getActiveOfferingByText/{text}/text

Get a registered data offering by text/keyword

GET/semantic-engine/api/registration/federated-

offering/textSearch/text/{text}

Get a registered data offering by text/keyword in federated search

GET/semantic-engine/api/registration/federated-

offering/{id}/offeringId

Get a registered data offering by offering id

GET/semantic-engine/api/registration/federated-offering/{category}

Get a registered data offering by category

GET/semantic-engine/api/registration/federated-offerings-list/on-

Active

Get a list of offerings for active in federated search

GET/semantic-engine/api/registration/federated-offerings-list/on-

SharedNetwork

Get a list of offerings for shared status in federated search

GET/semantic-engine/api/registration/federated-offerings-list

Get a list of offerings

GET/semantic-engine/api/registration/federated-providers-list

3.3 Interfaces 39

Get a list of providers

GET/semantic-

engine/api/registration/getActiveOfferingByText/{text}/text

Get a registered data offering by text/keyword

GET/semantic-

engine/api/registration/getOfferingByActiveAndShareDataWithThirdPart

y/{active}/{shareDataWithThirdParty}

Get a registered data offering by active and sharedWithThirdParty status

GET/semantic-

engine/api/registration/getOfferingBySharedAndTransferableAndFreePri

ce/{shared}/{transfer}/{freePrice}

Get a registered data offering by shared and transferable and FreePrice status

GET/semantic-

engine/api/registration/offering/ByTitleAndPricingModelName/{dataOff

eringTitle}/{pricingModelName}

Get a registered data offering by title and pricing model name

GET/semantic-engine/api/registration/offering/offering-template

Download offering template

GET/semantic-engine/api/registration/offering/provider/{providerId}

Get data provider by providerId

GET/semantic-engine/api/registration/offering/{id}/offeringId

Get a registered data offering by offering id

GET/semantic-engine/api/registration/offering/{id}/providerId

Get a registered data offering by provider id

GET/semantic-engine/api/registration/offering/{category}

Get a registered data offering by category

GET/semantic-engine/api/registration/offerings

Get total offering and its list

GET/semantic-engine/api/registration/offerings-list/on-SharedNetwork

Get a list of offerings for shared status

GET/semantic-engine/api/registration/offerings-list/on-active

Get a list of offerings for active

GET/semantic-engine/api/registration/offerings-list

Get a list of offerings

DELETE/semantic-engine/api/registration/provider/{providerId}/delete

Delete a data provider by providerId

GET/semantic-engine/api/registration/providers/{category}/category

Get a list of providers by category

GET/semantic-engine/api/registration/providers-list

Get a list of providers

40 Backplane API Gateway

GET/semantic-engine/api/registration/textSearch/text/{text}

Get a registered data offering by text/keyword

PUT/semantic-engine/api/registration/update-offering

Update already registered offering info

POST/semantic-engine/api/registration

Register provider info

3.3.21 TokenizerController
POST/tokenization/api/v1/operations/clearing

Retrieve the transaction object to start the marketplace clearing operation

POST/tokenization/api/v1/operations/exchange-in

Retrieve the transaction object to perform an exchangeIn.

POST/tokenization/api/v1/operations/exchange-out

Retrieve the transaction object to perform an exchangeOut

POST/tokenization/api/v1/operations/fee-payment

Generate the fee payment transaction object

POST/tokenization/api/v1/operations/set-paid

Generate the payment transaction object

GET/tokenization/api/v1/operations

Get list of operations

GET/tokenization/api/v1/treasury/balances/{address}

Get the balance for a specific account

POST/tokenization/api/v1/treasury/community-wallet

Alter the community wallet address and the related community fee

GET/tokenization/api/v1/treasury/marketplaces/{address}

Get the index of a registered marketplace

POST/tokenization/api/v1/treasury/marketplaces

Register a marketplace

GET/tokenization/api/v1/treasury/token-transfers/{transferId}

Get the token transfer given a TransferId

POST/tokenization/api/v1/treasury/transactions/deploy-signed-

transaction

Deploy a signed transaction

GET/tokenization/api/v1/treasury/transactions/{transactionHash}

Get the receipt of a transaction given a TransactionHash

3.3.22 Credential
GET/verifiableCredentials/release2/vc/credential/issue/{credential}/

callbackUrl/{callbackUrl}

3.3.21 TokenizerController

GET/semantic-engine/api/registration/textSearch/text/{text}

Get a registered data offering by text/keyword

PUT/semantic-engine/api/registration/update-offering

Update already registered offering info

POST/semantic-engine/api/registration

Register provider info

3.3.21 TokenizerController
POST/tokenization/api/v1/operations/clearing

Retrieve the transaction object to start the marketplace clearing operation

POST/tokenization/api/v1/operations/exchange-in

Retrieve the transaction object to perform an exchangeIn.

POST/tokenization/api/v1/operations/exchange-out

Retrieve the transaction object to perform an exchangeOut

POST/tokenization/api/v1/operations/fee-payment

Generate the fee payment transaction object

POST/tokenization/api/v1/operations/set-paid

Generate the payment transaction object

GET/tokenization/api/v1/operations

Get list of operations

GET/tokenization/api/v1/treasury/balances/{address}

Get the balance for a specific account

POST/tokenization/api/v1/treasury/community-wallet

Alter the community wallet address and the related community fee

GET/tokenization/api/v1/treasury/marketplaces/{address}

Get the index of a registered marketplace

POST/tokenization/api/v1/treasury/marketplaces

Register a marketplace

GET/tokenization/api/v1/treasury/token-transfers/{transferId}

Get the token transfer given a TransferId

POST/tokenization/api/v1/treasury/transactions/deploy-signed-

transaction

Deploy a signed transaction

GET/tokenization/api/v1/treasury/transactions/{transactionHash}

Get the receipt of a transaction given a TransactionHash

3.3.22 Credential
GET/verifiableCredentials/release2/vc/credential/issue/{credential}/

callbackUrl/{callbackUrl}

3.3 Interfaces 41

3.3.22 Credential

GET/verifiableCredentials/release2/vc/credential/issue/{credential}/

callbackUrl/{callbackUrl}

Create a new credential with Veramo framework and store it in the wallet (full flow)

GET/verifiableCredentials/release2/vc/credential/issue/{did}/{creden

tial}

Generate a new credential with Veramo framework for a specific DID

POST/verifiableCredentials/release2/vc/credential/revoke

Revoke a credential by JWT

POST/verifiableCredentials/release2/vc/credential/verify

Verify a credential by JWT

GET/verifiableCredentials/release2/vc/credential

Get the credential list

3.3.23 Issuer
GET/verifiableCredentials/release2/vc/issuer/subscribe

Subscribe this issuer in the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/unsubscribe

Unsubscribe this issuer from the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/verify

Verify the subscription status of the issuer

3.3.23 Issuer

Create a new credential with Veramo framework and store it in the wallet (full flow)

GET/verifiableCredentials/release2/vc/credential/issue/{did}/{creden

tial}

Generate a new credential with Veramo framework for a specific DID

POST/verifiableCredentials/release2/vc/credential/revoke

Revoke a credential by JWT

POST/verifiableCredentials/release2/vc/credential/verify

Verify a credential by JWT

GET/verifiableCredentials/release2/vc/credential

Get the credential list

3.3.23 Issuer
GET/verifiableCredentials/release2/vc/issuer/subscribe

Subscribe this issuer in the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/unsubscribe

Unsubscribe this issuer from the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/verify

Verify the subscription status of the issuer

4
Deployment Guides

This section aims to explain how to deploy software within the i3-MARKET
Backplane instances.

4.1 Artifact Deployment Guides

The target audience are the i3-MARKET project developers who are par-
ticipating in the development and deployment of the i3-MARKET Back-
plane.

The i3-MARKET operative considers four possible deployment scenar-
ios, categorized into manual and automatized deployments. These scenarios
are the following:

• Manual deployment scenario one (MDS1)
• Automatized deployment scenario with Ansible (ADS1)
• Automatized deployment scenario with Ansible and GitHub CI/CD

(ADS2)
• Automatized deployment scenario with Docker Compose (ADS3)

Considering an i3-MARKET user role perspective, the main roles
involved in the different deployment scenarios are:

• i3M root instance admin
• i3M SW developer
• i3M third-party SW admin
• i3M pilot instance admin

Table 4.1 provides the mapping between the i3-MARKET user roles and
the previously listed deployment scenarios.

The following subsections describe in detail each identified deployment
scenario.

43

44 Deployment Guides

Table 4.1 Deployment scenarios and i3M user roles mapping.

Deployment
scenario/user role

 i3M root
instance
admin

i3M SW
developer

i3M third-
party SW
admin

i3M pilot
instance
admin

MDS1

ADS1

ADS2

ADS3

The following subsections describe in detail each identified deployment scenario.

4.2 MDS1: Manual Deployment
The manual deployment scenario one (MDS1) is based on accessing the physical resources
by establishing an SSH connection. Once the physical resource is accessed, the user
proceeds with the SW deployment manually. An overview of MDS1 is provided in Figure 4.1.
The actors involved in these scenarios are i3M SW developer and i3M third-party SW admin;
see Figure 4.1.

Figure 4.1. MDS1.

4.3 ADS1: Automatized Deployment with
Ansible Scenario One
Automated deployment scenario one (ADS1) is based on the provision of a set of Ansible
playbooks containing deployment recipes. Playbooks are one of the core features of Ansible
and tell Ansible what to execute. They are like a to-do list for Ansible that contains a list of
tasks. Playbooks contain the steps that the user wants to execute on a concrete physical
resource, and they are run sequentially. From an operative point of view, actors involved in
this scenario must cover the following deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment instructions using
the physical resources specified in Section 4.Error! Reference source not found..

2) Start an Ansible job by instantiating the playbook template provided in step 1.

An overview of ADS1 is provided in Figure 4.2. The actors involved in this scenario are i3M
IT admin and i3M third-party SW admin.

4.2 MDS1: Manual Deployment

The manual deployment scenario one (MDS1) is based on accessing the
physical resources by establishing an SSH connection. Once the physical
resource is accessed, the user proceeds with the SW deployment manually.
An overview of MDS1 is provided in Figure 4.1. The actors involved in
these scenarios are i3M SW developer and i3M third-party SW admin; see
Figure 4.1.

Deployment
scenario/user role

 i3M root
instance
admin

i3M SW
developer

i3M third-
party SW
admin

i3M pilot
instance
admin

MDS1

ADS1

ADS2

ADS3

The following subsections describe in detail each identified deployment scenario.

4.2 MDS1: Manual Deployment
The manual deployment scenario one (MDS1) is based on accessing the physical resources
by establishing an SSH connection. Once the physical resource is accessed, the user
proceeds with the SW deployment manually. An overview of MDS1 is provided in Figure 4.1.
The actors involved in these scenarios are i3M SW developer and i3M third-party SW admin;
see Figure 4.1.

Figure 4.1. MDS1.

4.3 ADS1: Automatized Deployment with
Ansible Scenario One
Automated deployment scenario one (ADS1) is based on the provision of a set of Ansible
playbooks containing deployment recipes. Playbooks are one of the core features of Ansible
and tell Ansible what to execute. They are like a to-do list for Ansible that contains a list of
tasks. Playbooks contain the steps that the user wants to execute on a concrete physical
resource, and they are run sequentially. From an operative point of view, actors involved in
this scenario must cover the following deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment instructions using
the physical resources specified in Section 4.Error! Reference source not found..

2) Start an Ansible job by instantiating the playbook template provided in step 1.

An overview of ADS1 is provided in Figure 4.2. The actors involved in this scenario are i3M
IT admin and i3M third-party SW admin.

Figure 4.1 MDS1.

4.3 ADS1: Automatized Deployment with Ansible Scenario One 45

4.3 ADS1: Automatized Deployment with Ansible Scenario
One

Automated deployment scenario one (ADS1) is based on the provision of a
set of Ansible playbooks containing deployment recipes. Playbooks are one
of the core features of Ansible and tell Ansible what to execute. They are
like a to-do list for Ansible that contains a list of tasks. Playbooks contain the
steps that the user wants to execute on a concrete physical resource, and they
are run sequentially. From an operative point of view, actors involved in this
scenario must cover the following deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment
instructions using the physical resources specified in Section 4.3.

2) Start an Ansible job by instantiating the playbook template provided in
step 1.

An overview of ADS1 is provided in Figure 4.2. The actors involved in
this scenario are i3M IT admin and i3M third-party SW admin.

Figure 4.2. ADS1.

Finally, Figure 4.3 contains a playbook example showing the main structure in terms of tags
to be included in i3-MARKET playbooks, which are: name, hosts, vars, and tasks.

Figure 4.3. Ansible playbook example.

4.4 ADS2: Automated Deployment with
Ansible and CI/CD GitHub Pipelines Two
Automatized deployment scenario two (ADS2) is based on the provision of CI/CD pipelines
with Ansible and GitHub. The only actor involved in this scenario is i3-MARKET SW
developer. The goal to reach in current deployment scenario should be aligned with i3-
MARKET DevOps strategy and based on the provision of an Ansible Tower CI/CD
architecture.

An overview of ADS2 is provided in Figure 4.4. The only actor involved in this scenario is
i3M SW developer.

Figure 4.2 ADS1.

Finally, Figure 4.3 contains a playbook example showing the main struc-
ture in terms of tags to be included in i3-MARKET playbooks, which are:
name, hosts, vars, and tasks.

46 Deployment Guides

Figure 4.2. ADS1.

Finally, Figure 4.3 contains a playbook example showing the main structure in terms of tags
to be included in i3-MARKET playbooks, which are: name, hosts, vars, and tasks.

Figure 4.3. Ansible playbook example.

4.4 ADS2: Automated Deployment with
Ansible and CI/CD GitHub Pipelines Two
Automatized deployment scenario two (ADS2) is based on the provision of CI/CD pipelines
with Ansible and GitHub. The only actor involved in this scenario is i3-MARKET SW
developer. The goal to reach in current deployment scenario should be aligned with i3-
MARKET DevOps strategy and based on the provision of an Ansible Tower CI/CD
architecture.

An overview of ADS2 is provided in Figure 4.4. The only actor involved in this scenario is
i3M SW developer.

Figure 4.3 Ansible playbook example.

4.4 ADS2: Automated Deployment with Ansible and CI/CD
GitHub Pipelines Two

Automatized deployment scenario two (ADS2) is based on the provision
of CI/CD pipelines with Ansible and GitHub. The only actor involved in
this scenario is i3-MARKET SW developer. The goal to reach in current
deployment scenario should be aligned with i3-MARKET DevOps strategy
and based on the provision of an Ansible Tower CI/CD architecture.

An overview of ADS2 is provided in Figure 4.4. The only actor involved
in this scenario is i3M SW developer.

Figure 4.4. ADS2.

The goal to reach in current deployment scenario should be aligned with i3-MARKET
DevOps strategy Error! Reference source not found. and based on the provision of an
Ansible Tower CI/CD architecture.

Considering the approach presented in Error! Reference source not found., Figure 4.5
illustrates what we should build to support CI/CD in i3-MARKET using Ansible and GitHub.

Figure 4.5. i3-MARKET CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master branch so that it
always compiles. The only way to do this is to check the code in another branch (like a
function branch), test that code, review the code, and only merge it with the master once all
tests pass. The architecture above achieves exactly that and does so with a very simplified
approach that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by the CI process in
dev -> test -> production. Using this architecture, one could use the GitHub versions to store
artifacts. GitHub has the ability to trigger a webhook when the latest version is updated,
which in turn could trigger an Ansible Tower CD workflow.

Figure 4.4 ADS2.

4.5 ADS3: Automated Deployment with Docker Compose 47

The goal to reach in current deployment scenario should be aligned with
i3-MARKET DevOps strategy [?] and based on the provision of an Ansible
Tower CI/CD architecture.

Considering the approach presented in [?], Figure 4.5 illustrates what we
should build to support CI/CD in i3-MARKET using Ansible and GitHub.

Figure 4.4. ADS2.

The goal to reach in current deployment scenario should be aligned with i3-MARKET
DevOps strategy Error! Reference source not found. and based on the provision of an
Ansible Tower CI/CD architecture.

Considering the approach presented in Error! Reference source not found., Figure 4.5
illustrates what we should build to support CI/CD in i3-MARKET using Ansible and GitHub.

Figure 4.5. i3-MARKET CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master branch so that it
always compiles. The only way to do this is to check the code in another branch (like a
function branch), test that code, review the code, and only merge it with the master once all
tests pass. The architecture above achieves exactly that and does so with a very simplified
approach that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by the CI process in
dev -> test -> production. Using this architecture, one could use the GitHub versions to store
artifacts. GitHub has the ability to trigger a webhook when the latest version is updated,
which in turn could trigger an Ansible Tower CD workflow.

Figure 4.5 i3-MARKET CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master
branch so that it always compiles. The only way to do this is to check the
code in another branch (like a function branch), test that code, review the
code, and only merge it with the master once all tests pass. The architecture
above achieves exactly that and does so with a very simplified approach
that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by
the CI process in dev -> test -> production. Using this architecture, one could
use the GitHub versions to store artifacts. GitHub has the ability to trigger a
webhook when the latest version is updated, which in turn could trigger an
Ansible Tower CD workflow.

4.5 ADS3: Automated Deployment with Docker Compose

The last way of automatizing the deployments on i3-MARKET is by means of
Docker Compose1. After the last release of the deployment strategy adopted
by i3-MARKET of having N decentralized i3-MARKET instances + 1 master

1 https://docs.docker.com/compose/

48 Deployment Guides

i3-MARKET instance for centralizing some services, a deployment for sup-
porting the installation of an i3-MARKET instance (a decentralized node) has
been created based on Docker Compose. This Docker Compose is used for
deploying and managing multiple Docker containers, each of them containing
different core and decentralized services developed by i3-MARKET.

This mechanism will allow any marketplace to deploy an i3-MARKET
“pilot environment” in order to be part and interact with the i3-MARKET
ecosystem. Therefore, ADS3 becomes the most useful deployment strat-
egy for supporting i3-MARKET pilots in the deployment of those i3-
MARKET services, which need to be decentralized and installed in the pilot
premises. These services are (see more details in Table 2.6): “backplane”
(Backplane API component), “tokenizer” + “pricing-manager” (Monetization
component), “sdk-ref-impl” (SDK-RI component), “web-ri” + “mongo_web-
ri” (Web-RI), “oidc-provider-app” + “oidc-provider-db” (Service-centric
authentication component), “vc-service” (User-centric authentication com-
ponent), semantic-engine + semantic-engine-db (Semantic engine compo-
nent), data_access (Data access component), auditable-accounting (Auditable
accounting component), besu (Blockchain network pilot node + RocksDB
instance), cockroachdb-node (Distributed storage component), conflict-
resolver-service (Conflict resolution component), rating (Rating component),
and “keycloak” (Security server component).

In terms of the Docker Compose file definition, a set of “.env.component”
files has been created for storing config information relative to the deploy-
ment of each of the services contained in the Docker Compose file. For a first
idea of the compose file, see below in Table 4.2 the header as reference of it.

Table 4.2 i3m-pilots-docker-compose.yml.

4.5 ADS3: Automated Deployment with
Docker Compose
The last way of automatizing the deployments on i3-MARKET is by means of Docker
Compose1. After the last release of the deployment strategy adopted by i3-MARKET of
having N decentralized i3-MARKET instances + 1 master i3-MARKET instance for
centralizing some services, a deployment for supporting the installation of an i3-MARKET
instance (a decentralized node) has been created based on Docker Compose. This Docker
Compose is used for deploying and managing multiple Docker containers, each of them
containing different core and decentralized services developed by i3-MARKET.

This mechanism will allow any marketplace to deploy an i3-MARKET “pilot environment” in
order to be part and interact with the i3-MARKET ecosystem. Therefore, ADS3 becomes the
most useful deployment strategy for supporting i3-MARKET pilots in the deployment of those
i3-MARKET services, which need to be decentralized and installed in the pilot premises.
These services are (see more details in Error! Reference source not found.): “backplane”
(Backplane API component), “tokenizer” + “pricing-manager” (Monetization component),
“sdk-ref-impl” (SDK-RI component), “web-ri” + “mongo_web-ri” (Web-RI), “oidc-provider-app”
+ “oidc-provider-db” (Service-centric authentication component), “vc-service” (User-centric
authentication component), semantic-engine + semantic-engine-db (Semantic engine
component), data_access (Data access component), auditable-accounting (Auditable
accounting component), besu (Blockchain network pilot node + RocksDB instance),
cockroachdb-node (Distributed storage component), conflict-resolver-service (Conflict
resolution component), rating (Rating component), and “keycloak” (Security server
component).

In terms of the Docker Compose file definition, a set of “.env.component” files has been
created for storing config information relative to the deployment of each of the services
contained in the Docker Compose file. For a first idea of the compose file, see below the
header of it:

Table 4.2. i3m-pilots-docker-compose.yml.

version: '3'

services:

 backplane:

 container_name: backplane

 image: "XX.XX.XX.XX:XXXX/backplane:${BACKPLANE_VERSION}"

 restart: unless-stopped

 ports:

 - 3000:3000

 env_file: .env.backplane

 networks:

 - i3m-net

 healthcheck:

 test: "exit 0"

 tokenizer:

1 https://docs.docker.com/compose/

4.5 ADS3: Automated Deployment with Docker Compose 49

 image: registry.gitlab.com/i3-market/code/wp3/t3.3/nodejs-tokenization-treasury-api:${TOKENIZER_VERSION}

 container_name: tokenizer

 ports:

 - 3001:3001

 env_file: .env.tokenizer

 restart: unless-stopped

 networks:

 - i3m-net

 depends_on:

 besu:

 condition: service_healthy

 postgres:

 condition: service_healthy

 sdk-ri:

 image: registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:${SDKRI_VERSION}

 container_name: sdk-ref-impl

 restart: unless-stopped

 env_file: .env.sdk-ri

 ports:

 - 8181:8080

 networks:

 - i3m-net

 depends_on:

 backplane:

 condition: service_healthy

 command: java -jar /usr/local/jetty/start.jar

 healthcheck:

 test: "exit 0"

 web-ri:

 image: registry.gitlab.com/i3-market/code/web-ri/web-ri:${WEB_RI_VERSION}

 container_name: web-ri

 ports:

 - 5300:3000

 env_file: .env.web-ri

 restart: unless-stopped

 networks:

 - i3m-net

 depends_on:

 - mongo_web-ri

 healthcheck:

 test: "exit 0"

 mongo_web-ri:

 image: mongo:${MONGO_WEBRI_VERSION}

 container_name: mongo_web-ri

 ports:

50 Deployment Guides

 - 27017:27017

 restart: unless-stopped

 env_file: .env.web-ri

 networks:

 - i3m-net

 command: --quiet --setParameter logLevel=0

Besides installing the decentralized services by means of the Docker Compose file, the
administrator of the pilot infrastructure must install a wallet.

