River Publishers Series in Computing and Information
Science and Technology

Systems and Implemented Technologies
for Data-Driven Innovation, Addressing
Data Spaces and Marketplaces Semantic
Interoperability Needs

i3-MARKET Series - Part Il

Data Economy, Models, Technologies and Solutions

Editors: |

,_.“M,\ By | \ Sy f 2
7 e NG e [.
Martin Se\“ranqi_\,&“' ﬁ_d.g‘)ar Friess

Achille Zappa aéhfaa'rL Martinez e

Waheed Ashraf Alessandro Amicone

Pedro Malé Justina Bieliauskaite

Marcio Mateus Marina Cugurra

() N

River Publishers
OPEN ACCESS BOOK

1I3-MARKET

Systems and Implemented Technologies

for Data-Driven Innovation, Addressing

Data Spaces and Marketplaces Semantic
Interoperability Needs

iI3-MARKET Series - Part Il: Data Economy,
Models, Technologies and Solutions

RIVER PUBLISHERS SERIES IN COMPUTING AND INFORMATION
SCIENCE AND TECHNOLOGY

Series Editors:

K.C. CHEN
National Taiwan University, Taipei, Taiwan
University of South Florida, USA

SANDEEP SHUKLA
Virginia Tech, USA
Indian Institute of Technology Kanpur, India

The “River Publishers Series in Computing and Information Science and Technology” covers
research which ushers the 21st Century into an Internet and multimedia era. Networking suggests
transportation of such multimedia contents among nodes in communication and/or computer
networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and implemen-
tation of wired/wireless networking are all within the scope of this series. Based on network
and communication science, we further extend the scope for 21st Century life through the
knowledge in machine learning, embedded systems, cognitive science, pattern recognition, quan-
tum/biological/molecular computation and information processing, user behaviors and interface,
and applications across healthcare and society.

Books published in the series include research monographs, edited volumes, handbooks and
textbooks. The books provide professionals, researchers, educators, and advanced students in the
field with an invaluable insight into the latest research and developments.

Topics included in the series are as follows:-

* Artificial intelligence

Cognitive Science and Brian Science

» Communication/Computer Networking Technologies and Applications
» Computation and Information Processing
* Computer Architectures

» Computer networks

* Computer Science

* Embedded Systems

* Evolutionary computation

¢ Information Modelling

¢ Information Theory

* Machine Intelligence

* Neural computing and machine learning
* Parallel and Distributed Systems

* Programming Languages

* Reconfigurable Computing

* Research Informatics

* Soft computing techniques

* Software Development

* Software Engineering

Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

@

iI3-MARKET

Systems and Implemented Technologies

for Data-Driven Innovation, Addressing

Data Spaces and Marketplaces Semantic
Interoperability Needs

iI3-MARKET Series - Part II: Data Economy,
Models, Technologies and Solutions

Editors

Martin Serrano
Achille Zappa
Waheed Ashraf
Pedro Malo

Marcio Mateus
Edgar Friess

Ivan Martinez
Alessandro Amicone
Justina Bieliauskaite
Marina Cugurra

River Publishers

Published, sold and distributed by:
River Publishers

Alsbjergvej 10

9260 Gistrup

Denmark

www.riverpublishers.com

ISBN: 978-87-7004-171-3 (Hardback)
978-87-7004-170-6 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2024. This book is published open
access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, a link is provided to the Creative Commons license
and any changes made are indicated. The images or other third party material in
this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publica-
tion. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper.

= @
i3-MARKET

Contents

Preface

Who Should Read this Book?

What is Addressed in the i3-MARKET Book Series?
What is Covered in this i3-MARKET Part II Book?
Acknowledgements

List of Figures

List of Tables

List of Contributors

List of Abbreviations

1 Reference Architecture
1.1 Levell
1.2 Level 2

2 Wallets and Smart Contracts

2.1 i3-MARKET Wallet.
2.2 Auditable Accounting

2.3 Conflict Resolution/Non-Repudiation Protocol

24 ExplicitConsent.

ix

xi

xiii

XV

xvii

Xix

xxiii

XXV

XXix

W =

vi

Contents
2.5 Smart Contract Manager
i3-MARKET Wallets
3.1 Objectives
3.2 Technical Requirements
3.3 Solution Design/Blocks
34 Diagrams e e e
35 Interfaceso
3.6 Background Technologies
Auditable Accounting
4.1 Objectiveso
4.2 Technical Requirements
4.3 Solution Design/Blocks
4.4 Diagramsl e e e e
45 Interfaces
4.6 Background Technologies
Conflict Resolution/Non-repudiation Protocol
5.1 Objectives e
5.2 Technical Requirements
5.3 Solution Design/Blocks
54 Diagrams
5.5 Interfaces
5.6 Background Technologies
Explicit Consent
6.1 Objectives
6.2 Technical Requirements
6.3 Solution Design/Blocks
6.3.1 Diagrams
6.4 Background Technologies
Smart Contract Manager
7.1 Objectives
7.2 Technical Requirements
7.3 Solution Design/Blocks
7.4 Diagrams

7.5 Interfaces

Contents Vil

7.6 Background Technologies 85
8 i3-MARKET Crypto Token and Data Monetization 89
8.1 Objectives 89
8.2 Technical Requirements 91
8.3 Solution Design/Blocks 93
8.4 Standard Payment, 94
8.5 Tokenization. 98
8.6 Diagrams 105
87 Interfaces 115
8.8 Background Technologies 116
9 i3-MARKET Semantic Model Repository and Community 119
9.1 Semantic Engine (SEED) 120
9.2 Technical Requirements 121
9.3 Solution Design/Blocks 124
9.4 Building Block High-level Picture 125
9.5 Diagrams 128
9.6 Interfaces 131
9.7 Background Technologies 142
10 Interfaces 153
10.1 DataAccessAPI 153
10.2 Background Technologies 156
10.3 Notifications Manager 156
10.4 NotificationsasaService 156
10.5 Notificationsto Users 159
10.6 User Subscriptions 160
11 Conclusions 161
References 163
Index 169

About the Editors 171

= @
i3-MARKET

Preface

Data is the oil in today’s global economy. The vision of the i3-MARKET
book series is that the fast-growing data marketplaces sector will mature,
with a large number of data-driven opportunities for commercialization and
activating