4.6 Tagging Releases Strategy
i3-MARKET has evolved into a complex system where a large number of pieces must
interact together for a comprehensive and integrated performance. Therefore, the different
versions released by each single component/microservice should be managed and
controlled to avoid incompatibilities in the deployments.

A strategy based on tagging and a compatibility matrix has been defined to deal with the
release’s compatibility.

Thus, every version released by a component is formatted as MAJOR.MINOR.PATCH tag,
and each part changes according to the following rules.

We increment:

 MAJOR when breaking backward compatibility;

 MINOR when adding a new feature which does not break compatibility;

 PATCH when fixing a bug without breaking compatibility.

On the other hand, a matrix including the “microservice name”, “microservice version”, and a
vector of dependencies with other components (and its compatible version) has been
defined.

Besides installing the decentralized services by means of the Docker
Compose file, the administrator of the pilot infrastructure must install a
wallet.

4.6 Tagging Releases Strategy

i3-MARKET has evolved into a complex system where a large number of
pieces must interact together for a comprehensive and integrated perfor-
mance. Therefore, the different versions released by each single compo-
nent/microservice should be managed and controlled to avoid incompatibili-
ties in the deployments.

A strategy based on tagging and a compatibility matrix has been defined
to deal with the release’s compatibility.

Thus, every version released by a component is formatted as
MAJOR.MINOR.PATCH tag, and each part changes according to the fol-
lowing rules.

We increment:

• MAJOR when breaking backward compatibility;
• MINOR when adding a new feature which does not break compatibility;
• PATCH when fixing a bug without breaking compatibility.

On the other hand, a matrix including the “microservice name”,
“microservice version”, and a vector of dependencies with other components
(and its compatible version) has been defined.

4.7 Deployment Process

At the deployment time, each artifact/service must include in the associated
git project a requirements.txt file providing values in the “USES” columns;
for example, see the requirement.txt for semantic engine in Figure 4.6.

4.7 Deployment Process 51

4.7 Deployment Process
At the deployment time, each artifact/service must include in the associated git project a
requirements.txt file providing values in the “USES” columns; for example, see the requirement.txt for
semantic engine in Figure 4.6.

Figure 4.6. Requirement.txt for semantic engine repository.

4.7.1 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker
applications. It allows you to define the services and their dependencies in a YAML
file and run them with a single command. Docker Compose is especially useful for
complex applications that require multiple containers, such as web applications that
use a database and a web server.

The Docker Compose file defines the services, networks, and volumes for the
application. Each service is defined with its own Docker image, command,
environment variables, ports, and volumes. Dependencies between services can be
specified using network connections, and shared volumes can be defined to allow
data to be shared between containers.

Docker Compose can be used to orchestrate the deployment of containers in a local
development environment or in a production environment. It can be used with Docker
Swarm to deploy multi-node applications, and it can be integrated with other tools
such as Jenkins or GitLab CI/CD for continuous integration and continuous
deployment.

Using Docker Compose can provide many benefits for your Docker-based
applications, including the following.

Figure 4.6 Requirement.txt for semantic engine repository.

4.7.1 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker
applications. It allows you to define the services and their dependencies in
a YAML file and run them with a single command. Docker Compose is
especially useful for complex applications that require multiple containers,
such as web applications that use a database and a web server.

The Docker Compose file defines the services, networks, and volumes
for the application. Each service is defined with its own Docker image,
command, environment variables, ports, and volumes. Dependencies between
services can be specified using network connections, and shared volumes can
be defined to allow data to be shared between containers.

Docker Compose can be used to orchestrate the deployment of containers
in a local development environment or in a production environment. It can
be used with Docker Swarm to deploy multi-node applications, and it can be
integrated with other tools such as Jenkins or GitLab CI/CD for continuous
integration and continuous deployment.

Using Docker Compose can provide many benefits for your Docker-based
applications, including the following.

1) Simplified deployment: Docker Compose makes it easy to deploy
multi-container applications with a single command.

52 Deployment Guides

2) Improved scalability: By defining services and their dependencies,
Docker Compose allows you to scale individual components of your
application as needed.

3) Consistent environments: Docker Compose ensures that all services in
your application run in a consistent environment, regardless of the host
system.

4) Easy testing: Docker Compose makes it easy to spin up test environ-
ments with the same configuration as your production environment.

5) Better collaboration: By defining the application configuration in a
YAML file, Docker Compose makes it easy to share and collaborate on
configurations with other team members.

Docker Compose is a powerful tool for defining and deploying multi-
container Docker applications. It simplifies the deployment process and
allows you to scale your applications with ease, while also ensuring con-
sistency across environments and enabling collaboration between team
members.

4.7.2 Technical Requirements

The technical requirements for using Docker Compose include:

1) Docker Engine: Docker Compose requires Docker Engine to be
installed and running on the host system. Docker Engine is a container
runtime that allows you to build, run, and manage Docker containers.

2) YAML file: Docker Compose uses a YAML file to define the services,
networks, and volumes for the application. The YAML file should be
named docker-compose.yml and should be located in the root directory
of the application.

3) Docker images: Docker Compose uses Docker images to create con-
tainers for each service in the application. Docker images can be
obtained from Docker Hub, a public registry of Docker images, or from
a private registry.

4) Network connections: Services in the application may need to commu-
nicate with each other over the network. Docker Compose uses Docker
networks to create isolated network environments for each application.

5) Volumes: Docker Compose allows you to define volumes to share data
between containers and persist data beyond the life of a container.
Volumes can be defined as local host directories or as named volumes.

4.7 Deployment Process 53

6) Environment variables: Docker Compose allows you to define envi-
ronment variables for each service in the application. Environment
variables can be used to configure the behaviour of the container at
runtime.

7) Compose CLI: Docker Compose can be run from the command line
using the Compose CLI. The Compose CLI allows you to start, stop,
and manage Docker Compose applications.

Docker Compose requires a basic understanding of Docker and con-
tainerization concepts, as well as familiarity with YAML syntax. It is
recommended to have a solid understanding of Docker Engine before using
Docker Compose, as it relies heavily on Docker Engine functionality.

4.7.3 Specification and configurations

The specification and configurations of Docker Compose are defined in
a YAML file named “docker-compose.yml”. This file consists of several
sections that define the services, networks, and volumes for the application.

1) Version: The version section specifies the version of the Compose file
format to use. The latest version is version 3.9, but earlier versions may
be used depending on the Docker Engine version being used.

2) Services: The services section defines the individual services that
make up the application. Each service is defined as a separate block,
with its own image, environment variables, ports, volumes, and other
configuration options.

3) Networks: The networks section defines the networks that the services
use to communicate with each other. By default, Docker Compose
creates a network for the application, but additional networks can be
defined as needed.

4) Volumes: The volumes section defines the volumes that are used by
the services to store persistent data. Volumes can be defined as named
volumes or as host directories.

5) Environment variables: The environment section defines environment
variables that are passed to the services. Environment variables can be
used to configure the behaviour of the container at runtime.

6) Deploy: The deploy section specifies additional deployment options for
the services, such as the number of replicas, placement constraints, and
resource limits.

54 Deployment Guides

7) External services: The external_services section is used to define ser-
vices that are provided by external sources, such as a load balancer or a
database that is not part of the Docker Compose application.

These sections can be further configured with various options, such as
image pull policies, container restart policies, logging options, and more.

4.7.4 Deployment

This Docker Compose is used for deploying and managing multiple docker
containers, each of them containing different core and decentralized ser-
vices developed by i3-MARKET. Therefore, ADS3 becomes the most useful
deployment strategy for supporting i3-MARKET pilots in the deployment of
those i3-MARKET services, which need to be decentralized and installed in
the pilot premises. It is a practical guide that makes use of the automated
deployment based on Docker Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

practical guide that makes use of the automated deployment based on Docker
Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers under
the “i3m-instance” as shown in the following image:

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

practical guide that makes use of the automated deployment based on Docker
Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers under
the “i3m-instance” as shown in the following image:

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the
following command:

practical guide that makes use of the automated deployment based on Docker
Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers under
the “i3m-instance” as shown in the following image:

4.7 Deployment Process 55

To stop services:

practical guide that makes use of the automated deployment based on Docker
Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers under
the “i3m-instance” as shown in the following image:

To verify that all services are up and running:

practical guide that makes use of the automated deployment based on Docker
Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers under
the “i3m-instance” as shown in the following image:

If you have Docker Desktop installed, you can view all running containers
under the “i3m-instance” as shown in the following image:

practical guide that makes use of the automated deployment based on Docker
Compose (ADS3).

The required steps are:

1) Clone i3-MARKET deployment repository:

Execute the following command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2) Login into i3-MARKET Nexus and GitLab:

Execute the following two commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3) Execute docker compose:

Go to your cloned_dir/docker-compose/i3m-instance and execute the following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

To stop services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To verify that all services are up and running:

If you have Docker Desktop installed, you can view all running containers under
the “i3m-instance” as shown in the following image:

5
Operative Specification

An operational specification provides a comprehensive overview of how the
software is expected to function in various operating conditions. It serves as
a road map for software development and testing and ensures that the final
product meets the user’s requirements and expectations.

5.1 Libraries

The list of the different libraries used to integrate into the i3-MARKET
framework is shown below.

Auditable accounting library:

◦ The auditable accounting component is a service that includes an API
to automate the process of logging and auditing interactions between
components and record the registries in the blockchain. The API of
the auditable accounting is accessed through the Backplane API gate-
way. Additionally, the auditable accounting component can be accessed
directly from any internal component of the platform.

◦ License: MIT.
◦ Source code: https://gitlab.com/i3-market-v3-public-repository/sp3-sc

gbssw-aa-auditableaccounting.
◦ Prerequisites: Node.js, Docker, and Docker Compose.

Wallet client library:

◦ This package defines how to interact with wallets by means of a
typescript interface. Furthermore, it provides a default implementation
called BaseWallet. It uses an interface called KeyWallet to delegate the
complexity of key management to other packages like SW Wallet. Both
interfaces are listed below.

◦ License: Apache License 2.0.

57

https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-aa-auditableaccounting.
https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-aa-auditableaccounting.

58 Operative Specification

◦ Source code: https://gitlab.com/i3-market-v3-public-repository/sp3-sc
gbssw-i3mwalletmonorepo.

◦ Prerequisites: Node.js.

5.2 i3-MARKET APIs

The update compared to R1 in terms of common services is the following:

i) Notification manager common services: The functionalities related with
notification services and queues were the scope of R2 and R3 and are
listed in Figure 5.1.

Figure 5.1 Services and queues common services.

ii) Alerts common services: The functionalities related with alerts were the
scope of R2 and R3 and are listed in Figures 5.2, 5.3, and 5.4.

Figure 5.2 Alerts common services.

iii) Conflict resolution common services:
The functionalities related with contradictory conditions enabled by two
methods as shown in Figure 5.3

https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-i3mwalletmonorepo.
https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-i3mwalletmonorepo.

5.2 i3-MARKET APIs 59

Figure 5.3 Conflict resolution common services.

Figure 5.4. Contracts common services.

iv) Contracts common services: The functionalities related with smart contracts
management were the scope of R2 and R3 and are listed in Figure 5.5.

v) Credential common services: The functionalities related with authentication,
identities, and credentials were the scope of R2 and R3 and are listed in Figure 5.5.

Figure 5.5. Credentials common services.

vi) Exchange common services: The functionalities related with data exchange were the
scope of R2 and R3 and are listed in Figure 5.6.

Figure 5.4 Contracts common services.

iv) Contracts common services: The functionalities related with smart con-
tracts management were the scope of R2 and R3 and are listed in
Figure 5.5.

v) Credential common services: The functionalities related with authenti-
cation, identities, and credentials were the scope of R2 and R3 and are
listed in 5.5.

vi) Exchange common services: The functionalities related with data
exchange were the scope of R2 and R3 and are listed in Figure 5.6.

60 Operative Specification

Figure 5.5 Contracts common services.

Figure 5.6 Exchange common services.

vii) Notification common services: The functionalities related with notifica-
tions were the scope of R2 and R3 and are listed in Figure 5.7.

Figure 5.7 Notification common services.

viii) Offering management common services: The functionalities related with
data offering management were the scope of R2 and R3 and are listed in
Figure 5.8.

5.2 i3-MARKET APIs 61

Figure 5.8 Offering common services.

ix) Pricing managing common services: The functionalities related with
pricing managing were the scope of R2 and R3 and are listed in
Figure 5.9.

62 Operative Specification

Figure 5.9 Pricing common services.

x) Token managing common services: The functionalities related with
token management were the scope of R2 and R3 and are listed in
Figure 5.10.

Figure 5.10 Tokens common services.

5.3 SDKs

The layered SDK approach defined in the mechanism allows to adapt
and extend existing data marketplaces to interface with the i3-MARKET
Backplane.

5.4 User Interfaces 63

Specifically, the layers that are part of the proposed solution for the SDK
are the following:

• SDK-core: This layer aims to simplify the i3-MARKET SDK build-
ing process by generating client stubs for any i3-MARKET backend
endpoint/API, defined with the OpenAPI (formerly known as Swagger)
specification. In this way, therefore, the development team can better
focus on the implementation and adoption of these backend endpoints
or APIs.

• SDK reference implementation (SDK-RI): This layer aims to identify
and provide a set of common services to be implemented for consuming
available Backplane functionalities.

• SDK-execution patterns (SDK-EP): It is including the atomic func-
tions that make use of Backplane API (via SDK) adding some business
logic.

• SDK Web-RI: It is supporting the frontend or GUI integrating the
common services provided by the SDK-RI and that can be reused and
customized as part of the pilot specification and implementation defined
in the context of WP5.

5.4 User Interfaces

To contextualize the i3-MARKET frontend or SDK Web-RI, it is important to
introduce the SDK global approach and is shown in Figure 5.11. SDK Web-
RI would be the top layer on the layered approach defined as part of the SDK
solution for i3-MARKET.

i3-MARKET Web-RI provides a graphical user interface component,
designed to use the reference implementation (SDK-RI) through a user
interface to validate i3-MARKET functionalities from the user’s point of
view. It will be provided as an open-source component for the i3-MARKET
implementation and for future pilots.

Web-RI can be used also by other market players to easily integrate
with i3-MARKET and even set up a marketplace. Web-RI implements the
following basic workflows:

• Register new data offerings and delete data offerings
• Search for offerings
• Create and sign smart contracts
• Purchase data
• Pay for data

64 Operative Specification
would be the top layer on the layered approach defined as part of the SDK
solution for i3-MARKET.

 Figure 5.11. Implementation pyramid.

i3-MARKET Web-RI provides a graphical user interface component, designed to use
the reference implementation (SDK-RI) through a user interface to validate i3-
MARKET functionalities from the user’s point of view. It will be provided as an open-
source component for the i3-MARKET implementation and for future pilots.

Web-RI can be used also by other market players to easily integrate with i3-MARKET and
even set up a marketplace. Web-RI implements the following basic workflows:

• Register new data offerings and delete data offerings

• Search for offerings

• Create and sign smart contracts

• Purchase data

• Pay for data

• Transfer data

• Rate data providers

This section aims to explain how an end-user can operate within the i3-MARKET user
interface.

5.5 Install i3M Wallet
Go to repo URL (https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-
I3mWalletMonorepo/releases) and download the v2.5.6 version suitable for your operating
system and do the following actions for:

• Windows operating system:

o Download and execute wallet-desktop-v2.5.6-x64.exe.

SDK Web -RI

SDK RI

(+SDK EP)

SDK Core

Figure 5.11 Implementation pyramid.

• Transfer data
• Rate data providers

This section aims to explain how an end-user can operate within the i3-
MARKET user interface.

5.5 Install i3M Wallet

Go to repo URL (https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/releases) and download the v2.5.6 version
suitable for your operating system and do the following actions for:

• Windows operating system:

◦ Download and execute wallet-desktop-v2.5.6-x64.exe.
◦ The application is a standalone RAR file. Extract it and execute

the i3M Wallet.exe file.

• MacOS operating system:

◦ Open the dmg file and install the wallet desktop application.

5.7 Creating a Wallet 2/3 65

• Linux operating system:

◦ For Debian-based systems, you can use the deb package:

• # change x.x.x for the version.
• sudo dpkg-i wallet-desktop-x.x.x-amd64.deb.

5.6 Create a Wallet and a Consumer and/or Provider
Identity in the Wallet

The first time a user initiates the application, a dialog asking for a password
appears (see following pictures for more details). The user will have to
introduce this password each time the application starts – see Figure 5.12.

Figure 5.12 Creating a wallet 1/3.

Create a wallet named i3Market, type HD SW Wallet, and i3Market
network – see Figure 5.13.

66 Operative Specification

Figure 5.13. WEB-RI interface.

5.7 Creating a Wallet 2/3
Create a consumer and/or provider identity (right-click over the i3Market wallet) − Figure
5.14:

Figure 5.14. Creating a wallet 3/3.

5.8 Register a New OIDC Client
Access to your local instance of WEB-RI (i3-MARKET GUI) available in
http://localhost:5300/ and you will be able to see what is shown in Figure 5.15:

Figure 5.13 WEB-RI interface.

5.7 Creating a Wallet 2/3

Create a consumer and/or provider identity (right-click over the i3Market
wallet) − Figure 5.14:

Figure 5.13. WEB-RI interface.

5.7 Creating a Wallet 2/3
Create a consumer and/or provider identity (right-click over the i3Market wallet) − Figure
5.14:

Figure 5.14. Creating a wallet 3/3.

5.8 Register a New OIDC Client
Access to your local instance of WEB-RI (i3-MARKET GUI) available in
http://localhost:5300/ and you will be able to see what is shown in Figure 5.15:

Figure 5.14 Creating a wallet 3/3.

5.8 Register a New OIDC Client

Access to your local instance of WEB-RI (i3-MARKET GUI) available
in http://localhost:5300/ and you will be able to see what is shown in
Figure 5.15:

5.8 Register a New OIDC Client 67

Figure 5.15. OIDC client configuration.

Note: The OIDC client configuration is automatically done from the WEB-RI. Figure 5.16
enables the interaction directly through the SDK-RI or SDK-core must do it by following
the next steps.

No OIDC client registered? Please follow the following steps:

Ask your i3-MARKET admin for your corresponding “i3-MARKET OpenID Connect
Provider API”1 (by default, each instance of i3-MARKET has its own provider) endpoint to
get an initial token for registering a new client (authorize green button).

Figure 5.16. Registering an OIDC Client 1/4.

Try logging in and get initialAccessToken as shown in Figure 5.17.

1 And endpoint similar to: https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/get_release2_developers_login

Figure 5.15 OIDC client configuration.

Note: The OIDC client configuration is automatically done from the
WEB-RI. Figure 5.16 enables the interaction directly through the SDK-RI
or SDK-core must do it by following the next steps.

No OIDC client registered? Please follow the following steps:

Figure 5.15. OIDC client configuration.

Note: The OIDC client configuration is automatically done from the WEB-RI. Figure 5.16
enables the interaction directly through the SDK-RI or SDK-core must do it by following
the next steps.

No OIDC client registered? Please follow the following steps:

Ask your i3-MARKET admin for your corresponding “i3-MARKET OpenID Connect
Provider API”1 (by default, each instance of i3-MARKET has its own provider) endpoint to
get an initial token for registering a new client (authorize green button).

Figure 5.16. Registering an OIDC Client 1/4.

Try logging in and get initialAccessToken as shown in Figure 5.17.

1 And endpoint similar to: https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/get_release2_developers_login

Figure 5.16 Registering an OIDC Client 1/4.

Ask your i3-MARKET admin for your corresponding “i3-MARKET
OpenID Connect Provider API”1 (by default, each instance of i3-MARKET

1And endpoint similar to: https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/g
et_release2_developers_login

https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/get_release2_developers_login
https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/get_release2_developers_login

68 Operative Specification

has its own provider) endpoint to get an initial token for registering a new
client (authorize green button).

Try logging in and get initialAccessToken as shown in Figure 5.17.

Figure 5.17. Registering an OIDC client 2/4.

Use initialAccessToken as bearerAuth as shown in Figure 5.18.

Figure 5.18. Registering an OIDC client 3/4.

Then here, using the access token as bearerToken (press the lock symbol to open
the form to paste the token) – see Figure 5.19 – and you can register a new client.
Please note that you must add the following information:

• http://localhost:5300/api/credential in redirect_uris field

• http://localhost:5300/auth in post_logout_redirect_uris field

Figure 5.17 Registering an OIDC client 2/4.

Use initialAccessToken as bearerAuth as shown in Figure 5.18.

Figure 5.17. Registering an OIDC client 2/4.

Use initialAccessToken as bearerAuth as shown in Figure 5.18.

Figure 5.18. Registering an OIDC client 3/4.

Then here, using the access token as bearerToken (press the lock symbol to open
the form to paste the token) – see Figure 5.19 – and you can register a new client.
Please note that you must add the following information:

• http://localhost:5300/api/credential in redirect_uris field

• http://localhost:5300/auth in post_logout_redirect_uris field

Figure 5.18 Registering an OIDC client 3/4.

Then here, using the access token as bearerToken (press the lock symbol
to open the form to paste the token) – see Figure 5.19 – and you can register
a new client. Please note that you must add the following information:

• http://localhost:5300/api/credential in redirect_uris field
• http://localhost:5300/auth in post_logout_redirect_uris field

5.8 Register a New OIDC Client 69

Figure 5.19. Registering an OIDC client 4/4.

After successful client registration, you can paste the returned information in the text
area in Figure 5.20.

Figure 5.20. OIDC client registered.

Generate credentials for the consumer/provider identity:

Start the authentication workflow from local WEB-RI instance by following the steps
illustrated in Figures 5.21−5.28.

Provide a username for consumer role:

Figure 5.19 Registering an OIDC client 4/4.

After successful client registration, you can paste the returned information
in the text area in Figure 5.20.

Figure 5.19. Registering an OIDC client 4/4.

After successful client registration, you can paste the returned information in the text
area in Figure 5.20.

Figure 5.20. OIDC client registered.

Generate credentials for the consumer/provider identity:

Start the authentication workflow from local WEB-RI instance by following the steps
illustrated in Figures 5.21−5.28.

Provide a username for consumer role:

Figure 5.20 OIDC client registered.

70 Operative Specification

Generate credentials for the consumer/provider identity:

Start the authentication workflow from local WEB-RI instance by following
the steps illustrated in Figures 5.21– 5.28

Provide a username for consumer role:

Figure 5.21 Username screen.

Wallet pairing:

Figure 5.21. Username screen.

Wallet pairing:

Figure 5.22. Pairing wallet.

Select wallet identity:

Figure 5.22 Pairing wallet.

5.8 Register a New OIDC Client 71

Select wallet identity:

Figure 5.23 Configuring wallet 1/2.

Add Verifiable Credentials to the wallet:

Figure 5.24 Configuring wallet 2/2.

72 Operative Specification

Login using credentials generated previously:

Figure 5.25. Login in WEB-RI.

Selective disclosure:

Figure 5.26. Selective disclosure.

Sign:

Figure 5.25 Login in WEB-RI.

Selective disclosure:

Figure 5.25. Login in WEB-RI.

Selective disclosure:

Figure 5.26. Selective disclosure.

Sign:

Figure 5.26 Selective disclosure.

5.9 SDKs 73

Sign:

Figure 5.27. Signing with the wallet.

Access finally to the GUI of Web-RI:

Figure 5.28. Accessing WEB-RI.

5.9 SDKs
Technical requirements:

The current subsection contains a set of SDK requirements that have been collected for
releases 2 and 3. Most of them have been extracted from D2.5 Error! Reference source
not found.; meanwhile, the other ones are the result of deepening in the last iterations of
SDK elicitation process.

SDK-core:

The SDK-core is built using SDK-generator REST API and an Ansible playbook in charge of
generating all the client stubs for Backplane API (semantic engine, notification manager, and
smart contract manager), OIDC, VC, and Data Access API encapsulated into the SDK-core
Java/JavaScript library.

Figure 5.27 Signing with the wallet.

Access finally to the GUI of Web-RI:

Figure 5.27. Signing with the wallet.

Access finally to the GUI of Web-RI:

Figure 5.28. Accessing WEB-RI.

5.9 SDKs
Technical requirements:

The current subsection contains a set of SDK requirements that have been collected for
releases 2 and 3. Most of them have been extracted from D2.5 Error! Reference source
not found.; meanwhile, the other ones are the result of deepening in the last iterations of
SDK elicitation process.

SDK-core:

The SDK-core is built using SDK-generator REST API and an Ansible playbook in charge of
generating all the client stubs for Backplane API (semantic engine, notification manager, and
smart contract manager), OIDC, VC, and Data Access API encapsulated into the SDK-core
Java/JavaScript library.

Figure 5.28 Accessing WEB-RI.

74 Operative Specification

5.9 SDKs

Technical requirements:

The current subsection contains a set of SDK requirements that have been
collected for releases 2 and 3. Most of them have been extracted from D2.5
[?]; meanwhile, the other ones are the result of deepening in the last iterations
of SDK elicitation process.

SDK-core:

The SDK-core is built using SDK-generator REST API and an Ansible
playbook in charge of generating all the client stubs for Backplane API
(semantic engine, notification manager, and smart contract manager), OIDC,
VC, and Data Access API encapsulated into the SDK-core Java/JavaScript
library.

SDK-core specification:

Backplane API SDK: The main goal of the SDK is boasting the Backplane
API to create applications for the i3-MARKET platform. It will assist the
data marketplaces and stakeholder developers with a set of tools, examples,
and documentation, which will reduce the developing effort to be part of the
i3-MARKET ecosystem. The Backplane API SDK content is divided into
different logical modules, which correspond to each of the i3-MARKET
modules integrated in the Backplane API. In the following, the different
modules identified for the first version of the requirement specification can
be seen:

◦ User-centric authentication SDK
◦ Cloud Wallet SDK module
◦ Data access SDK module
◦ Standard payments SDK module
◦ Tokenization SDK module

Enhanced Backplane API SDK: For some cases, the SDK will complete
the Backplane API services with its own logic to support the developers in
the use of the i3-MARKET capabilities. These will be done through a set of
workflows.

Automatically build Backplane API SDK: In addition to the inner
SDK functionality, i3-MARKET will provide mechanisms to automatically
build the SDK component and it will be offered in different programming
languages.

5.9 SDKs 75

SDK-core implementations:

The SDK-core implementation is based on the usage of SDK-generator, and
it is described in detail in the following subsections.

Core technology:

The SDK-core is supported by means of (a) the SDK-generator REST API
and (b) an Ansible playbook in charge of generating:

• An SDK-core Java artifact that contains client stub for Backplane API
(semantic engine, notification manager, and smart contract manager),
OIDC (OpenID Connect), VC (Verifiable Credentials), and data access
API.

• An SDK-core JavaScript artifact contains client stub for Backplane API
(semantic engine, notification manager, and smart contract manager),
OIDC, VC, and data access API.

SDK-generator:

The SDK-generator is the main pillar of the SDK-core. The SDK-generator
is based on SDK as a service approach. SDK-generator aims to automatically
generate the client stubs needed to interact and consume all the functional-
ities exposed in a REST API. The SDK as a service approach is shown in
Figure 5.29.

Figure 5.29 SDK-generator approach.

76 Operative Specification

The workflow behind SDK-generator is based on the provision of a
programming language specification next to an OAS file and making use of
the OpenAPI generator server, which is able to produce as output SDK client
stubs next to associated documentation about how to use it.

The languages supported by the SDK-generator are shown in Figure 5.30
as part of the SDK as a service configuration.

Figure 5.30 SDK generator supported programming languages.

Continuous integration and delivery:

The SDK-core artifact is automatically provided by means of a CI/CD
pipeline based on Ansible AWX. A conceptual view of SDK-core pipeline
is shown in Figure 5.31.

Figure 5.31 SDK-core CI/CD pipeline.

As initial step in the pipeline, the SDK-core artifact is triggering the
compilation and deployment of a new version of the SDK-generator once

5.9 SDKs 77

a commitment into master branch of SDK-generator project happens. As a
second step (represented as green area in Figure 5.31 - SDK-core CI/CD
pipeline), the generation and publishing of a new version of the SDK-core
artifact is triggered by using a new version of backplane API which is
deployed each time the SDK-core artifact is triggered. The CI/CD behind
backplane API includes a triggering to the SDK-core pipeline. In this way,
SDK-core covers a set of tasks mainly in charge of generating SDK-core
artifacts for Java and JavaScript versions taking a set of relevant OAS files
associated with the following artifacts:

• Backplane API (including semantic engine, notification manager, and
smart contract manager)

• OIDC API
• Verifiable Credentials API
• Data access API

Finally, the pipeline includes a couple of tasks in charge of publishing the
generated Java and JavaScript versions of SDK-core into i3-MARKET Nexus
repository.

SDK-core installation:

SDK-core is a Java/JavaScript library that is installed by simply importing
from i3-MARKET official Nexus repository.

SDK reference implementation (SDK-RI):

The current section reports on SDK-reference implementation specification,
its implementation, and, finally, its deployment and installation.

6
SDKs and WEB-RI

6.1 Approach

The SDK global approach for i3-MARKET is based on the provision of
four main pillars: (a) SDK-generator, (b) SDK-core, (c) SDK reference
implementation or SDK-RI, and, finally, (d) Web-RI.

The layered SDK approach defined here is the mechanism that allows
to adapt and extend existing data marketplaces to interface with the i3-
MARKET Backplane.

Specifically, the layers that are part of the proposed solution for the SDK
and shown in Figure 6.1 are the following:

• SDK-core: This layer aims to simplify the i3-MARKET SDK build-
ing process by generating client stubs for any i3-MARKET backend
endpoint/API, defined with the OpenAPI (formerly known as Swagger)
specification. In this way, therefore, the development team can better
focus on the implementation and adoption of these backend endpoints
or APIs.

• SDK-reference implementation (SDK-RI): This layer aims to identify
and provide a set of common services to be implemented for consuming
available Backplane functionalities.

• SDK-execution patterns (SDK-EP): It is including the atomic func-
tions that make use of Backplane API (via SDK) adding some business
logic.

• Web-RI: It is supporting the front-end or GUI integrating the common
services provided by the SDK-RI and that can be reused and customized
as part of the pilot specification and implementation defined in the
context of WP5.

79

80 SDKs and WEB-RI

6 SDKs and WEB-RI

6.1 Approach

The SDK global approach for i3-MARKET is based on the provision of four main pillars: (a)
SDK-generator, (b) SDK-core, (c) SDK reference implementation or SDK-RI, and, finally, (d)
Web-RI.

The layered SDK approach defined here is the mechanism that allows to adapt and extend
existing data marketplaces to interface with the i3-MARKET Backplane.

Specifically, the layers that are part of the proposed solution for the SDK and shown in

Figure are the following:

• SDK-core: This layer aims to simplify the i3-MARKET SDK building process by
generating client stubs for any i3-MARKET backend endpoint/API, defined with the
OpenAPI (formerly known as Swagger) specification. In this way, therefore, the
development team can better focus on the implementation and adoption of these
backend endpoints or APIs.

• SDK-reference implementation (SDK-RI): This layer aims to identify and provide a
set of common services to be implemented for consuming available Backplane
functionalities.

• SDK-execution patterns (SDK-EP): It is including the atomic functions that make
use of Backplane API (via SDK) adding some business logic.

• Web-RI: It is supporting the front-end or GUI integrating the common services
provided by the SDK-RI and that can be reused and customized as part of the pilot
specification and implementation defined in the context of WP5.

Figure 6.1. SDK layered approach.

SDK Web -RI

SDK RI (+SDK EP)

SDK Core

Figure 6.1 SDK layered approach.

6.2 SDK-Core Specification

General objectives:

The three main objectives identified are the following:

(a) Backplane API SDK
(b) Enhanced Backplane API SDK
(c) Automatically build Backplane API SDK

Considering the objectives, the following updates in terms of capabilities
have been provided for the i3-MARKET FINAL release.

(a) Backplane API SDK. Addressing fully following modules:

• User-centric authentication SDK
• Cloud Wallet SDK module
• Data access SDK module
• Standard payments SDK module
• Tokenization SDK module
• Smart contracts SDK module
• Notifications SDK module
• Rating SDK module

(b) Enhanced Backplane API SDK
(c) Automatically build Backplane API SDK

6.2 SDK-Core Specification 81

Context:

The updated context in terms of interactions with other SW pieces in the
i3-MARKET ecosystem is shown in Figure 6.2.

Figure 1. SDK-core interactions.

As a reminder, the i3-MARKET SDK-core interacts with:

i. Backplane API, allowing stakeholder’s developers to create software (App Client)
based on the (Backplane) API, in an easy and efficient way.

ii. Cloud Wallet to guarantee the security on the interactions between the stakeholders
and i3-MARKET Backplane.

iii. App Client, allowing to be part of the i3-MARKET ecosystem.

Big picture:

The SDK-core is supported as a main pillar for the SDK-generator, which is one of the
outcomes of i3-MARKET solutions.

The main updates on SDK-generator are the following:

(a) Update on the openapi-generator client due to issues detected managing keywords
oneOf, anyOf, and allOf in some of the OAS files supported by i3-MARKET backend
services.

(b) Update on the openapi-generator setup. The concrete setup used in last version was:

openapi-generator-cli generate -g javascript --additional-
properties=groupId={{ ARTIFACT_GROUP_ID }},artifactId={{ ARTIFACT_NAME
}},artifactVersion={{ ARTIFACT_VERSION }},modelPackage=com.i3m.model.data-
access,apiPackage=com.i3m.api.data-acess, prependFormOrBodyParameters=true,
hideGenerationTimestamp=true -o /tmp/oas/javascript -i
http://xx.xx.x.xxx:yyyy/repository/i3m-raw/i3m-raw/files/dataaccessapi.json
--generate-alias-as-model --skip-validate-spec"

 This is the same setup for SDK-core Java version but using “java” for the
option “- g”.

Figure 6.2 SDK-core interactions.

As a reminder, the i3-MARKET SDK-core interacts with:

i. Backplane API, allowing stakeholder’s developers to create software
(App Client) based on the (Backplane) API, in an easy and efficient way.

ii. Cloud Wallet to guarantee the security on the interactions between the
stakeholders and i3-MARKET Backplane.

iii. App Client, allowing to be part of the i3-MARKET ecosystem.

Big picture:

The SDK-core is supported as a main pillar for the SDK-generator, which is
one of the outcomes of i3-MARKET solutions.

The main updates on SDK-generator are the following:

(a) Update on the openapi-generator client due to issues detected managing
keywords oneOf, anyOf, and allOf in some of the OAS files supported
by i3-MARKET backend services.

82 SDKs and WEB-RI

(b) Update on the openapi-generator setup. The concrete setup used in last
version was: openapi-generator-cli generate -g javascript –additional-
properties=groupId={{ ARTIFACT_GROUP_ID }},artifactId={{ ARTI-
FACT_NAME }},artifactVersion={{ ARTIFACT_VERSION }},
modelPackage=com.i3m.model.data-access,apiPackage=com.i3m.api.
data-acess, prependFormOrBodyParameters=true, hideGenerationTimes-
tamp=true -o /tmp/oas/javascript -i http://xx.xx.x.xxx:yyyy/repository/i3m-
raw/i3m-raw/files/dataaccessapi.json –generate-alias-as-model –skip-
validate-spec"

This is the same setup for SDK-core Java version but using “java” for the
option “- g”.

6.2.1 SDK-core implementation

As introduced, the SDK-core is built using SDK-generator REST API
and an Ansible playbook in charge of generating all the client stub for
Backplane API (semantic engine, notification manager, and smart contract
manager), OIDC, VC, and data access API encapsulated into the SDK-core
Java/JavaScript library.

6.2.2 Core technology

The SDK-core implementation is based on the usage of SDK-generator, and
it is described in detail in the following subsections.

The SDK-core is supported by means of (a) the SDK-generator REST
API and (b) an Ansible playbook in charge of generating:

1) an SDK-core Java artifact that contains client stub for Backplane API
(semantic engine, notification manager, and smart contract manager),
OIDC (OpenID Connect), VC (Verifiable Credentials), and data access
API;

2) an SDK-core JavaScript artifact that contains client stub for Back-
plane API (semantic engine, notification manager, and smart contract
manager), OIDC, VC, and data access API.

SDK-generator:

The SDK-generator is the main pillar of the SDK-core. The SDK-generator
is based on SDK as a service approach. SDK-generator aims to automatically
generate the client stubs needed to interact and consume all the functionalities

6.2 SDK-Core Specification 83

exposed in a REST API. The SDK as a service approach is shown in
Figure 6.3.

6.2.1 SDK-core implementation
As introduced, the SDK-core is built using SDK-generator REST API and an Ansible
playbook in charge of generating all the client stub for Backplane API (semantic engine,
notification manager, and smart contract manager), OIDC, VC, and data access API
encapsulated into the SDK-core Java/JavaScript library.

6.2.2 Core technology
The SDK-core implementation is based on the usage of SDK-generator, and it is described
in detail in the following subsections.

The SDK-core is supported by means of (a) the SDK-generator REST API and (b) an
Ansible playbook in charge of generating:

1) an SDK-core Java artifact that contains client stub for Backplane API (semantic
engine, notification manager, and smart contract manager), OIDC (OpenID Connect),
VC (Verifiable Credentials), and data access API;

2) an SDK-core JavaScript artifact that contains client stub for Backplane API (semantic
engine, notification manager, and smart contract manager), OIDC, VC, and data
access API.

SDK-generator:
The SDK-generator is the main pillar of the SDK-core. The SDK-generator is based on SDK
as a service approach. SDK-generator aims to automatically generate the client stubs
needed to interact and consume all the functionalities exposed in a REST API. The SDK as

a service approach is shown in Figure .

Figure 2. SDK-generator approach.

The workflow behind SDK-generator is based on the provision of a programming language
specification next to an OAS file and making use of the OpenAPI generator1 server, which is
able to produce as output SDK client stubs next to associated documentation about how to
use it.

1 OpenAPI generator: https://github.com/OpenAPITools/openapi-generator

Figure 6.3 SDK-generator approach.

The workflow behind SDK-generator is based on the provision of a
programming language specification next to an OAS file and making use of
the OpenAPI generator1 server, which is able to produce as output SDK client
stubs next to associated documentation about how to use it.

The languages supported by the SDK-generator are shown in Figure 6.4.
The languages supported by the SDK-generator are shown in Figure .

Figure 3. SDK-generator supported programming languages.

Continuous integration and delivery:
The SDK-core artifact is automatically provided by means of a CI/CD pipeline based on
Ansible AWX. A conceptual view of SDK-core pipeline is shown in Figure 6.5.

Figure 4. SDK-core CI/CD pipeline.

As initial step in the pipeline, the SDK-core artifact is triggering the compilation and
deployment of a new version of the SDK-generator once a commit into master branch of
SDK-generator project happens. As a second step (represented as a green area in Figure
6.6), the generation and publishing of a new version of the SDK-core artifact, it is triggering
each one a new version of Backplane API it is deployed. The CI/CD behind Backplane API
includes a triggering to SDK-core pipeline. In this way, SDK-core covers a set of tasks
mainly in charge of generating SDK-core artifacts for Java and JavaScript versions taking a
set of relevant OAS files associated with the following artifacts:

• Backplane API (including semantic engine, notification manager, and smart contract
manager)

• OIDC API

• Verifiable Credentials API

• Data access API

Concretely, the Ansible playbook is used to automatize the process of generation of the
SDK-core client stub.

The internal workflow covered by the SDK-core playbook is shown in Figure .

Figure 6.4 SDK-generator supported programming languages.

1 OpenAPI generator: https://github.com/OpenAPITools/openapi-generator

84 SDKs and WEB-RI

Continuous integration and delivery:

The SDK-core artifact is automatically provided by means of a CI/CD
pipeline based on Ansible AWX. A conceptual view of SDK-core pipeline
is shown in Figure 6.5.

The languages supported by the SDK-generator are shown in Figure .

Figure 3. SDK-generator supported programming languages.

Continuous integration and delivery:
The SDK-core artifact is automatically provided by means of a CI/CD pipeline based on
Ansible AWX. A conceptual view of SDK-core pipeline is shown in Figure 6.5.

Figure 4. SDK-core CI/CD pipeline.

As initial step in the pipeline, the SDK-core artifact is triggering the compilation and
deployment of a new version of the SDK-generator once a commit into master branch of
SDK-generator project happens. As a second step (represented as a green area in Figure
6.6), the generation and publishing of a new version of the SDK-core artifact, it is triggering
each one a new version of Backplane API it is deployed. The CI/CD behind Backplane API
includes a triggering to SDK-core pipeline. In this way, SDK-core covers a set of tasks
mainly in charge of generating SDK-core artifacts for Java and JavaScript versions taking a
set of relevant OAS files associated with the following artifacts:

• Backplane API (including semantic engine, notification manager, and smart contract
manager)

• OIDC API

• Verifiable Credentials API

• Data access API

Concretely, the Ansible playbook is used to automatize the process of generation of the
SDK-core client stub.

The internal workflow covered by the SDK-core playbook is shown in Figure .

Figure 6.5 SDK-core CI/CD pipeline.

As initial step in the pipeline, the SDK-core artifact is triggering the
compilation and deployment of a new version of the SDK-generator once
a commit into master branch of SDK-generator project happens. As a second
step (represented as a green area in Figure 6.6), the generation and publishing
of a new version of the SDK-core artifact is triggering each time a new version
of the Backplane API is deployed. The CI/CD behind Backplane API includes
a triggering to SDK-core pipeline. In this way, SDK-core covers a set of tasks
mainly in charge of generating SDK-core artifacts for Java and JavaScript

Figure 5. SDK-core playbook internal workflow.

Finally, the pipeline includes a couple of tasks in charge of publishing the generated Java
and JavaScript versions of SDK-core into i3-MARKET Nexus repository.

SDK-core installation:
SDK-core is a Java/JavaScript library that is installed by simply importing from i3-MARKET
Nexus repository.

6.3 SDK Reference Implementation (SDK-
RI)
The SDK-RI implementation is based on Java and Swagger framework, and the following
subsections are focusing on the SDK-RI specifications. SDK-RI is a web app deployed within
Jetty and encapsulated in a Docker container.

The SDK-RI has been updated in terms of common services as per the following (see Figure
6.7):

i) Notification manager common services: The functionalities related with notification
services and queues are listed in Figure 6.7.

Create oas temp directory

Get access token for accesing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for
BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for OIDC

Make an API call to SDK-Generator to generate SDK client stub for VC

Make an API call to SDK-Generator to generate SDK client stub for
DATA_ACCESS

Upload oas-javascript artifacts to Nexus

Send an email notification to inform about new version available

Figure 6.6 SDK-core playbook internal workflow.

6.3 SDK Reference Implementation (SDK-RI) 85

versions taking a set of relevant OAS files associated with the following
artifacts:

• Backplane API (including semantic engine, notification manager, and
smart contract manager)

• OIDC API
• Verifiable Credentials API
• Data access API

Concretely, the Ansible playbook is used to automatize the process of
generation of the SDK-core client stub.

The internal workflow covered by the SDK-core playbook is shown in
Figure 6.6.

Finally, the pipeline includes a couple of tasks in charge of publishing the
generated Java and JavaScript versions of SDK-core into i3-MARKET Nexus
repository.

SDK-core installation:

SDK-core is a Java/JavaScript library that is installed by simply importing
from i3-MARKET Nexus repository.

6.3 SDK Reference Implementation (SDK-RI)

The SDK-RI implementation is based on Java and Swagger framework, and
the following subsections are focusing on the SDK-RI specifications. SDK-RI
is a web app deployed within Jetty and encapsulated in a Docker container.

The SDK-RI has been updated in terms of common services as per the
following (see Figure 6.7):

i) Notification manager common services: The functionalities related with
notification services and queues are listed in Figure 6.7.

Figure 5. SDK-core playbook internal workflow.

Finally, the pipeline includes a couple of tasks in charge of publishing the generated Java
and JavaScript versions of SDK-core into i3-MARKET Nexus repository.

SDK-core installation:
SDK-core is a Java/JavaScript library that is installed by simply importing from i3-MARKET
Nexus repository.

6.3 SDK Reference Implementation (SDK-
RI)
The SDK-RI implementation is based on Java and Swagger framework, and the following
subsections are focusing on the SDK-RI specifications. SDK-RI is a web app deployed within
Jetty and encapsulated in a Docker container.

The SDK-RI has been updated in terms of common services as per the following (see Figure
6.7):

i) Notification manager common services: The functionalities related with notification
services and queues are listed in Figure 6.7.

Create oas temp directory

Get access token for accesing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for
BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for OIDC

Make an API call to SDK-Generator to generate SDK client stub for VC

Make an API call to SDK-Generator to generate SDK client stub for
DATA_ACCESS

Upload oas-javascript artifacts to Nexus

Send an email notification to inform about new version available

Figure 6.7 Services and queues common services.

86 SDKs and WEB-RI

ii) Alerts common services: The functionalities related with alerts are listed
in Figure 6.8.

Figure 6. Services and queues common services.

ii) Alerts common services: The functionalities related with alerts are listed in Figure
6.8.

Figure 7. Alerts common services.

iii) Conflict resolution common services: This is listed in Figure 6.9.

Figure 8. Conflict resolution common services.

iv) Contracts common services: The functionalities related with smart contracts

Figure 6.8 Alerts common services.

iii) Conflict resolution common services: This is listed in Figure 6.9.

Figure 6. Services and queues common services.

ii) Alerts common services: The functionalities related with alerts are listed in Figure
6.8.

Figure 7. Alerts common services.

iii) Conflict resolution common services: This is listed in Figure 6.9.

Figure 8. Conflict resolution common services.

iv) Contracts common services: The functionalities related with smart contracts

Figure 6.9 Conflict resolution common services.

iv) Contracts common services: The functionalities related with smart
contracts management are listed in Figure 6.10.

Figure 6. Services and queues common services.

ii) Alerts common services: The functionalities related with alerts are listed in Figure
6.8.

Figure 7. Alerts common services.

iii) Conflict resolution common services: This is listed in Figure 6.9.

Figure 8. Conflict resolution common services.

iv) Contracts common services: The functionalities related with smart contracts

Figure 6.10 Contracts common services.

6.3 SDK Reference Implementation (SDK-RI) 87

v) Credential common services: The functionalities related with authenti-
cation, identities, and credentials are listed in Figure 6.11.

management are listed in Figure 9.

Figure 9. Contracts common services.

v) Credential common services: The functionalities related with authentication,

identities, and credentials are listed in Figure 10.

Figure 10. Credentials common services.

vi) Exchange common services: The functionalities related with data exchange are listed

in Figure 11.

Figure 11. Exchange common services.

vii) Notification common services: The functionalities related with notifications are listed

in Figure 12.

Figure 12. Notification common services.

Figure 6.11 Credentials common services.

vi) Exchange common services: The functionalities related with data
exchange are listed in Figure 6.12.

management are listed in Figure 9.

Figure 9. Contracts common services.

v) Credential common services: The functionalities related with authentication,

identities, and credentials are listed in Figure 10.

Figure 10. Credentials common services.

vi) Exchange common services: The functionalities related with data exchange are listed

in Figure 11.

Figure 11. Exchange common services.

vii) Notification common services: The functionalities related with notifications are listed

in Figure 12.

Figure 12. Notification common services.

Figure 6.12 Exchange common services.

vii) Notification common services: The functionalities related with notifica-
tions are listed in Figure 6.13.

management are listed in Figure 9.

Figure 9. Contracts common services.

v) Credential common services: The functionalities related with authentication,

identities, and credentials are listed in Figure 10.

Figure 10. Credentials common services.

vi) Exchange common services: The functionalities related with data exchange are listed

in Figure 11.

Figure 11. Exchange common services.

vii) Notification common services: The functionalities related with notifications are listed

in Figure 12.

Figure 12. Notification common services. Figure 6.13 Notification common services.

88 SDKs and WEB-RI

viii) Offering management common services: The functionalities related with
data offering management are listed in Figure 6.14.

viii) Offering management common services: The functionalities related with data offering
management are listed in Figure 6.14.

Figure 13. Offering common services.

ix) Pricing managing common services: The functionalities related with pricing managing
are listed in Figure 14.

Figure 6.14 Offering common services.

ix) Pricing managing common services: The functionalities related with
pricing managing are listed in Figure 6.15.

6.4 WEB-RI 89

Figure 14. Pricing common services.

x) Token managing common services: The functionalities related with token management
are listed in Figure 15.

Figure 15. Token common services.

As an initial stage, the SDK-RI imports the last version of the SDK-core published in i3-MARKET
Nexus maven repository as a library. It is precisely in this part where the way to generate the
Java version of the imported SDK-core library has been slightly updated. As a second stage, once
a commit is done into master branch of SDK-RI Git project, a compilation and deployment of a
new version is automatically launched.

6.4 WEB-RI

The Web-RI is a GUI web interface that allows the users to interact with the functionalities
provided by i3-MARKET Backplane solutions on top of the SDK-RI. It can be reused and
customized as part of each pilot specification and deployment integration as a reference
implementation of the backbone data marketplace to facilitate stakeholder needs that want
to reuse i3-MARKET artifacts and functionalities.

Figure 6.15 Pricing common services.

x) Token managing common services: The functionalities related with
token management are listed in Figure 6.16.

Figure 14. Pricing common services.

x) Token managing common services: The functionalities related with token management
are listed in Figure 15.

Figure 15. Token common services.

As an initial stage, the SDK-RI imports the last version of the SDK-core published in i3-MARKET
Nexus maven repository as a library. It is precisely in this part where the way to generate the
Java version of the imported SDK-core library has been slightly updated. As a second stage, once
a commit is done into master branch of SDK-RI Git project, a compilation and deployment of a
new version is automatically launched.

6.4 WEB-RI

The Web-RI is a GUI web interface that allows the users to interact with the functionalities
provided by i3-MARKET Backplane solutions on top of the SDK-RI. It can be reused and
customized as part of each pilot specification and deployment integration as a reference
implementation of the backbone data marketplace to facilitate stakeholder needs that want
to reuse i3-MARKET artifacts and functionalities.

Figure 6.16 Token common services.

As an initial stage, the SDK-RI imports the last version of the SDK-
core published in i3-MARKET Nexus maven repository as a library. It is
precisely in this part where the way to generate the Java version of the
imported SDK-core library has been slightly updated. As a second stage, once
a commit is done into master branch of SDK-RI Git project, a compilation and
deployment of a new version is automatically launched.

90 SDKs and WEB-RI

6.4 WEB-RI

The Web-RI is a GUI web interface that allows the users to interact with
the functionalities provided by i3-MARKET Backplane solutions on top of
the SDK-RI. It can be reused and customized as part of each pilot spec-
ification and deployment integration as a reference implementation of the
backbone data marketplace to facilitate stakeholder needs that want to reuse
i3-MARKET artifacts and functionalities.

6.4.1 Purpose

The WEB-RI proposes itself as a reference for the implementation of a user
interface to allow human users to use and interact with the functionalities
provided by i3-MARKET. The WEB-RI has three main objectives, which
are:

• As a management tool, to allow i3-MARKET developers to test their
functionalities in the context of a user usage.

• As a marketing team, allowing the promotion and demonstration of i3-
MARKET functionalities using a generic approach and language that
can be easily translated to the available data marketplaces used by
different domains.

• As a reference implementation, providing functional examples of
how the i3-MARKET SDKs can be used to implement/integrate i3-
MARKET functionalities into a data marketplace. As a reference imple-
mentation, WEB-RI is also a useful tool to help i3-MARKET pilots
on the implementation of their use-case scenarios and on testing of
Backplane technologies by providing specifications and code that can
be used.

In Figure 6.17, the architecture of WEB-RI is represented.
A consumer or a provider can access WEB-RI2 via internet browser and

proceed with the authentication for which the wallet3 must be installed and
running on his personal computer. The authentication process is executed on
WEB-RI frontend by calling the OIDC service, which will call the wallet to
perform the authentication itself.

The WEB-RI frontend is connected to a backend, which has two main
functions: manage user sessions and have a way to interact with the function-
alities provided by i3-MARKET.

2 https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-web-ri
3 https://gitlab.com/i3-MARKET-V3-public-repository/sp3-scgbssw-i3mwalletmonorepo

6.4 WEB-RI 91

6.4.1 Purpose
The WEB-RI proposes itself as a reference for the implementation of a user interface to
allow human users to use and interact with the functionalities provided by i3-MARKET. The
WEB-RI has three main objectives, which are:

• As a management tool, to allow i3-MARKET developers to test their functionalities in
the context of a user usage.

• As a marketing team, allowing the promotion and demonstration of i3-MARKET
functionalities using a generic approach and language that can be easily translated to
the available data marketplaces used by different domains.

• As a reference implementation, providing functional examples of how the i3-MARKET
SDKs can be used to implement/integrate i3-MARKET functionalities into a data
marketplace. As a reference implementation, WEB-RI is also a useful tool to help i3-
MARKET pilots on the implementation of their use-case scenarios and on testing of
Backplane technologies by providing specifications and code that can be used.

In Figure 16, the architecture of WEB-RI is represented.

Figure 16. WEB-RI architecture.

A consumer or a provider can access WEB-RI2 via internet browser and proceed with the
authentication for which the wallet3 must be installed and running on his personal computer.
The authentication process is executed on WEB-RI frontend by calling the OIDC service,
which will call the wallet to perform the authentication itself.

2 https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-web-ri

3 https://gitlab.com/i3-MARKET-V3-public-repository/sp3-scgbssw-i3mwalletmonorepo

Figure 6.17 WEB-RI architecture.

To manage the user sessions, the WEB-RI backend saves the user session
in a session storage called connect-mongo4.

To interact with the functionalities provided by i3-MARKET, a library
was implemented, called Connector-RI5. This connector has all the meth-
ods needed to call the respective APIs from the SDK-RI, which have the
functionalities to interact with the i3-MARKET Backplane. This allows to
have a clean and simple WEB-RI backend where it is only needed to call the
respective methods from the connector.

Sitemap:

In Figure 6.18, the sitemap of WEB-RI is represented.
WEB-RI is composed of several pages, which are Authentication, Home-

page, Offerings, Search, and Notifications.

4 https://github.com/jdesboeufs/connect-mongo
5 https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-connector-ri

92 SDKs and WEB-RI

The WEB-RI frontend is connected to a backend, which has two main functions: manage

user sessions and have a way to interact with the functionalities provided by i3-MARKET.

To manage the user sessions, the WEB-RI backend saves the user session in a session

storage called connect-mongo4.

To interact with the functionalities provided by i3-MARKET, a library was implemented,

called Connector-RI5. This connector has all the methods needed to call the respective APIs

from the SDK-RI, which have the functionalities to interact with the i3-MARKET Backplane.

This allows to have a clean and simple WEB-RI backend where it is only needed to call the

respective methods from the connector.

Sitemap:

In Figure 17, the sitemap of WEB-RI is represented.

Figure 17. WEB-RI sitemap.

WEB-RI is composed of several pages, which are Authentication, Homepage, Offerings,

Search, and Notifications.

In the Authentication page, the user has the possibility to register a new provider or

consumer and log in with some existing user registered in WEB-RI.

The Homepage is the main page of WEB-RI, which has a navigation bar that allows the user

to navigate to the other available pages. Also, there are statistics related with the number of

offerings and providers.

The Offerings page is only visible to a provider, where he can manage the offerings

registered by him and register new ones.

The Search page is visible either to a provider or a consumer. The only difference is that a

consumer has the possibility to create a purchase request for the offering he searched.

4 https://github.com/jdesboeufs/connect-mongo

5 https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-connector-ri

Figure 6.18 WEB-RI sitemap.

In the Authentication page, the user has the possibility to register a
new provider or consumer and log in with some existing user registered in
WEB-RI.

The Homepage is the main page of WEB-RI, which has a navigation bar
that allows the user to navigate to the other available pages. Also, there are
statistics related with the number of offerings and providers.

The Offerings page is only visible to a provider, where he can manage the
offerings registered by him and register new ones.

The Search page is visible either to a provider or a consumer. The only
difference is that a consumer has the possibility to create a purchase request
for the offering he searched.

In the Notifications page, a provider can receive a purchase request for
some of its offerings and he can accept (and create the agreement) or reject it.
A consumer can sign the agreement if it was accepted before by the provider.

6.5 IMPLEMENTATION

In the following subsections, some screenshots of each page are presented,
and an explanation of its content is given.

6.6 Navigation: 93

Register:

Figure 6.19 shows the WEB-RI register page.

In the Notifications page, a provider can receive a purchase request for some of its offerings
and he can accept (and create the agreement) or reject it. A consumer can sign the
agreement if it was accepted before by the provider.

6.5 IMPLEMENTATION
In the following subsections, some screenshots of each page are presented, and an
explanation of its content is given.

 Register:

Figure 18 shows the WEB-RI register page.

Figure 18. WEB-RI registration page.

Before the WEB-RI page is opened for the first time, the user must have the wallet running
on his personal computer. When the user opens the WEB-RI initial page, he will see the
page for registering a new user. He must select the desired role (consumer or provider) and
username – Figure 6.20.

Figure 6.19 WEB-RI registration page.

Before the WEB-RI page is opened for the first time, the user must
have the wallet running on his personal computer. When the user opens
the WEB-RI initial page, he will see the page for registering a new user.
He must select the desired role (consumer or provider) and username –
Figure 6.20.

After that, the user must confirm the addition of the new user in the wallet;
see Figure 6.20.

Login:

Figure 6.21 shows the WEB-RI login page.
With a user is registered in the wallet, it is possible to authenticate

in WEB-RI. The user must select the role (consumer or provider) he
wants to use to login in the system. After having selected the role in the
login page, the user must confirm the authentication in the wallet; see
Figure 6.22.

94 SDKs and WEB-RI

Figure 6.20. WEB-RI register with wallet.

After that, the user must confirm the addition of the new user in the wallet; see Figure .

 Login:

Figure shows the WEB-RI login page.

Figure 6.21. WEB-RI login page.

With a user is registered in the wallet, it is possible to authenticate in WEB-RI. The user
must select the role (consumer or provider) he wants to use to login in the system. After
having selected the role in the login page, the user must confirm the authentication in the

wallet; see Figure .

Figure 6.20 WEB-RI register with wallet.

Figure 6.20. WEB-RI register with wallet.

After that, the user must confirm the addition of the new user in the wallet; see Figure .

 Login:

Figure shows the WEB-RI login page.

Figure 6.21. WEB-RI login page.

With a user is registered in the wallet, it is possible to authenticate in WEB-RI. The user
must select the role (consumer or provider) he wants to use to login in the system. After
having selected the role in the login page, the user must confirm the authentication in the

wallet; see Figure .

Figure 6.21 WEB-RI login page.

6.6 Navigation: 95

Figure 6.22. WEB-RI login with wallet.

Navigation:

With successful login, the user accesses the WEB-RI homepage. This page has a navigation
bar, which is different to each role. The provider has access to offerings, search, and
notifications pages and account options; instead, the consumer has access to same pages
but not to the offerings page.

In Figure , the navigation bar for a provider is presented.

Figure 6.23.WEB-RI navigation (provider).

Figure presents the navigation bar for a consumer.

Figure 6.24. WEB-RI navigation (consumer).

 Homepage:

Figure 6.22 WEB-RI login with wallet.

6.6 Navigation:

With successful login, the user accesses the WEB-RI homepage. This page
has a navigation bar, which is different to each role. The provider has access
to offerings, search, and notifications pages and account options; instead, the
consumer has access to same pages but not to the offerings page.

In Figure 6.23, the navigation bar for a provider is presented.

Figure 6.22. WEB-RI login with wallet.

Navigation:

With successful login, the user accesses the WEB-RI homepage. This page has a navigation
bar, which is different to each role. The provider has access to offerings, search, and
notifications pages and account options; instead, the consumer has access to same pages
but not to the offerings page.

In Figure , the navigation bar for a provider is presented.

Figure 6.23.WEB-RI navigation (provider).

Figure presents the navigation bar for a consumer.

Figure 6.24. WEB-RI navigation (consumer).

 Homepage:

Figure 6.23 WEB-RI navigation (provider).

96 SDKs and WEB-RI

Figure 6.24 presents the navigation bar for a consumer.

Figure 6.22. WEB-RI login with wallet.

Navigation:

With successful login, the user accesses the WEB-RI homepage. This page has a navigation
bar, which is different to each role. The provider has access to offerings, search, and
notifications pages and account options; instead, the consumer has access to same pages
but not to the offerings page.

In Figure , the navigation bar for a provider is presented.

Figure 6.23.WEB-RI navigation (provider).

Figure presents the navigation bar for a consumer.

Figure 6.24. WEB-RI navigation (consumer).

 Homepage:

Figure 6.24 WEB-RI navigation (consumer).

Homepage:

In Figure 6.25, the WEB-RI home page is presented.
In Figure , the WEB-RI home page is presented.

Figure 6.25. WEB-RI home page.

Besides the navigation bar, the WEB-RI home page has also the information about the logo

and details about the user logged-in (username and role).

As main information, WEB-RI also shows the total number of providers and active offerings

available in the whole marketplace ecosystem. Also, it is possible to see the total number of

active offerings filtered by each category.

Offerings:

As mentioned before, the provider has access to the offerings page. The next subsections
will describe each page related to the offerings.

 Offering list:

Figure shows the page with the list of offerings of a provider.

Figure 6.26. WEB-RI offerings page.

Figure 6.25 WEB-RI home page.

Besides the navigation bar, the WEB-RI home page has also the infor-
mation about the logo and details about the user logged-in (username and
role).

As main information, WEB-RI also shows the total number of providers
and active offerings available in the whole marketplace ecosystem. Also, it is
possible to see the total number of active offerings filtered by each category.

6.6 Navigation: 97

Offerings:

As mentioned before, the provider has access to the offerings page. The next
subsections will describe each page related to the offerings.

Offering list:

Figure 6.26 shows the page with the list of offerings of a provider.

In Figure , the WEB-RI home page is presented.

Figure 6.25. WEB-RI home page.

Besides the navigation bar, the WEB-RI home page has also the information about the logo

and details about the user logged-in (username and role).

As main information, WEB-RI also shows the total number of providers and active offerings

available in the whole marketplace ecosystem. Also, it is possible to see the total number of

active offerings filtered by each category.

Offerings:

As mentioned before, the provider has access to the offerings page. The next subsections
will describe each page related to the offerings.

 Offering list:

Figure shows the page with the list of offerings of a provider.

Figure 6.26. WEB-RI offerings page. Figure 6.26 WEB-RI offerings page.

In this page, the provider sees the list of the offerings that were registered
by him. Each offering is displayed in a react-bootstrap card6 with some
information like title, description, number of contracts, and state (active,
inactive, to be deleted, or deleted).

Also, the provider has the option to register a new offering, which will be
described in the following sections.

Offering details:

Figure 6.27 represents the page with the details of an offering.

6 https://react-bootstrap.github.io/components/cards/

98 SDKs and WEB-RI

In this page, the provider sees the list of the offerings that were registered by him. Each

offering is displayed in a react-bootstrap card6 with some information like title, description,

number of contracts, and state (active, inactive, to be deleted, or deleted).

Also, the provider has the option to register a new offering, which will be described in the

following sections.

 Offering details:

Figure represents the page with the details of an offering.

Figure 6.27. WEB-RI offering details page.

When a specific offering card is selected, it will open a new page with the details of the

offering. Here, a user can see all the information related with that offering.

Since there is too much information to be displayed in a single page, a react-bootstrap

accordion7 was used to display information like dataset, contract parameters, and pricing

model. This information is collapsed by default but can be expanded as well.

This page can be seen by a provider (through offerings page) or consumer (with search). If

the user is a provider, he has options to activate, update, or delete the offering (in the top

right corner of the site, next to the offering state). Instead, if he is a consumer, he has a

button called “Buy Offering”, which allows to initiate the process of creating a data purchase

request.

 Offering registration:

Figure represents the page to register a new offering or update an existing one.

6 https://react-bootstrap.github.io/components/cards/

7 https://react-bootstrap.github.io/components/accordion/

Figure 6.27 WEB-RI offering details page.

When a specific offering card is selected, it will open a new page with the
details of the offering. Here, a user can see all the information related with
that offering.

Since there is too much information to be displayed in a single page,
a react-bootstrap accordion7 was used to display information like dataset,
contract parameters, and pricing model. This information is collapsed by
default but can be expanded as well.

This page can be seen by a provider (through offerings page) or consumer
(with search). If the user is a provider, he has options to activate, update, or
delete the offering (in the top right corner of the site, next to the offering
state). Instead, if he is a consumer, he has a button called “Buy Offering”,
which allows to initiate the process of creating a data purchase request.

Offering registration:

Figure 6.28 represents the page to register a new offering or update an existing
one.

7 https://react-bootstrap.github.io/components/accordion/

6.6 Navigation: 99

Figure 6.28 WEB-RI offering registration page.

The provider can register a new offering or update an existing one (but
only the offerings registered by him). This page shown in Figure 6.29 is used
for both purposes; the only difference is, when updating an offering, all the
fields are already filled.

Since there is a lot of information associated with an offering, a react-
bootstrap tab8 was used on this page. With the help of the tabs, all fields were
grouped by categories, which are general, dataset, pricing model, and contract
parameters.

Also, inside each tab, some accordions were used to better display all the
input fields to the user.

Offering purchase request:

Figure 6.29 represents the page where a consumer can initiate the process of
buying a new offering.

8 https://react-bootstrap.github.io/components/tabs/

100 SDKs and WEB-RI

Figure 6.29. WEB-RI offering purchase page.

After the consumer selects the “Buy Offering” button in offering details page, a new page will

be displayed with the contract template for that offering. In this page, the consumer must fill

in the dynamic parameters of the template and then click on the “Data Purchase Request”

button to proceed with the process of buying an offering.

Search:

Figure represents the page where a user (provider or consumer) can search for

offerings.

Figure 6.29 WEB-RI offering purchase page.

6.6 Navigation: 101

After the consumer selects the “Buy Offering” button in offering details
page, a new page will be displayed with the contract template for that
offering. In this page, the consumer must fill in the dynamic parameters of
the template and then click on the “Data Purchase Request” button to proceed
with the process of buying an offering.

Search:

Figure 6.30 represents the page where a user (provider or consumer) can
search for offerings.

Figure 6.30. WEB-RI search page.

In the search page, the user (consumer or provider) can search for active offerings available

in the whole marketplace ecosystem. He can search offerings by category, provider, or free

text. As mentioned in the image above, the search is executed by entering a free text and

returns the offerings that match the search criteria.

Notifications:

Error! Reference source not found.Figure 6 represents the page where a user can see

his notifications.

Figure 6.31. WEB-RI notifications page.

This page has all notifications associated with the user who is logged-in in WEB-RI.

If the provider is logged-in, he can receive notifications about a purchase request regarding

some of his offerings. In this case, if he accepts the proposal, a new page will be displayed

where the provider can create a new agreement. But he also can reject the proposal by

sending some comments justifying the rejection of the proposal (this will be sent as a

notification to the respective consumer).

Figure 6.30 WEB-RI search page.

In the search page, the user (consumer or provider) can search for active
offerings available in the whole marketplace ecosystem. He can search offer-
ings by category, provider, or free text. As mentioned in the image above, the
search is executed by entering a free text and returns the offerings that match
the search criteria.

Notifications:

Figure 6.31 represents the page where a user can see his notifications.

102 SDKs and WEB-RI

Figure 6.30. WEB-RI search page.

In the search page, the user (consumer or provider) can search for active offerings available

in the whole marketplace ecosystem. He can search offerings by category, provider, or free

text. As mentioned in the image above, the search is executed by entering a free text and

returns the offerings that match the search criteria.

Notifications:

Error! Reference source not found.Figure 6 represents the page where a user can see

his notifications.

Figure 6.31. WEB-RI notifications page.

This page has all notifications associated with the user who is logged-in in WEB-RI.

If the provider is logged-in, he can receive notifications about a purchase request regarding

some of his offerings. In this case, if he accepts the proposal, a new page will be displayed

where the provider can create a new agreement. But he also can reject the proposal by

sending some comments justifying the rejection of the proposal (this will be sent as a

notification to the respective consumer).

Figure 6.31 WEB-RI notifications page.

This page has all notifications associated with the user who is logged-in
in WEB-RI.

If the provider is logged-in, he can receive notifications about a purchase
request regarding some of his offerings. In this case, if he accepts the pro-
posal, a new page will be displayed where the provider can create a new
agreement. But he also can reject the proposal by sending some comments
justifying the rejection of the proposal (this will be sent as a notification to
the respective consumer).

If the consumer is logged-in, he can receive notifications about data
purchase requests that were rejected by the provider or about proposals that
were accepted and then he must sign the agreement.

Account:

This option, represented by a person icon in navigation bar, shows some
options in a dropdown. One of those options allows the user to log off from
WEB-RI.

7
Deployment Tools

The deployment specification should define execution architecture of sys-
tems that represent the assignment (deployment) of software artifacts (i3-
MARKET building blocks) to deployment targets (usually nodes).

Nodes represent either hardware devices or software execution environ-
ments. They could be connected through communication paths to create net-
work systems of arbitrary complexity. Artifacts represent concrete elements
in the physical architecture.

Once the deployment has been provided, a complementary specification
would be necessary to define how to deploy software within the i3-MARKET
ecosystem. In the context of i3-MARKET, we will be referring to this
specification as management operative specification.

This chapter gives guidance on how the solutions for deploying i3-
MARKET software are defined within the i3-MARKET instances as part of
the deployment operative. The i3-MARKET operative considers four possible
deployment scenarios categorized as manual or automated deployments and
oriented towards i3-MARKET developers and/or data spaces and/or data
marketplaces infrastructure administrators.

For the deployment and management operative, Ansible and Zabbix have
been proposed as configuration, management, and monitoring tools, respec-
tively, for the central environment. It is left to the stakeholders to decide
which tools will be used and deployed for managing and monitoring the
marketplace instances.

7.1 Solution Design

A four-layer stack has been defined for i3-MARKET: at the lowest layer, there
is the Cloud provisioning and management layer (Figure 82). On top of that,
a DevOps software layer is placed for assembling all the software used for
the CI/CD process. Then, a third-party software layer is in charge of giving

103

104 Deployment Tools

support to the i3M-core artifacts, which can be found at the top level of the
stack.

Figure 7.1. Four-layer i3M SW stack.

Depending on the environment to be deployed, it might be deployed on one layer or another.
More details on the specific software deployed on each environment are given in the
following sub-sections.

The target audience are the i3-MARKET project developers who are participating in the
development and deployment of the i3-MARKET Backplane.

The i3-MARKET operative considers four possible deployment scenarios, categorized into
manual and automatized deployments. These scenarios are the following:

▪ Manual deployment scenario one (MDS1)
▪ Automatized deployment scenario with Ansible (ADS1)
▪ Automatized deployment scenario with Ansible and GitHub CI/CD (ADS2)
▪ Automatized deployment scenario with Docker Compose (ADS3)

Considering an i3-MARKET user role perspective, the main roles involved in the different
deployment scenarios are:

• i3M root instance admin

• i3M SW developer

• i3M third-party SW admin

• i3M pilot instance admin

Table provides the mapping between the i3-MARKET user roles and the previously listed
deployment scenarios:

Table 7.1. Deployment scenarios and i3M user roles mapping.

Core

Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure 7.1 Four-layer i3M SW stack.

Depending on the environment to be deployed, it might be deployed on
one layer or another. More details on the specific software deployed on each
environment are given in the following sub-sections.

The target audience are the i3-MARKET project developers who are par-
ticipating in the development and deployment of the i3-MARKET Backplane.

The i3-MARKET operative considers four possible deployment scenar-
ios, categorized into manual and automatized deployments. These scenarios
are the following:

• Manual deployment scenario one (MDS1)
• Automatized deployment scenario with Ansible (ADS1)
• Automatized deployment scenario with Ansible and GitHub CI/CD

(ADS2)
• Automatized deployment scenario with Docker Compose (ADS3)

Considering an i3-MARKET user role perspective, the main roles
involved in the different deployment scenarios are:

• i3M root instance admin

7.1 Solution Design 105

• i3M SW developer
• i3M third-party SW admin
• i3M pilot instance admin

Table 7.1 provides the mapping between the i3-MARKET user roles and
the previously listed deployment scenarios:

Deployment
scenario/user role

 I3m root
instance
admin

i3M SW
developer

i3M third-
party SW
admin

i3M pilot
instance
admin

MDS1

ADS1

ADS2

ADS3

The following subsections describe in detail each identified deployment scenario.

7.1.1 MDS1: manual deployment
The manual deployment scenario one (MDS1) is based on accessing the physical resources
by establishing an SSH connection. Once the physical resource is accessed, the user
proceeds with the SW deployment manually. An overview of MDS1 is provided in the
following picture. The actors involved in these scenarios are i3M SW developer and i3M
third-party SW admin (Figure 7.2).

Figure 7.2. MDS1.

7.1.2 ADS1: automated deployment with Ansible
Automated deployment scenario one (ADS1) is based on the provision of a set of Ansible
playbooks containing deployment recipes. Playbooks are one of the core features of Ansible
and tell Ansible what to execute. They are like a to-do list for Ansible that contains a list of
tasks. Playbooks contain the steps which the user wants to execute on a concrete physical
resource, and they are run sequentially.

From an operative point of view, actors involved in this scenario must cover the following
deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment instructions using
the physical resources specified.

2) Start an Ansible job by instantiating the playbook template provided in step 1.

An overview of ADS1 is provided in the following picture. The actors involved in this scenario
are i3M IT admin and i3M third-party SW admin (Figure 7.3).

Table 7.1 Deployment scenarios and i3M user roles mapping.

The following subsections describe in detail each identified deployment
scenario.

7.1.1 MDS1: manual deployment

The manual deployment scenario one (MDS1) is based on accessing the
physical resources by establishing an SSH connection. Once the physical
resource is accessed, the user proceeds with the SW deployment manually. An
overview of MDS1 is provided in the following picture. The actors involved
in these scenarios are i3M SW developer and i3M third-party SW admin
(Figure 7.2).

Deployment
scenario/user role

 I3m root
instance
admin

i3M SW
developer

i3M third-
party SW
admin

i3M pilot
instance
admin

MDS1

ADS1

ADS2

ADS3

The following subsections describe in detail each identified deployment scenario.

7.1.1 MDS1: manual deployment
The manual deployment scenario one (MDS1) is based on accessing the physical resources
by establishing an SSH connection. Once the physical resource is accessed, the user
proceeds with the SW deployment manually. An overview of MDS1 is provided in the
following picture. The actors involved in these scenarios are i3M SW developer and i3M
third-party SW admin (Figure 7.2).

Figure 7.2. MDS1.

7.1.2 ADS1: automated deployment with Ansible
Automated deployment scenario one (ADS1) is based on the provision of a set of Ansible
playbooks containing deployment recipes. Playbooks are one of the core features of Ansible
and tell Ansible what to execute. They are like a to-do list for Ansible that contains a list of
tasks. Playbooks contain the steps which the user wants to execute on a concrete physical
resource, and they are run sequentially.

From an operative point of view, actors involved in this scenario must cover the following
deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment instructions using
the physical resources specified.

2) Start an Ansible job by instantiating the playbook template provided in step 1.

An overview of ADS1 is provided in the following picture. The actors involved in this scenario
are i3M IT admin and i3M third-party SW admin (Figure 7.3).

Figure 7.2 MDS1.

106 Deployment Tools

7.1.2 ADS1: automated deployment with Ansible

Automated deployment scenario one (ADS1) is based on the provision of a
set of Ansible playbooks containing deployment recipes. Playbooks are one
of the core features of Ansible and tell Ansible what to execute. They are
like a to-do list for Ansible that contains a list of tasks. Playbooks contain the
steps which the user wants to execute on a concrete physical resource, and
they are run sequentially.

From an operative point of view, actors involved in this scenario must
cover the following deployment workflow:

1) Create an Ansible template (playbook) with concrete deployment
instructions using the physical resources specified.

2) Start an Ansible job by instantiating the playbook template provided in
step 1.

An overview of ADS1 is provided in the following picture. The actors
involved in this scenario are i3M IT admin and i3M third-party SW admin
(Figure 7.3).

Figure 7.3. ADS1.

Finally, Figure 7.4 contains a playbook example showing the main structure in terms of tags
to be included i3-MARKET playbooks, which are: name, hosts, vars, and tasks.

Figure 7.4. Ansible playbook example.

7.1.3 ADS2: automated deployment with Ansible
and CI/CD GitHub pipelines
Automated deployment scenario two (ADS2) is based on the provision of CI/CD pipelines
with Ansible and GitHub.

An overview of ADS2 is provided in Figure 7.5. The only actor involved in this scenario is
i3M SW developer (Figure 7.5).

Figure 7.3 ADS1.

Finally, Figure 7.4 contains a playbook example showing the main struc-
ture in terms of tags to be included i3-MARKET playbooks, which are: name,
hosts, vars, and tasks.

7.1 Solution Design 107

Figure 7.3. ADS1.

Finally, Figure 7.4 contains a playbook example showing the main structure in terms of tags
to be included i3-MARKET playbooks, which are: name, hosts, vars, and tasks.

Figure 7.4. Ansible playbook example.

7.1.3 ADS2: automated deployment with Ansible
and CI/CD GitHub pipelines
Automated deployment scenario two (ADS2) is based on the provision of CI/CD pipelines
with Ansible and GitHub.

An overview of ADS2 is provided in Figure 7.5. The only actor involved in this scenario is
i3M SW developer (Figure 7.5).

Figure 7.4 Ansible playbook example.

7.1.3 ADS2: automated deployment with Ansible and CI/CD
GitHub pipelines

Automated deployment scenario two (ADS2) is based on the provision of
CI/CD pipelines with Ansible and GitHub.

An overview of ADS2 is provided in Figure 7.5. The only actor involved
in this scenario is i3M SW developer (Figure 7.5).

Figure 7.5. ADS2.

The goal to reach in the current deployment scenario should be aligned with i3-MARKET
DevOps strategy and based on the provision of an Ansible Tower CI/CD architecture.

Considering the approach presented in Error! Reference source not found., Figure 7.6
illustrates what we should build to support CI/CD in i3-MARKET using Ansible and GitHub.

Figure 7.6. CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master branch so that it
always compiles. The only way to do this is to check the code in another branch (like a
function branch), test that code, review the code, and only merge it with the master once all
tests pass. The architecture above achieves exactly that and does so with a very simplified
approach that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by the CI process in
dev -> test -> production. Using this architecture, one could use the GitHub versions to store
artifacts. GitHub has the ability to trigger a webhook when the latest version is updated,
which in turn could trigger an Ansible Tower CD workflow.

Figure 7.5 ADS2.

108 Deployment Tools

The goal to reach in the current deployment scenario should be aligned
with i3-MARKET DevOps strategy and based on the provision of an Ansible
Tower CI/CD architecture.

Considering the approach presented at the CI/CD Ansible Tower and
GitHub sites [?], Figure 7.6 illustrates what we should build to support CI/CD
in i3-MARKET using Ansible and GitHub.

Figure 7.5. ADS2.

The goal to reach in the current deployment scenario should be aligned with i3-MARKET
DevOps strategy and based on the provision of an Ansible Tower CI/CD architecture.

Considering the approach presented in Error! Reference source not found., Figure 7.6
illustrates what we should build to support CI/CD in i3-MARKET using Ansible and GitHub.

Figure 7.6. CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master branch so that it
always compiles. The only way to do this is to check the code in another branch (like a
function branch), test that code, review the code, and only merge it with the master once all
tests pass. The architecture above achieves exactly that and does so with a very simplified
approach that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by the CI process in
dev -> test -> production. Using this architecture, one could use the GitHub versions to store
artifacts. GitHub has the ability to trigger a webhook when the latest version is updated,
which in turn could trigger an Ansible Tower CD workflow.

Figure 7.6 CI/CD with Ansible and GitHub.

As is well known, the main purpose of CI is of course to protect the master
branch so that it always compiles. The only way to do this is to check the
code in another branch (like a function branch), test that code, review the
code, and only merge it with the master once all tests pass. The architecture
above achieves exactly that and does so with a very simplified approach
that leverages Ansible Tower as our CI engine. For the CD part, only a few
additional workflows would be needed to implement artifacts generated by
the CI process in dev -> test -> production. Using this architecture, one could
use the GitHub versions to store artifacts. GitHub has the ability to trigger a
webhook when the latest version is updated, which in turn could trigger an
Ansible Tower CD workflow.

7.1.4 ADS3: automated deployment with Docker Compose

The last way of automatizing the deployments on i3-MARKET is by means of
Docker Compose1. After the last release of the deployment strategy adopted

1 https://docs.docker.com/compose/

7.1 Solution Design 109

by i3-MARKET of having N decentralized i3-MARKET instances + 1 master
i3-MARKET instance for centralizing some services, a deployment for sup-
porting the installation of an i3-MARKET instance (a decentralized node) has
been created based on Docker Compose. This Docker Compose is used for
deploying and managing multiple Docker containers, each of them containing
different core and decentralized services developed by i3-MARKET.

This mechanism allows any marketplace to deploy an i3-MARKET
“pilot environment” in order to be part and interact with the i3-MARKET
ecosystem. Therefore, ADS3 becomes the most useful deployment strat-
egy for supporting i3-MARKET pilots in the deployment of those i3-
MARKET services, which need to be decentralized and installed in the
pilot premises. These services are: “Backplane” (Backplane API compo-
nent), “tokenizer” + “pricing-manager” (Monetization component), “sdk-ref-
impl” (SDK-RI component), “web-ri” + “mongo_web-ri” (Web-RI), “oidc-
provider-app” + “oidc-provider-db” (Service-centric authentication com-
ponent), “vc-service” (User-centric authentication component), semantic-
engine + semantic-engine-db (Semantic engine component), data_access
(Data access component), auditable-accounting (Auditable accounting com-
ponent), besu (Blockchain network pilot node), cockroachdb-node (Dis-
tributed storage component), conflict-resolver-service (Conflict resolution
component), rating (Rating Component), and “keycloak” (Security server
component).

In terms of the Docker Compose file definition, a set of “env.component”
files has been created for storing config information relative to the deploy-
ment of each of the services contained in the Docker Compose file.

Besides installing the decentralized services by means of the Docker
Compose file, the administrator of the pilot infrastructure must install a
wallet.
Interaction with i3-MARKET can be done in several ways:

– By using the API of the Backplane, the SDK-RI or using the SDK-core
libraries to integrate our application.

– By using the Web-RI.
– By managing an instance (pilot-side or central) of i3-MARKET. More

details on this usage can be seen in the marketplace instance administra-
tion.

Marketplaces must be accepted to join the federation. Currently, the rules
of the federation have been decided and are defined as part of the following
section for the summary onboarding process. Once a marketplace is part of

110 Deployment Tools

i3-MARKET, it can issue credentials to its consumers, providers, and data
owners.

7.2 i3-MARKET: Onboarding Process

This process describes the onboarding steps for installing an operative node
(pilot environment) that allows a pilot being able to interact with other
marketplaces inside the i3-MARKET ecosystem. It is a practical guide that
makes use of the automated deployment based on Docker Compose (ADS3)
commented in the previous section.

The required steps are:

1) Clone i3-MARKET deployment repository
2) Login into i3-MARKET Nexus and Git repos
3) Execute Docker Compose
4) Install i3M Wallet

Go to Wallet2 and download the version suitable for your operating
system and do the following actions for:

– Windows operating system:

◦ Download and execute wallet desktop.
◦ The application is a standalone RAR file. Extract it and

execute the i3M Wallet.exe file.

– MacOS operating system:

◦ Open the dmg file and install the wallet desktop application.

– Linux operating system:

◦ For Debian-based systems, you can use the deb package:

• # change x.x.x for the version.
• sudo dpkg-i wallet-desktop-x.x.x-amd64.deb.

5) Create a wallet and a consumer and/or provider identity in the wallet.
The first time a user initiates the application, a dialog asking for a
password appears. The user will have to introduce this password each
time the application starts.
Create a wallet named i3-MARKET, type HD SW Wallet, and i3-
MARKET network.

2https://github.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMon
orepo/releases

https://github.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/releases
https://github.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/releases

7.2 i3-MARKET: Onboarding Process 111

Create a Consumer and/or Provider identity (right-click over the i3-
MARKET wallet).

6) Register a new OIDC client.
Access your local instance of WEB-RI (i3-MARKET GUI) available in
http://localhost:5300/.
Note: The OIDC client configuration is automatically done from the
WEB-RI. Just those who are interacting directly through the SDK-RI
or SDK-core must do it by following the next steps:
No OIDC client registered? Please follow the below steps:

i. Ask your i3-MARKET admin for your corresponding “i3-
MARKET OpenID Connect Provider API”3 (by default, each
instance of i3-MARKET has its own provider) endpoint to get an
initial token for registering a new client (authorize green button)

◦ Try logging in and get initialAccessToken.
◦ Use initialAccessToken as bearerAuth.

ii. Then here, using the access token as bearerToken (press the lock
symbol to open the form to paste the token), you can register a new
client. Please note that you must add the following information:

◦ http://localhost:5300/api/credential in redirect_uris field
◦ http://localhost:5300/auth in post_logout_redirect_uris field

After successful client registration, you can paste the returned
information in the text area.

7) Generate credentials for the consumer/provider identity.
Start the authentication workflow from local WEB-RI instance by
following next steps:

a. Provide a username for consumer role
b. Wallet pairing
c. Select wallet identity
d. Add Verifiable Credentials to the wallet
e. Login using credentials generated previously
f. Selective disclosure
g. Sign
h. Access finally to GUI of Web-RI.

3And endpoint similar to: https://XXXX.i3-MARKET.eu/release2/api-spec/ui/#/Develope
rs/get_release2_developers_login

https://XXXX.i3-MARKET.eu/release2/api-spec/ui/#/Developers/get_release2_developers_login
https://XXXX.i3-MARKET.eu/release2/api-spec/ui/#/Developers/get_release2_developers_login

8
SDK-RI Specification

8.1 Objectives

The SDK reference implementation, or SDK-RI, has these specific objectives:

• Provide the mechanisms in terms of SW pieces for testing the i3-
MARKET Backplane services/artifacts.

• Follow the approach SDK-RI as a service: SDK-RI will be a set of
services needed for simulating an i3-MARKET-ized data marketplace
behaviour.

• SDK-RI will let the pilots check this reference implementation as a
guide/example for developing their own integration with i3-MARKET.

• Context: SDK-RI contextualization was already introduced in section 6.2
as part of the SDK-core.

8.2 Technical Requirements

The current subsection contains a set of SDK requirements that have been
collected for releases 2 and 3; meanwhile, the other ones are the result of
deepening in the last iterations of SDK elicitation process.

8.3 SDK Reference Implementation

The SDK-RI implementation is based on Java and Swagger framework, and
the next subsections are focusing on the update provided during R2 and R3
developments. The SDK-RI was first released as a web app deployed within
Jetty and encapsulated in a Docker container then later in R2 and R3 updated
with Java and Swagger.

113

114 SDK-RI Specification

8.4 Core Technology

In an initial stage of SDK-RI implementation, the technology options pre-
sented in Figure 8.1 − Implementation technologies for SDK-RI − were
considered:

Figure 8.1 SDK-RI Implementation Technologies Used.

To sum up, the candidate technologies to support the implementation of
SDK-RI were the following:

• Node.js
• Node.js + Express
• Java + RPM
• Java + Swagger + Tomcat

Finally, option 4 was selected but substituting Jetty for Tomcat as web
application server. Therefore, we can conclude by saying that SDK-RI is a
web app deployed within Jetty and encapsulated in a Docker container.

8.5 Continuous Integration and Deployment

The SDK-RI artifact is automatically provided by means of a CI/CD pipeline
based on Ansible AWX. A conceptual view of SDK-core pipeline is shown
in Figure 8.2 – SDK-RI pipeline.

As initial stage, the SDK-RI is imported as a library in the last version
of the SDK-core published in i3-MARKET Nexus maven repository. As a
second stage, once a commit is done into the master branch of SDK-RI
GitLab project, a compilation and deployment of a new version of SDK-RI is
carried out.

8.5 Continuous Integration and Deployment 115

Figure 8.2 SDK-RI pipeline based on Ansible AWX.

SDK-RI installation:
The setup instructions and Docker-based deployment of SDK-RI is covered
in detail in the following subsections.

Setup:
Clone the repository and download the dependencies:
git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

Running the SDK-RI with Docker:
Use Docker to run the SDK-RI. To do so, follow the same setup instructions
as above.

Then, just build your SDK-RI project nd run it using the jetty images as
follow:

SDK-RI container is built over a Jetty image and the SdkRefIMpl war file
is deployed into Jetty.

Finally, just go to http:/$deploy_host/SdkRefImpl for accessing SDK-RI
REST API.

Configuring and using SDK-RI
To configure SDK-RI instance, the following steps should be covered:

• The marketplace will have all the common services exposed in an SDK-
RI/endpoint.

Each marketplace end-user, which pursues making use of the SDK-RI,
should configure the SDK-RI by means of:

• pointing to the Backplane endpoint(s) hosted in a concrete i3-MARKET
node (i.e., Backplane API node1, OpenID Connect Provider API node1,
Verifying and Credential service API node1);

• pointing to the wallet endpoint hosted locally.

This configuration should be defined in the SDK-RI properties file placed
at ‘‘src/resources/sdk_ri_config.properties’’.

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git
``src/resources/sdk_ri_config.properties''

116 SDK-RI Specification

The internal workflow covered by the SDK-core/RI playbook is shown in
Figure 8.3.

Annex B (SDK-core/RI playbook) contains the last version of Ansible
playbook that supports the generation of the SDK-core/RI for the final release
(or R3).

Configuring and using SDK-RI

 To configure SDK-RI instance, the following steps should be covered:

 The marketplace will have all the common services exposed in an SDK-
RI/endpoint.

Each marketplace end-user, which pursues making use of the SDK-RI, should
configure the SDK-RI by means of:

 pointing to the Backplane endpoint(s) hosted in a concrete i3-MARKET node
(i.e., Backplane API node1, OpenID Connect Provider API node1, Verifying
and Credential service API node1);

 pointing to the wallet endpoint hosted locally.

This configuration should be defined in the SDK-RI properties file placed at
“src/resources/sdk_ri_config.properties”.

The internal workflow covered by the SDK-core/RI playbook is shown in Figure .

Error! Reference source not found.) contains the last version of Ansible playbook that
supports the generation of the SDK-core/RI for the final release (or R3).

Create oas temp directory

Get access token for accessing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for DATA_ACCESS

Set java 8 as default jvm

Delete authorizations unmodifiableMap in ApiClient

Delete defaults authorizations in ApiClient

Add global import of fasterxml to avoid compilation issues with JsonTypeInfo,
JsonSubTypes

Mvn package sdk-core artifact

Create temp directory

Extract jar file with Java classes

Extract jar file with Java docs

Extract jar file with Java sources

Add all classes and docs into a single JAR file

Upload SDK-Core artifacts to Nexus

Send an email notification to inform about new version available

Figure 8.3 SDK-core/RI playbook internal workflow.

9
SDK-RI Installation using Docker

The SDK-RI is fully dockerized and the container is built over a Jetty image
and deploys the SdkRefIMpl war file into Jetty.

The SDK-RI image is built automatically as part of the CI/CD pipeline
and pushed to the i3-MARKET Docker image supported by means of
Nexus.

To build manually the SDK-RI Docker image, the following steps should
be followed:

i) Image build:

9 SDK-RI Installation using
Docker

As a reminder just to highlight that the SDK-RI is fully dockerized and the container is built
over a Jetty image and deploys the SdkRefIMpl war file into Jetty.

The SDK-RI image is built automatically as part of the CI/CD pipeline explained in Section
Error! Reference source not found. and pushed to i3-MARKET Docker image supported
by means of Nexus.

To build manually the SDK-RI Docker image, the following steps should be followed:

i) Image build:

docker build --build-arg --no-cache -t registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:version . --build-arg
BACKPLANE_URL=http://backplane:3000 --build-arg OIDC_URL=https://identity1.i3-
market.eu/xxx --build-arg VC_URL=https://identity1.i3-market.eu/xxxx/vc/api-
spec/ui --build-arg DATA_ACCESS_URL=http://xx.xxx.x.xxx:3100

ii) Image push:

docker push registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-
implementation/i3market-sdk-ri:version

iii) Run container:

docker run --name sdk-ri -p 8181:8080 registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/i3market-sdk-ri:version

As a reminder and in line with the tagging approach reported in D4.8 Error! Reference
source not found., “version” is formatted as MAJOR.MINOR.PATCH and each part
changes according to the following rules.

We increment:

 Major when breaking backward compatibility.

 Minor when adding a new feature that does not break compatibility.

 Patch when fixing a bug without breaking compatibility.

As part of the setup in step i) to configure SDK-RI instance, the following endpoints should
be provided to link them to the SDK-RI instance: Backplane URL, OIDC URL, Verifiable
Credentials (VC) URL, and finally data access URL.

9.1 Setup

Clone the repository and download the dependencies:

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

9.2 Running the SDK-RI with Docker

You can use Docker to run the SDK-RI.
To do so, follow the same setup instructions as above.

ii) Image push:

9 SDK-RI Installation using
Docker

As a reminder just to highlight that the SDK-RI is fully dockerized and the container is built
over a Jetty image and deploys the SdkRefIMpl war file into Jetty.

The SDK-RI image is built automatically as part of the CI/CD pipeline explained in Section
Error! Reference source not found. and pushed to i3-MARKET Docker image supported
by means of Nexus.

To build manually the SDK-RI Docker image, the following steps should be followed:

i) Image build:

docker build --build-arg --no-cache -t registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:version . --build-arg
BACKPLANE_URL=http://backplane:3000 --build-arg OIDC_URL=https://identity1.i3-
market.eu/xxx --build-arg VC_URL=https://identity1.i3-market.eu/xxxx/vc/api-
spec/ui --build-arg DATA_ACCESS_URL=http://xx.xxx.x.xxx:3100

ii) Image push:

docker push registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-
implementation/i3market-sdk-ri:version

iii) Run container:

docker run --name sdk-ri -p 8181:8080 registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/i3market-sdk-ri:version

As a reminder and in line with the tagging approach reported in D4.8 Error! Reference
source not found., “version” is formatted as MAJOR.MINOR.PATCH and each part
changes according to the following rules.

We increment:

 Major when breaking backward compatibility.

 Minor when adding a new feature that does not break compatibility.

 Patch when fixing a bug without breaking compatibility.

As part of the setup in step i) to configure SDK-RI instance, the following endpoints should
be provided to link them to the SDK-RI instance: Backplane URL, OIDC URL, Verifiable
Credentials (VC) URL, and finally data access URL.

9.1 Setup

Clone the repository and download the dependencies:

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

9.2 Running the SDK-RI with Docker

You can use Docker to run the SDK-RI.
To do so, follow the same setup instructions as above.

iii) Run container:

9 SDK-RI Installation using
Docker

As a reminder just to highlight that the SDK-RI is fully dockerized and the container is built
over a Jetty image and deploys the SdkRefIMpl war file into Jetty.

The SDK-RI image is built automatically as part of the CI/CD pipeline explained in Section
Error! Reference source not found. and pushed to i3-MARKET Docker image supported
by means of Nexus.

To build manually the SDK-RI Docker image, the following steps should be followed:

i) Image build:

docker build --build-arg --no-cache -t registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:version . --build-arg
BACKPLANE_URL=http://backplane:3000 --build-arg OIDC_URL=https://identity1.i3-
market.eu/xxx --build-arg VC_URL=https://identity1.i3-market.eu/xxxx/vc/api-
spec/ui --build-arg DATA_ACCESS_URL=http://xx.xxx.x.xxx:3100

ii) Image push:

docker push registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-
implementation/i3market-sdk-ri:version

iii) Run container:

docker run --name sdk-ri -p 8181:8080 registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/i3market-sdk-ri:version

As a reminder and in line with the tagging approach reported in D4.8 Error! Reference
source not found., “version” is formatted as MAJOR.MINOR.PATCH and each part
changes according to the following rules.

We increment:

 Major when breaking backward compatibility.

 Minor when adding a new feature that does not break compatibility.

 Patch when fixing a bug without breaking compatibility.

As part of the setup in step i) to configure SDK-RI instance, the following endpoints should
be provided to link them to the SDK-RI instance: Backplane URL, OIDC URL, Verifiable
Credentials (VC) URL, and finally data access URL.

9.1 Setup

Clone the repository and download the dependencies:

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

9.2 Running the SDK-RI with Docker

You can use Docker to run the SDK-RI.
To do so, follow the same setup instructions as above.

As a reminder and in line with the tagging approach reported in D4.8 [?
], “version” is formatted as MAJOR.MINOR.PATCH and each part changes
according to the following rules.

We increment:

• Major when breaking backward compatibility.
• Minor when adding a new feature that does not break compatibility.
• Patch when fixing a bug without breaking compatibility.

117

118 SDK-RI Installation using Docker

As part of the setup in step i) to configure SDK-RI instance, the following
endpoints should be provided to link them to the SDK-RI instance: Backplane
URL, OIDC URL, Verifiable Credentials (VC) URL, and finally data access
URL.

9.1 Setup

Clone the repository and download the dependencies:

9 SDK-RI Installation using
Docker

As a reminder just to highlight that the SDK-RI is fully dockerized and the container is built
over a Jetty image and deploys the SdkRefIMpl war file into Jetty.

The SDK-RI image is built automatically as part of the CI/CD pipeline explained in Section
Error! Reference source not found. and pushed to i3-MARKET Docker image supported
by means of Nexus.

To build manually the SDK-RI Docker image, the following steps should be followed:

i) Image build:

docker build --build-arg --no-cache -t registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:version . --build-arg
BACKPLANE_URL=http://backplane:3000 --build-arg OIDC_URL=https://identity1.i3-
market.eu/xxx --build-arg VC_URL=https://identity1.i3-market.eu/xxxx/vc/api-
spec/ui --build-arg DATA_ACCESS_URL=http://xx.xxx.x.xxx:3100

ii) Image push:

docker push registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-
implementation/i3market-sdk-ri:version

iii) Run container:

docker run --name sdk-ri -p 8181:8080 registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/i3market-sdk-ri:version

As a reminder and in line with the tagging approach reported in D4.8 Error! Reference
source not found., “version” is formatted as MAJOR.MINOR.PATCH and each part
changes according to the following rules.

We increment:

 Major when breaking backward compatibility.

 Minor when adding a new feature that does not break compatibility.

 Patch when fixing a bug without breaking compatibility.

As part of the setup in step i) to configure SDK-RI instance, the following endpoints should
be provided to link them to the SDK-RI instance: Backplane URL, OIDC URL, Verifiable
Credentials (VC) URL, and finally data access URL.

9.1 Setup

Clone the repository and download the dependencies:

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

9.2 Running the SDK-RI with Docker

You can use Docker to run the SDK-RI.
To do so, follow the same setup instructions as above.

9.2 Running the SDK-RI with Docker

You can use Docker to run the SDK-RI.To do so, follow the same setup
instructions as above.

Then, just build and run using:Then, just build and run using:

docker build --no-cache -t i3m/i3market-sdk-ri:latest .
docker push i3m/i3market-sdk-ri:latest
docker run --name sdk-ri -p 8181:8080 i3m/i3market-sdk-ri

SDK-RI container is built over a jetty image and deploys the SdkREfIMpl war file into jetty.

Finally just go to http:/$deploy_host/SdkRefImpl for accessing SDK-RI REST API.

9.3 Configuring and using SDK-RI

 The marketplace will have all the common services exposed in a SDK-RI/endpoint.

 Each marketplace end-user, who pursues making use of the SDK-RI, should
configure the SDK-RI by means of:

o pointing to the Backplane endpoint(s) hosted in a concrete i3-MARKET node
(i.e., Backplane API node1, OpenID Connect Provider API node1, and
Verifying Credential service API node1);

o pointing to the wallet endpoint hosted locally.

 This configuration should be defined in the SDK-RI properties file placed at
“src/resources/sdk_ri_config.properties”.

 An example of setup could be the following:

o backplane.url = xxxx

o oidc.url = xxxx

o verifiable_credentials.url = xxxxx

SDK-RI container is built over a jetty image and deploys the SdkREfIMpl
war file into jetty.

Finally just go to http:/$deploy_host/SdkRefImpl for accessing SDK-RI
REST API.

9.3 Configuring and using SDK-RI

• The marketplace will have all the common services exposed in a SDK-
RI/endpoint.

• Each marketplace end-user, who pursues making use of the SDK-RI,
should configure the SDK-RI by means of:

◦ pointing to the Backplane endpoint(s) hosted in a concrete i3-
MARKET node (i.e., Backplane API node1, OpenID Connect
Provider API node1, and Verifying Credential service API node1);

◦ pointing to the wallet endpoint hosted locally.

9.3 Configuring and using SDK-RI 119

• This configuration should be defined in the SDK-RI properties file
placed at “src/resources/sdk_ri_config.properties”.

• An example of setup could be the following:

◦ backplane.url = xxxx
◦ oidc.url = xxxx
◦ verifiable_credentials.url = xxxxx

10
WEB-RI

10.1 Purpose

The WEB-RI proposes itself as reference for the implementation of a user
interface to allow human users to use and interact with the functional-
ities provided by i3-MARKET. The WEB-RI has three main objectives,
which are:

• As a management tool, to allow i3-MARKET developers to test their
functionalities in the context of a user usage.

• As a reference implementation, providing functional examples of
how the i3-MARKET SDKs can be used to implement/integrate i3-
MARKET functionalities into a data marketplace. As a reference imple-
mentation, WEB-RI is also a useful tool to help i3-MARKET pilots
on the implementation of their use-case scenarios and on testing of
backplane technologies by providing specifications and code that can
be used.

10.2 Architecture

In Figure 10.1, the architecture of WEB-RI is represented.
A consumer or a provider can access WEB-RI1 via internet browser and

proceed with the authentication for which the wallet2 must be installed and
running on his personal computer. The authentication process is executed on
WEB-RI frontend by calling the OIDC service which will call the wallet to
perform the authentication itself.

1https://gitlab.com/i3-market-v2-public-repository/i3-market-web-ri
2https://gitlab.com/i3-market-v2-public-repository/sp3-scgbssw-i3mwalletmonorepo

121

122 WEB-RI

Figure 10.1 WEB-RI architecture.

The WEB-RI frontend is connected to a backend, which has two main
functions: manage user sessions and have a way to interact with the function-
alities provided by i3-MARKET.

To manage the user sessions, the WEB-RI backend saves the user session
in a session storage called connect-mongo3.

To interact with the functionalities provided by i3-MARKET, a library
was implemented, called Connector-RI4. This connector has all the meth-
ods needed to call the respective APIs from the SDK-RI, which have the
functionalities to interact with the i3-MARKET Backplane. This allows to
have a clean and simple WEB-RI backend where it is only needed to call the
respective methods from the connector.

3https://github.com/jdesboeufs/connect-mongo
4https://gitlab.com/i3-market-v2-public-repository/i3-market-connector-ri

10.3 Sitemap 123

10.3 Sitemap

In Figure 10.2, the sitemap of WEB-RI is represented.
WEB-RI is composed of several pages, which are Authentication, Home-

page, Offerings, Search, and Notifications.
In the Authentication page, the user has the possibility to register a

new provider or consumer and login with some existing user registered in
WEB-RI.

The Homepage is the main page of WEB-RI, which has a navigation bar
that allows the user to navigate to the other available pages. Also, there are
statistics related with the number of offerings and providers.

The Offerings page is only visible to a provider, where he can manage the
offerings registered by him and register new ones.

Figure 10.2 WEB-RI sitemap.

124 WEB-RI

The Search page is visible either to a provider or a consumer. The only
difference is that a consumer has the possibility to create a purchase request
for the offering he searched.

In the Notifications page, a provider can receive a purchase request for
some of its offerings and he can accept (and create the agreement) or reject it.
A consumer can sign the agreement if it was accepted before by the provider.

10.4 Run WEB-RI in Docker

The WEB-RI can be reused and customized, in order to do so run the WEB-
RI docker, to get the code, use git clone command, the web-ri code available
at (https://github.com/i3-Market-V3-Public-Repository/WRR-WebRI), first
you must define the following environment variables in docker-compose.yml
file:

environment:
SDK_RI_ENDPOINT: sdk-ri endpoint
MONGO_URL: mongodb url
OIDC_URL: oidc provider
VC_URL: verifiable credential service
MARKET_NAME: market of notification service

MONGO_INITDB_ROOT_USERNAME:
mongodb username
MONGO_INITDB_ROOT_PASSWORD:
mongodb password

Then,

docker-compose up

https://github.com/i3-Market-V3-Public-Repository/WRR-WebRI

11
Central Administration Guide

This chapter aims to describe in detail how to configure and maintain an i3-
MARKET central instance.

11.1 Cloud Management

In this section, an approach is presented for successfully deploying, configur-
ing, and monitoring centralized core services of i3-MARKET. This approach
is based on the usage of Ansible Tower1 as a key pillar for managing the
cloud resources. With Ansible Tower, we can control the i3-MARKET central
infrastructure (see Figure 11.1) with a visual dashboard, role-based access

Figure 11.1 Ansible Tower dashboard view.

1 Ansible tower: https://www.ansible.com/products/tower

125

126 Central Administration Guide

control, job scheduling, integrated notifications, and graphical inventory
management. The Ansible Tower dashboard is shown in Figure 11.1.

Regarding the last version of i3-MARKET, the proposed approach is
based on the definition of a physical resource inventory in Ansible, in order
to be able to automate the deployments of central artifacts. In line with the
i3-MARKET Docker Deployment, the i3-MARKET physical inventory is
composed of physical resources, whose nomenclature is based on allocated
physical resources as it is shown in the Figure 11.2 and explained

• I3M-PH-Node1, I3M-PH-Node2, and I3M-PH-Node3: These three
nodes contain three different instances of i3-MARKET that act as
development environments and testing purposes for the i3-MARKET
developers.

• I3M-PH-Node4: Physical node 4 contains master Besu node, Cockroach
data base which hosts the “Seed Index” for federating queries, Rocks
data base central instance of the blockchain, security services for allow-
ing authentication and authorization capabilities to the central node and
notification manager.

Finally, the publication of a new resource inventory is shown in
Figure 11.2.

Figure 11.2 Ansible resource inventory definition view.

11.2 Infrastructure Monitoring

As part of the i3-MARKET deployment management plan, a monitoring
approach based on the integration of Prometheus and Grafana with Ansible as

11.2 Infrastructure Monitoring 127

the official configuration management tool for the i3-MARKET infrastructure
was proposed.

The idea behind this was to take advantage of the Ansible Tower and
the metrics provided via the API and feed them into Grafana by using Node
Exporter and Prometheus.

Following the approach explained in [?], Ansible Tower must be config-
ured to provide metrics for Prometheus to be viewed via Grafana. In addition
to that, Node Exporter is used to export the operating system metrics to an
operating system (OS) dashboard in Grafana. The data flow is outlined in
Figure 11.3.

Figure 11.3 Ansible Tower metrics data flow.

As it is reflected in the diagram, Grafana looks for data in Prometheus.
Prometheus itself collects the data in its database by importing them from
Node Exporters and from the Ansible Tower APIs.

Figure 11.4 shows an updated approach based on Zabbix that was pro-
posed at M15 and adopted as official approach for i3-MARKET monitoring.

Zabbix2 is an open-source monitoring software tool for diverse IT com-
ponents, including networks, servers, virtual machines (VMs) and cloud ser-
vices. Zabbix provides monitoring metrics, among others network utilization,
CPU load, and disk space consumption.

Zabbix is used to monitor the following in i3-MARKET common
infrastructure:

2 Zabbix: https://www.zabbix.com/

128 Central Administration Guide

Figure 11.4 i3-MARKET Zabbix instance.

• Simple checks to verify the availability and responsiveness of back-
plane and other public endpoints associated with core centralized
i3-MARKET services.

• A Zabbix agent was installed in each one of the i3-MARKET clus-
ter physical nodes to monitor statistics such as CPU load, network
utilization, disk space, etc.

• Docker container monitoring using the Zabbix agent type 2 deployed in
i3-MARKET physical nodes.

12
Repositories and Open Source

The i3-MARKET Consortium is committed to contributing to a reference
implementation (community release) of the individual building blocks as well
as the overall i3-MARKET data market frameworks corresponding to their
market APIs to the developer community through an open-source project.

The i3-MARKET Consortium will address the open-source community
along with the dissemination events, and two hackathons are organized during
the project period. The hackathons will be aligned with the releases of the
i3-MARKET marketplace. Hackathons, on the one hand, allow engaging
new stakeholders in i3-MARKET and, on the other hand, allow retrieving
quick and contextual feedback about its usability, business potential, and
attractiveness. The success of the hackathons will be key since we strongly
believe that first-hour enthusiastic users are the ones that best disseminate and
spread the project’s results through social networks.

The open-source management project structure has been updated to reach
the developers and entrepreneurs (SMEs) communities largely and facil-
itate their onboarding or innovation processes. i3-MARKET followed an
open-source path using two of the most well-known and established open-
source organizations, which provide open-source projects hosting: GitLab
and GitHub. We have studied the options to have better impact and acceptance
in the developers and SME’s communities and adopted the procedure and
roles for the users of our i3-MARKET open-source project in a way that
suited best to the i3-MARKET case.

i3-MARKET project governance process defines a support and evaluation
process to include software improvements as follows:

• Request for changes or updates: A technical board identifies any
change requests prior to a major release, which should be integrated
into this major release. Before a release, all changes have to be tested by
using a pre-production/staging approach.

129

130 Repositories and Open Source

• The evaluation of any type of technical request: A technical board
approves a software component or initiates a project in i3-MARKET
OSS.

• The communication of the results from technical experts: A tagging
release strategy as described in Section 5.3 is used in order to indicate
the impact of the changes made on the i3-MARKET ecosystem.

• Evaluation of contributions for new commits: A technical board
assesses and evaluates the contributions including documentation in
i3-MARKET OSS.

• Reports and changes report: A technical board issues a short report,
explaining the rationale of the acceptance or the rejection in exceptional
cases.

The i3-MARKET team aims to facilitate and simplify development of
data services based on i3-MARKET Backplane, and any developer should
be capable of implementing and developing data services based on i3-
MARKET backplane tools. The i3-MARKET open-source team provides
the slack tool (i3-market.slack.com) for a direct communication and con-
versations with the developers team; the slack channel is used as a direct
communication channel and it is open to any developer that is part of
the i3-MARKET community but also for those external that want to start
engaging with the project. The community can join the i3-MARKET slack
channel and start reviewing the selected topics and also initiate new ones.
i3-MARKET slack open-source has served as main channel for developers
to interact directly with the i3-MARKET technical development team. The
slack channel facilitates access to a wide range of information about the
technologies developed. i3-MARKET OSS is the first project to provide
the means for setting up, managing, and using open-source channels for
the different developer communities and other stakeholders providing direct
support.

Developers require technical information that goes beyond high-level
descriptions in a website or that a normal software project documentation
can provide. The i3-MARKET project has set up an open-source developers
portal as an online tool to facilitate the members of the ecosystem to get
access to the materials, documentation, technical information, developers
know-how, and code. The online tool of the i3-MARKET project is deployed
to actively facilitate reaching out not only to the open-source community
but also SMEs and entrepreneurs in order to facilitate an easy adoption and
building an ecosystem around the i3-MARKET project.

12.1 GitLab/GitHub 131

The i3-MARKET project has evolved from R1 to R3 complet-
ing a planned evolution process. The documentation and specifications
are released using the open-source developer portal at http://www.open-
source.i3-market.eu. Videos showing the progress and use of the developed
software tools can be accessed via the i3-MARKET YouTube channel. The
community of open-source developers SMEs and entrepreneurs can now
easily find instructions that are available at the i3-MARKET open source
portal. This is a live portal, which is a continuous update according to
the latest development of the project. The main purpose of releasing this
developer-centric portal is to actively enable a channel for reaching out to
the open-source community and to allow SMEs and entrepreneurs to get all
the latest developments and also download and use the different i3-MARKET
available software updates. More specific technical documentations about the
components and systems are also available in a specific “Developer Portal”
at https://i3-market.gitlab.io/code/backplane/backplane-api-gateway/backp
lane-api-specification/index.html.

12.1 GitLab/GitHub

The i3-MARKET repository is hosted at the GitLab11 which can be found
at the following link: https://gitlab.com/i3-market/code.The i3-MARKET
repository is divided in branches. The branches are divided in two thematic
categories. One is the documentation (i.e., site storage hosted at the “gh-
pages”) and the other is the i3-MARKET source code branch. Under the
source code category, various branches will exist; the two main categories
are:

• Main branches with an infinite lifetime:

◦ Master branch
◦ Develop branch

• Supporting branches:

◦ Feature branches
◦ Release branches
◦ Hotfix branches

The i3-MARKET strategic plan to enlarge the ecosystem and reach out
the largest developers communities with this i3-MARKET public version
has proceeded with success, and i3-MARKET backplane V2 is accessible

https://i3-market.gitlab.io/code/backplane/backplane-api-gateway/backplane-api-specification/index.html.
https://i3-market.gitlab.io/code/backplane/backplane-api-gateway/backplane-api-specification/index.html.

132 Repositories and Open Source

in <www.gitlab.com> and www.github.com. The i3-MARKET’s developers
team has done an extra effort to release the V2 in these two well-known
platforms as they are amongst the largest and most popular open-source
communities. i3-MARKET has conducted all the necessary efforts to estab-
lish an automatic synchronization mechanism transparently and the OSS
governance methodology to support members of both communities; thus,
what is committed and released in one platform the other community has
access to it in a matter of few minutes.

12.2 GitLab Repository

The code is available open-source via the establishment of the i3-MARKET
spaces on GitLab (available at: https://gitlab.com/i3-market-v3-public-repos
itory).

12.3 GitHub Repository

The code is available open-source via the establishment of the i3-MARKET
spaces on GitHub (available at: https://github.com/i3-market-V3-public-rep
ository).

https://gitlab.com/i3-market-v3-public-repository
https://gitlab.com/i3-market-v3-public-repository
https://github.com/i3-market-V3-public-repository
https://github.com/i3-market-V3-public-repository

12.4 Developers’ portal with MKDocs framework 133

12.4 Developers’ portal with MKDocs framework

This section contains the details about the online developers support tool and
documentation; sections remain the same as presented in previous version
but its content has been maintained and updated continuously since its first
release. The community of open-source developers SMEs and entrepreneurs
can now easily find instructions that are available at the i3-MARKET open-
source portal here: http://open-source.i3-market.eu/ (see Figure 12.1).

This is a live portal, which is a continuous update according to the latest
development of the project. The main purpose of releasing this developer-
centric portal is to actively enable a channel for reaching out to the open-
source community and to allow SMEs and entrepreneurs to get all the latest
developments and also download and use the different i3-MARKET available
software updates.

The binaries of the different software artefacts and reference implemen-
tation modules will be found at the downloading section “Get the Code” part
– see Figure 12.2.

http://open-source.i3-market.eu/

134 Repositories and Open Source

Figure 12.1 Open-source developers portal with MKDocs.

Figure 12.2 Code repository.

12.5 Open-Source Portal

(open-source.i3-market.eu)
i3-MARKET open-source project has selected a proper governance

scheme, which regulates the interactions between the members of the open-
source community, including key roles and responsibilities for the devel-
opment and expansion of the project’s software code. i3-MARKET adopts
an incremental, iterative, and evolutionary software development process,
notably based on agile development techniques. To identify and define these
roles, the i3-MARKET Consortium made the following decisions:

12.5 Open-Source Portal 135

• A master-governed approach is the starting scheme associated with the
establishment, governance, and initial evolution of the i3-MARKET
open-source project. The goal of this decision is to ensure proper inte-
gration of the various parts of the project, at least in the initial phase of
the project where some critical mass has to be developed. It is the phase
where the project will be looking for good reputation among the IoT
open-source communities.

• i3-MARKET members from Atos partner act as master(s) for the part
of the project that concerns the lower-level sensor/ICO information
acquisition and filtering, notably on the basis of the enhancements to
be realized on top of the i3-MARKET Backplane.

Figure 12.3 depicts the i3-MARKET project governance process, which
is defined as the support and evaluation process to include software improve-
ments as follows:

• Request for changes or updates: Identify any development previous to
a major release, which should be considered private and usually is on
testing and pre-production/staging.

• The evaluation of any type of technical request: A technical board,
PM, TM, TPMs, or WPLs approves participation; in particular, software
component or initiate a project in i3-MARKET OSS.

Figure 12.3 Open-source governance.

136 Repositories and Open Source

• The communication of the results from technical experts: A tagging
version using alpha, beta, and gamma versions and then tagged as major
is used here.

• Evaluation of contributions for new commits: Technical experts, PM,
TM, TPMs, WPLs, and TaskLs asses and evaluate the contribution
that includes documentation at the initiated project in i3-MARKET
OSS.

• Reports and changes report: The technical board issues a short report,
explaining the rational on the rejection in exceptional cases; this step can
include rejects/cancel project participation.

12.5.1 Developers, users, and respective roles

Developer roles and specializations are extensively discussed in [Aalto 2013].
The relevant extracts from this discussion are presented below.

The participants of an open-source community can be divided into three
groups based on their level of contributions. A joiner is someone who has just
recently joined the community and does not have access to the repository yet.
When that person has made his first changes to the repository, he becomes a
newcomer. A developer is a fully fledged contributor that actively adds new
code to the repository [von Krogh 2003].

A developer often starts out by making bug fixes that are related to
his work and interests. The bug fixes are not randomly scattered around
the software, but they tend to focus on the same modules. Gradually, he
gains acceptance and a higher status in the community through his bug
fixes and participation in discussions and debates about new features. This
process characterizes how a developer becomes an expert on some part
of the architecture and is able to influence its development [Ducheneaut,
2005].

Many software developers and users participate in OSS development and
communities because they want to learn. The system architecture can be
designed in a modularized way to create independent tasks with progres-
sive difficulties so that newcomers can participate and move on gradually
to take care of harder tasks. This approach can encourage more users to
become developers. Developers at the centre of OSS communities should
focus on developing the system as well as having enough attention to the
creation and maintenance of a dynamic and self-reproducing OSS community
[Ye 2003].

12.5 Open-Source Portal 137

12.5.2 Roles and activities of developers and experts in the
governance model

Taking as a reference the i3-MARKET project governance model described
above, Figure 12.4 shows the different developers and technical experts
and their impact in the i3-MARKET project governance model implemen-
tation. The developers (mainly external to the i3-MARKET team) shall
follow this process playing a dynamic role in the process to further develop
functionalities and/or services.

The group of experts, on the other hand, shall evaluate, approve, and
issue official technical reports indicating clearly what the consequences and
conditions about the decision(s) about a requested commit are. The user of
the code will be notified by an announcement clearly describing the benefits
or new functionalities that are ready to be used as a result of implementing
the governance model process.

Figure 12.4 Public repository governance.

13
Other Content

The deployment process, as defined in the deployment guide section, is
for the whole project process. However, if a developer wants to deploy an
individual service or component, they can still do so by cloning the code
from GitLab/GitHub, making changes, and then deploying either manually
or using Docker Compose, for example.

Run secure data access API using docker-compose:

• Clone the repository.

• In the project root, create a .env file to insert environment variables. You
have an example in templates/template.env.

• To start secure data access API, run with this command:

Local development components like OpenId Provider:
Clone the repository!

13.1 Local Development using Node.js

To run the service locally using Node.js, it is necessary to download it
before. After that, you can install the dependencies and start the service in
the following way:

$ cd node-oidc-provider/app
$ npm i
$ npm start

139

140 Other Content

You should also update the configuration file app/src/config.ts before run-
ning the service. Specifically, it is necessary to fill the default environment
variables, in the same way they are filled in the .env file.

13.2 Local Development using Docker

Run the following command in the project root. The first time, it will take
a while (be patient) since it has to build images and download all the npm
dependencies.

./docker-dev-start

The OAS documentation can be accessed from http://localhost:3000/oidc/ap
i-spec/ui.

You can stop the container at any time with Ctrl-C.
If you want to delete and prune all the created images, containers,

networks, and volumes, just run:

./docker-dev-prune

Since the app directory is shared with the docker container with mapped
user permissions, you can just edit any files in the app directory locally. The
container will be running ts-node and nodemon to directly execute the source
code and refresh the server if any file has changed. You can also attach any
debugger in your local machine to the container, which will be listening at
default port 9229.

13.2.1 Development scripts in the docker container

Besides rebuilding, you can execute any command in the oidc-provider-
app container:

• to execute it in the running container:
docker-compose -f docker-compose.dev.yaml exec oidc-provider-app
<command>.

• to create and delete on-the-fly a new container (that will update the same
files):
docker-compose -f docker-compose.dev.yaml run –rm –no-deps oidc-
provider-app <command>.

http://localhost:3000/oidc/api-spec/ui.
http://localhost:3000/oidc/api-spec/ui.

14
Conclusions

The i3-MARKET Book series is a detailed compilation of all about design
process, implementation work and the produced results and outcomes in the
form of legacy of the i3-MARKET and Open Source Software projects.

In this third book, we concentrated in bringing the technology deploy-
ments and provide an overview of the technologies and techniques that can
be used to facilitate an smooth deployment and adoption of the i3-MARKET
methodologies and solutions that are the foundations of i3-MAKRET soft-
ware. Additionally and to provide a complete view of the three books this
section includes not only this book conclusions but serves as a compilation of
all the findings and conclusions from the three books in order to list together
all the advances and improvements over the state of the art that this books
series is aiming to share.

The i3-MARKET project addresses the challenge of being integrative
following design methods used in industry and OSS implementation best
practices, interoperable by using semantic models that define a common
conceptual framework and information model that enables cross-domain data
exchange and sharing, intelligent from the perspective of smart contracts
generated automatically and associating those financial operations into a set
of software tools that facilitate that data assets can be commercialized via
intra-domain or cross-domain almost transparently in a secure and protected
digital market environment.

The i3-MARKET Book Series presents an overview of the i3-MARKET
methodologies and solutions that are the foundations of its software results
in the form of a Backplane with a set of software support tools and as a
solution addressing the challenge of enabling the coexistence of data spaces
with marketplaces for enlarging the European digital market ecosystem.

The i3-MARKET project provided a blueprint open-source software
architecture called “i3-MARKET Backplane” that addresses the growing
demand for connecting multiple data spaces and marketplaces in a secure

141

142 Conclusions

and federated manner. The i3-MARKET Consortium is contributing with
the developed software tools to build the European data market economy
by innovating marketplace platforms, demonstrating with three industrial
reference implementations (pilots) that a decentralized data economy and
more fair growth is possible.

The first part of the i3-MARKET Book series introduces and explains
the principles of the modern data economy that lead to make the society more
aware about the value of the data that is produced everyday by themselves but
also in a collective manner. Data Business is one of the most disruptive areas
in today’s global economy, particularly with the value that large corporates
have embedded in their solutions and products as result of the use of data
from every individual.

The i3-MARKET architecture design provides adequate and in-house
developed building blocks for trustworthy (secure and reliable) data-sharing
and exchange of existing data assets for current and new future market-
place platforms, with special attention on commercializing data assets from
individuals, SMEs, or large industrial corporations. We used and developed
the i3-MARKET backplane using open-source technologies that impulse the
adoption and exploit the open-source culture, a tendency that, for more than
a decade, is hitting the industry markets and that today more and more
industries are following.

In the second i3-MARKET series book, is discussed why data is the
focus of current technological developments towards digital markets and the
meaning of data being the next asset to appear evolved in trading markets.
At the same time, it focused on introducing the i3-MARKET technology and
the proposed solutions. In the second i3-MARKET series book, the basic
technological principles and software best practices and standards for imple-
menting and deploying data spaces and data marketplaces were introduced
and explained. The second book provides a definition for data-driven society
as: The process to transform data production into data economy for the people
using the emerging technologies and scientific advances in data science to
underpin the delivery of data economic models and services.

In this third i3-MARKET series book the best practices, software methods
and mechanisms that allow the i3-MARKET backplane reference implemen-
tation to be instantiated, tested and validated are explained. This book series
part concentrates in the technical experts and developers’ community as a
way to provide support tools and guidance in their process to integrate the
i3-MARKET tools and its reference implementation. This book is offered
a guidebook for technical experts and developers is addressed, the so-called

13.2 Local Development using Docker 143

industrial deployment and to provide clear understanding of the technological
components and the software infrastructures. The steps to install and instanti-
ate the i3-MARKET backplane with less efforts and to avoid overwhelm the
deployment activity is also introduced. in this third part of the i3-MARKET
book series, the different software technologies developed, including the use
of open-source frameworks is explained. The third book can be considered the
i3-MARKET handbook provisioning that i3-MAKRET backplane software
can actually be used as input for configurators and developers to set up
and pre-test testbeds and therefore i3-MARKEt software is also extremely
valuable to organisations, scientific and academic communities to be used as
a academic material.

In this i3-MARKET book series we discussed the technology assets
that are designed and implemented following the i3-MARKET Backplane
reference architecture (RA) that uses open data, big data, IoT, and AI design
principles to help data spaces and data marketplaces to focus on todayâĂŹs
datadriven society as the trend to rapidly transforming the data perception in
every aspect of our activities. Moreover, the series of software assets grouped
as subsystems and composed of software artefacts is included and explained
in full. Further, the book series describes the i3-MARKET Backplane tools
and how these can be used for supporting marketplaces and its components.
The i3-MARKET Book series is an overview of the reference open-source
solution to enable the data economy across different data marketplaces.

References

[1] “https://en.wikipedia.org/wiki/System_context_diagram,’’[Online].
[2] P. Kruchten, “Architectural Blueprints — The “4+1” View Model of

Software Architecture,” IEEE Software 12, November 1995, pp. 42-50.
[3] J. R. a. I. J. G. Booch, UML User Guide, Addison-Wesley Longman,

1998.
[4] “https://leanpub.com/arc42inpractice/read,’’[Online].
[5] i3-MARKET, “i3M-Wallet monorepo,” [Online]. Available: https://gith

ub.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalle
tMonorepo.

[6] Consensys, “MetaMask,” [Online]. Available: https://metamask.io/.
[7] “Trust Wallet,” [Online]. Available: https://trustwallet.com/.
[8] Exodus, “Exodus Bitcoin & Crypto Wallet,” [Online]. Available: https:

//www.exodus.com/.
[9] T. Voegtlin, “Electrum Bitcoin Wallet,” [Online]. Available: https://elec

trum.org/.
[10] Validated ID, “VIDChain,” [Online]. Available: https://www.validatedi

d.com/vidchain.
[11] Evernym, “Connect.Me Wallet,” [Online]. Available: https://www.conn

ect.me/.
[12] IdRamp, “IdRamp,” [Online]. Available: https://idramp.com/.
[13] trinsic, “Identity Wallets,” [Online]. Available: https://trinsic.id/identit

y-wallets/.
[14] ConsenSys, “uPort,” [Online]. Available: https://www.uport.me/.
[15] “Twala,” [Online]. Available: https://www.twala.io/.
[16] ConsenSys, “Serto,” [Online]. Available: https://www.serto.id/.

145

https://en.wikipedia.org/wiki/System_context_diagram,'' [Online].
https://leanpub.com/arc42inpractice/read,'' [Online].
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo.
https://metamask.io/.
https://trustwallet.com/.
https://www.exodus.com/.
https://www.exodus.com/.
https://electrum.org/.
https://electrum.org/.
https://www.validatedid.com/vidchain.
https://www.validatedid.com/vidchain.
https://www.connect.me/.
https://www.connect.me/.
https://idramp.com/.
https://trinsic.id/identity-wallets/.
https://trinsic.id/identity-wallets/.
https://www.uport.me/.
https://www.twala.io/.
https://www.serto.id/.

146 References

[17] “Veramo - A JavaScript Framework for Verifiable Data | Performant and
modular APIs for Verifiable Data and SSI,” [Online]. Available: https:
//veramo.io/.

[18] “OpenTimeStamps, a timestamping proof standard,” [Online]. Avail-
able: https://opentimestamps.org/.

[19] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au and Q. Wang, “Enabling
Secure and Efficient Decentralized Storage Auditing with Blockchain,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[20] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au and Q. Wang, “Towards
Privacy-assured and Lightweight On-chain Auditing of Decentralized
Storage,” 2020 IEEE 40th International Conference on Distributed, pp.
201-211, 2020.

[21] H. Yu and Z. Yang, “Decentralized and Smart Public Auditing for Cloud
Storage,” IEEE 9th International Conference on Software, pp. 491-494,
2018.

[22] J. Shu, X. Zou, X. Jia, W. Zhang and R. Xie, “Blockchain-Based
Decentralized Public Auditing for Cloud Storage,” IEEE Transactions
on Cloud Computing, 2021.

[23] K. Liu, H. Desai, L. Kagal and M. Kantarcioglu, “Enforceable Data
Sharing Agreements Using Smart Contracts,” 27 04 2018. [Online].
Available: https://arxiv.org/abs/1804.10645.

[24] E. J. Scheid, B. B. Rodrigues, L. Z. Granville and B. Stiller, “Enabling
Dynamic SLA Compensation Using Blockchain-based Smart Con-
tracts,” in IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2019.

[25] Ocean Protocol Foundation with BigchainDB GmbH and Newton Cir-
cus (DEX Pte. Ltd.), “Ocean Protocol: A Decentralized Substrate for AI
Data and Services,” 2019.

[26] The European Parliament and the Council of the European Union,
“General Data Protection Regulation (GDPR). Directive 95/46/EC,” 27
04 2016. [Online]. Available: https://gdpr-info.eu/.

[27] K. Jensen and L. M. Kristensen, Coloured Petri nets: modelling and
validation of concurrent systems, Springer Science & Business Media,
2009.

[28] Digital Asset Holdings, “Digital Asset Modelling Language (DAML),”
[Online]. Available: https://daml.com/.

[29] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies, O’Reilly Media, Inc., 2014.

[30] I. Bashir, Mastering blockchain, Packt Publishing Ltd, 2017.

https://veramo.io/.
https://veramo.io/.
https://opentimestamps.org/.
https://arxiv.org/abs/1804.10645.
https://gdpr-info.eu/.
https://daml.com/.

References 147

[31] D. Yaga, P. Mell, N. Roby and K. Scarfone, “Blockchain technology
overview,” arXiv preprint arXiv:1906.11078, 2019.

[32] S. Rouhani and R. Deters, “Security, performance, and applications of
smart contracts: A systematic survey,” IEEE Access, vol. 7, pp. 50759-
50779, 2019.

[33] L. Jing and L. Zhentian, “A survey on security verification of blockchain
smart contracts,” IEEE Access, vol. 7, pp. 77894-77904, 2019.

[34] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project White Paper, vol. 151, no. 2014, pp. 1-32,
2014.

[35] H. Chen, M. Pendleton, L. Njilla and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1-43, 2020.

[36] “Hyperledger Besu,” [Online]. Available: https://github.com/hyperledg
er/besu.

[37] “Solidity,” [Online]. Available: https://solidity-es.readthedocs.io/.
[38] “BIP-39,” 2021. [Online]. Available: https://github.com/bitcoin/bips/bl

ob/master/bip-0039.mediawiki.
[39] i3-MARKET, “i3M-Wallet OpenApi Specification,” 2022. [Online].

Available: https://github.com/i3-Market-V3-Public-Repository/SP
3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desk
top-openapi/openapi.json.

[40] W3C, “Decentralized Identifiers (DIDs) v1.0. Core architecture, data
model, and representations,” W3C Recommendation, 19 07 2022.
[Online]. Available: https://www.w3.org/TR/did-core/.

[41] W3C, “Verifiable Credentials Data Model v1.1.,” W3C Recommenda-
tion, 03 03 2022. [Online]. Available: https://www.w3.org/TR/vc-data-
model/.

[42] F. Román García and J. Hernández Serrano, “i3M-Wallet Base Wallet,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wa
llet.

[43] F. Román García and J. Hernández Serrano, “SW Wallet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP
3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet.

[44] F. Román García and J. Hernández Serrano, “BOK Wallet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet.

https://github.com/hyperledger/besu.
https://github.com/hyperledger/besu.
https://solidity-es.readthedocs.io/.
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json.
https://www.w3.org/TR/did-core/.
https://www.w3.org/TR/vc-data-model/.
https://www.w3.org/TR/vc-data-model/.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet.

148 References

[45] F. Román García and J. Hernández Serrano, “Wallet Desktop,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop.

[46] J. Hernández Serrano and F. Román García, “Server Walllet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet.

[47] J. Hernández Serrano and F. Román García, “Wallet Desktop OpenAPI,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-
desktop-openapi.

[48] F. Román García and J. Hernández Serrano, “Wallet Protocol,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol.

[49] F. Román García and J. Hernández Serrano, “Wallet Protocol API,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repos
itory/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/walle
t-protocol-api.

[50] F. Román García and J. Hernández Serrano, “Wallet Protocol Utils,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-
protocol-utils.

[51] IDEMIA, “Video proving the integration of IDEMIA’s HW Wallet into
the i3-MARKET Wallet Desktop application,” 2022. [Online]. Avail-
able: https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5
kbR05NOE/view?usp=share_link.

[52] Bluetooth SIG - Core Specification Workgroup, “Bluetooth Core Spec-
ification v2.1 + EDR: Secure Simple Pairing,” 2007.

[53] D. Basin, C. Cremers, J. Dreier, S. Meier, R. Sasse and B. Schmidt,
“Tamarin Prover,” [Online]. Available: http://tamarin-prover.github.io/.

[54] OpenJS Foundation, “Electron,” [Online]. Available: https://www.electr
onjs.org/.

[55] Ethers JS, “The Ethers Project,” [Online]. Available: https://github.com
/ethers-io/ethers.js/.

[56] Veramo, “Veramo - A JavaScript Framework for Verifiable Data,”
[Online]. Available: https://veramo.io/.

[57] OpenAPI, “OpenAPI Initiative,” Linux Foundation, [Online]. Available:
https://www.openapis.org/.

[58] “Express OpenAPI Validator,” [Online]. Available: https://github.com/c
dimascio/express-openapi-validator.

https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop-openapi.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop-openapi.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop-openapi.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils.
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5kbR05NOE/view?usp=share_link.
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5kbR05NOE/view?usp=share_link.
http://tamarin-prover.github.io/.
https://www.electronjs.org/.
https://www.electronjs.org/.
https://github.com/ethers-io/ethers.js/.
https://github.com/ethers-io/ethers.js/.
https://veramo.io/.
https://www.openapis.org/.
https://github.com/cdimascio/express-openapi-validator.
https://github.com/cdimascio/express-openapi-validator.

References 149

[59] TypeDoc, “TypeDoc,” [Online]. Available: https://typedoc.org.
[60] J. Hernández Serrano, “i3-MARKET Non-Repudiation Library,” 2022.

[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-CR-NonRepudiationLibrary.

[61] J. Hernández Serrano, “i3-MARKET Conflict Resolver Service,” 2022.
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-CR-ConflictResolverService.

[62] J. Hernández Serrano, “API of the i3-MARKET Non-Repudiation
Library,” i3-MARKET, 2022. [Online]. Available: https://github.com
/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiat
ionLibrary/blob/public/docs/API.md.

[63] Panva, “JOSE,” [Online]. Available: https://github.com/panva/jose.
[64] Ajv, “Ajv JSON schema validator,” [Online]. Available: https://ajv.js.o

rg/.
[65] OpenJS Foundation, “Express JS,” [Online]. Available: https://expressj

s.com/.
[66] Y. Kovacs, S. Stanhke and J. L. Muñoz, “i3-MARKET Smart Contracts,”

[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mSmartContracts.

[67] Hans van der Veer and Anthony Wiles, "Achieving Technical Interoper-
ability - the ETSI Approach," in ETSI, 2008.

[68] Mike Ushold, Christopher Menzel, and Natasha Noy. Semantic Integra-
tion & Interoperability Using RDF and OWL. [Online]. https://www.w3
.org/2001/sw/BestPractices/OEP/SemInt/

[69] M. Compton et al., "The SSN ontology of the W3C semantic sensor
network incubator group," JWS, 2012.

[70] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Frequency. https://publications.europa.
eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency

[71] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. File type. https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type

[72] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Language. https://publications.europa.
eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/

[73] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Corporate body. https://publications.eur
opa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-
body/

https://typedoc.org.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md.
https://github.com/panva/jose.
https://ajv.js.org/.
https://ajv.js.org/.
https://expressjs.com/.
https://expressjs.com/.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mSmartContracts.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mSmartContracts.
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/

150 References

[74] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Continent https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent

[75] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Country. https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country

[76] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Place. https://publications.europa.eu/en/
web/eu-vocabularies/at-dataset/-/resource/dataset/place

[77] European Commission. Joinup. Asset Description Metadata Schema
(ADMS). https://joinup.ec.europa.eu/solution/asset-description-m
etadata-schema-adms

[78] CI/CD with Ansible Tower and GitHub. Available from: https://keithten
zer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/

[79] Red Hat Ansible Tower Monitoring: Using Prometheus + Node Exporter
+ Grafana. Available from: https://www.ansible.com/blog/red-hat-ansib
le-tower-monitoring-using-prometheus-node-exporter-grafana

https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/place
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/place
https://joinup.ec.europa.eu/solution/asset-description-metadata-schema-adms
https://joinup.ec.europa.eu/solution/asset-description-metadata-schema-adms
https://keithtenzer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/
https://keithtenzer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana

Index

A
application program interface xxxi

D
data marketplace xv, 1, 62, 79, 90,

121
data provider 39, 64
decentralized identifier xxxi, 147
distributed ledger technology xxxi

E
European commission xii, 150
European union 146

I
i3-MARKET xi, 1, 6, 8, 15,

47, 58
identity and access management

xxxi, 3

J
JSON web key 23, 31
JSON web token xxxi

P
proof of origin xxxi
proof of publication xxxii

S
self-sovereign identity xxxii
service level agreement xxxii
service level specification xxxii
smart contract 74, 82, 141
smart contract manager 16, 71, 85
software development kit xxxii
state of the art 141

V
verifiable credentials 22, 71, 111

151

About the Editors

Dr. Martín Serrano is a recognized expert on semantic interoperability
for distributed systems due to his scientific contribution(s) to using liked
data and semantic formalisms like ontology web language for the Internet
of Things and thus store the collected sensor’s data in the Cloud. He has
also contributed to define the data interplay in edge computing using the
linked data paradigm; in those works he has received awards recognizing his
scientific contributions and publications. Dr. Serrano has advanced the state
of the art on pervasive computing using semantic data modelling and context
awareness methods to extend the “autonomics” paradigm for networking
systems. He has also contributed to the area of information and knowledge
engineering using semantic annotation and ontologies for describing data and
services relations in the computing continuum. Dr. Serrano has defined the
data continuum and published several articles on data science and Internet of
Things science and he is a pioneer and visionary on proposing that semantic
technologies applied to policy-based management systems can be used as
an approach to produce cognitive applications capable of understanding,
service and application events, controlling the pervasive services life cycle.
A process called bringing semantics into the box, as published in one of
his academic books. He has published 5 academic books and more than
100 peer reviewed articles in IEEE, ACM and Springer conferences and
journals.

Dr. Achille Zappa is a Post-Doctoral Researcher at Insight, University of
Galway. He received BSC/MSC degree in Biomedical Engineering and PHD
in Bioengineering from the University of Genoa (Italy), his Ph.D. project
was related to semantic web integration, knowledge engineering and data

153

154 About the Editors

management of biomedical and genomic data and his research interests
include semantic web technologies, semantic data mashup, linked data, big
data management, knowledge engineering, big data integration, semantic
integration in life sciences and health care, workflow management, IoT
semantic interoperability, IoT semantic data and systems integration. Dr.
Zappa is the W3C Advisory Committee representative for Insight Centre at
University of Galway and member of W3C working groups like the HCLS
IG, the Web of Things (WoT) IG and WG, the Spatial Data on the Web
WG. He currently work with the main Insight Linked Data and Semantic
Web Groups and with the UIoT (Internet of Things, stream processing and
intelligent systems unit) Research Unit, addressing collaboration with dif-
ferent units and involvement in various projects where he seeks to develop
general-purpose linked data analytics platform(s), which enables (a) flexible
and scalable data integration mechanisms and (b) flexible use and reuse of
data analytics components such as visualization components and analytics
methods. Dr. Zappa has an extensive expertise of applying semantic web
technologies and linked data principles in health care and life sciences
domains.

Mr. Waheed Ashraf is a Senior Software Engineer with extensive experience
in Java programming with Spring Boot and Project Management experience
with a strong background on microservices systems design and is an AWS
Certified person. Mr. Ashraf is a highly skilled senior software engineer,
with 10+ years of project related professional experience in developing and
implementing software systems and developing and maintaining enterprise
applications working for international companies from USA, Australia and
Malaysia. Mr. Ashraf is also proficient in agile software development, scrum
and continuous integration (Jenkins), Amazon Web Services (AWS) and
back-end RDBMS (using SQL in Databases Like Oracle, DB2, MySQL 4.0
and Microsoft SQL Server). He is currently responsible for the design, devel-
opment and implementation of a federated authentication and authorization
infrastructure (AAI) for federated access to data providers in the context
of the Federated Decentralized Trusted Data Marketplace for Embedded
Finance FAME Horizon Europe project.

Dr. Pedro Maló is professor at the Electrotechnical Engineering and Com-
puters Department (DEEC) of the NOVA School of Science and Technol-
ogy (FCT NOVA), Senior Researcher at UNINOVA research institute and
Entrepreneur at UNPARALLEL Innovation research-driven hi-tech SME. He

About the Editors 155

obtained an M.Sc. in Computer Science and holds a Ph.D. in Computer
Engineering with research interests in interoperability and integrability of
(complex) systems with special emphasis on cyber-physical systems/Internet
of Things. Pedro coined novel methods and tools such as the plug’n’play
interoperability (PnI) solution for large-scale data interoperability and the
NOVAAS (NOVA Asset Administration Shell) that establishes the guide-
lines and methodology for industry digitization by integrating industrial
assets into a Industry 4.0 communication backbone. As an entrepreneur,
Pedro initiated the development of the IoT Catalogue that aims to be
the whole-earth catalogue of the Internet of Things (IoT) – the one-stop-
source for innovations, products, applications, solutions, etc. to help users
(developers/integrators/advisors/end-users) to take the most advantage of
the IoT for the benefit of society, businesses and individuals. Pedro has
20+ years practice in the management, research and technical coordina-
tion/development of RTD and innovation projects in ICT domains especially
addressing data technologies, systems’ interoperability and integration solu-
tions. Pedro is a recognized Project Manager and S&T Coordinator of
European/National RTD and industry projects with skills in the coordination
of both co-localized and geographical dispersed work teams operating in
multidisciplinary and multicultural environments.

Márcio Mateus is project Manager at Unparallel Innovation, Lda Portugal
and a Research engineer holding an M.Sc. in electrotechnical and computer
engineering from the Faculty of Science and Technology of the Universidade
Nova de Lisboa (FCT NOVA). Márcio is an expert in data interoperability
measurement techniques and methodologies for complex heterogeneous envi-
ronments.

Mr. Edgar Friess is Senior System Architect at Siemens AG, Germany. In
his early career he acted as project manager and consultant at SIEMENS AG
consulting in the field of engineering with a focus on engineering tools and
methods for customers in the plant engineering and product business. Friess
is graduated from the Technical computer science in Esslingen University of
Applied Sciences.

Iván Martínez is project manager and SW architect at Atos, Spain, and a
senior researcher at the ARI department of the company AtoS. He graduated
in computer science from Technical University of Madrid and in the past few
years he has participated in semantic web, cloud, big data and blockchain

156 About the Editors

related industrial and research projects. He has contributed to national
research projects such as PLATA, and other Cloud, HPC and big data related
projects, such as KHRESMOI, VELaSCCo, TOREADOR, DataBench and
BODYPASS mainly leading in the latter’s definition and integration of system
architecture.

Mr. Alessandro Amicone is an experience project manager at GFT, Italy
leading both public funded and commercial market projects. In the first part
of his professional career, he worked mainly in projects focusing on coor-
dinating documents management and business process management systems
for the bank and insurance industry. In recent years he has been working
on Horizon2020 projects and innovative market projects promoting smart
communities and technology for digital transformation for and between com-
panies in the industry sector and research communities. The development
of processes and management systems mainly focuses on advancing the
state of art using software engineering for blockchain, smart contracts and
distributed/self-sovereign identity, ensuring cyber-security solutions.

Justina Bieliauskaite is Innovations Director at the European Digital SME
Alliance with more than 8 years of project lead and management expe-
rience (previously she worked in Lithuanian and Belgian NGOs). Justina
Bieliauskaite leads the preparation and implementation of Horizon Europe,
Digital Europe Programme, Erasmus+ and other tenders/service contracts
for the European Commission. She is experienced in coordinating stake-
holder engagement, policy analysis and recommendations, SME training,
standardization, and communication activities. Justina is currently the main
coordinator of the BlockStand.eu project. Currently, Justina is leading DIGI-
TAL SME’s Projects and Standardisation teams, and coordinates the internal
WG DIGITALIZATION which covers AI, IoT, cloud computing, blockchain
and emerging technologies, as well as coordination among digital innovation
hubs. Justina holds a Master’s degree in Science (cum laude), focusing on
political science and international relations, from the Universities of Leiden
and Vilnius. Besides her mother-tongue Lithuanian, Justina speaks English,
Italian, Russian and German.

Dr. Marina Cugurra is a lawyer specializing in R&I projects, in particular
in legal issues of new technologies and Information Society (e.g. AI, GDPR,
data ownership, etc.), with a Ph.D. degree at the “Telematics and Information
Society” Ph.D. School at University of Florence. She is also an expert in

About the Editors 157

ethical and societal themes related to ICT research and technological develop-
ments. She is serving as independent Ethical Expert at European Commission
and European Defense Agency. Consolidated experience in national projects
and international and European projects. Scientific collaboration with CNIT
(National Inter-University Consortium for Telecommunications) and CNR
– ITTIG (Italian National Research Council, Institute of Legal Information
Theory and Techniques). Legal Advisor in the R&I Division of multinational
companies. She has contributed to the activities of the legal working groups
of Eu-wide initiatives (EU Blockchain Observatory Forum) and is Chair of
the Ethics, Data Protection and Privacy (EDPP) Task Force of the “Citizen’s
Control of Personal Data” Initiative within Smart City Marketplace.

	Front Cover
	Technical Innovation, Solving theData Spaces and Marketplaces Interoperability Problems for the Global Data-Driven Economy i3-MARKET Series - Part III: The i3-MARKET FOSS Handbook
	Contents
	Preface
	Who Should Read this Book?
	What is Addressed in the i3-MARKET Book Series?
	What is Covered in this i3-MARKET Part III Book?
	Acknowledgements
	List of Figures
	List of Tables
	List of Contributors
	List of Abbreviations
	1 i3-MARKET Overview
	1.1 Context

	2 General Description
	2.1 Deployment and Operational Concepts
	2.1.1 Consider the requirements of the software
	2.1.2 Evaluate the deployment environment
	2.1.3 Consider automation and orchestration
	2.1.4 Evaluate containerization options
	2.1.5 Consider monitoring and reporting tools

	2.2 Deployment Specification
	2.3 Terminology
	2.4 i3-MARKET Artifacts Overview
	2.5 Deployment Architecture View
	2.6 i3-MARKET Network Infrastructure
	2.7 Software Stack
	2.8 i3-MARKET Master Environment
	2.9 i3-MARKET Pilot Environment

	3 Backplane API Gateway
	3.1 Objectives
	3.2 Solution Design/Blocks
	3.2.1 Authentication and authorization
	3.2.1.1 Authentication
	3.2.1.2 Authorization

	3.2.2 Subsystem implementation
	3.2.3 Data flows
	3.2.4 Service Integration Manager
	3.2.5 Automatic integration mechanism
	3.2.6 Subsystem OAS repository
	3.2.7 Backplane repository
	3.2.7.1 Remote images

	3.2.8 Final deployment
	3.2.9 Multiple environments support

	3.3 Interfaces
	3.3.1 Developers
	3.3.2 OIDC discovery
	3.3.3 OIDC core
	3.3.4 RegistryBlockchainController
	3.3.5 RegistryController
	3.3.6 AuthController
	3.3.7 Conflict-resolver service
	3.3.8 FarewellController
	3.3.9 HelloController
	3.3.10 OpenApiController
	3.3.11 Notifications
	3.3.12 Queues
	3.3.13 Subscriptions
	3.3.14 PingController
	3.3.15 Cost-controller
	3.3.16 Price-controller
	3.3.17 RatingService
	3.3.18 Agreement
	3.3.19 Explicit user consent
	3.3.20 Registration-offering
	3.3.21 TokenizerController
	3.3.22 Credential
	3.3.23 Issuer

	4 Deployment Guides
	4.1 Artifact Deployment Guides
	4.2 MDS1: Manual Deployment
	4.3 ADS1: Automatized Deployment with Ansible Scenario One
	4.4 ADS2: Automated Deployment with Ansible and CI/CD GitHub Pipelines Two
	4.5 ADS3: Automated Deployment with Docker Compose
	4.6 Tagging Releases Strategy
	4.7 Deployment Process
	4.7.1 Docker Compose
	4.7.2 Technical Requirements
	4.7.3 Specification and configurations
	4.7.4 Deployment

	5 Operative Specification
	5.1 Libraries
	5.2 i3-MARKET APIs
	5.3 SDKs
	5.4 User Interfaces
	5.5 Install i3M Wallet
	5.6 Create a Wallet and a Consumer and/or Provider Identity in the Wallet
	5.7 Creating a Wallet 2/3
	5.8 Register a New OIDC Client
	5.9 SDKs

	6 SDKs and WEB-RI
	6.1 Approach
	6.2 SDK-Core Specification
	6.2.1 SDK-core implementation
	6.2.2 Core technology

	6.3 SDK Reference Implementation (SDK-RI)
	6.4 WEB-RI
	6.4.1 Purpose

	6.5 IMPLEMENTATION
	6.6 Navigation:

	7 Deployment Tools
	7.1 Solution Design
	7.1.1 MDS1: manual deployment
	7.1.2 ADS1: automated deployment with Ansible
	7.1.3 ADS2: automated deployment with Ansible and CI/CD GitHub pipelines
	7.1.4 ADS3: automated deployment with Docker Compose

	7.2 i3-MARKET: Onboarding Process

	8 SDK-RI Specification
	8.1 Objectives
	8.2 Technical Requirements
	8.3 SDK Reference Implementation
	8.4 Core Technology
	8.5 Continuous Integration and Deployment

	9 SDK-RI Installation using Docker
	9.1 Setup
	9.2 Running the SDK-RI with Docker
	9.3 Configuring and using SDK-RI

	10 WEB-RI
	10.1 Purpose
	10.2 Architecture
	10.3 Sitemap
	10.4 Run WEB-RI in Docker

	11 Central Administration Guide
	11.1 Cloud Management
	11.2 Infrastructure Monitoring

	12 Repositories and Open Source
	12.1 GitLab/GitHub
	12.2 GitLab Repository
	12.3 GitHub Repository
	12.4 Developers' portal with MKDocs framework
	12.5 Open-Source Portal
	12.5.1 Developers, users, and respective roles
	12.5.2 Roles and activities of developers and experts in the governance model

	13 Other Content
	13.1 Local Development using Node.js
	13.2 Local Development using Docker
	13.2.1 Development scripts in the docker container

	14 Conclusions
	References
	Index
	About the Editors
	Back Cover

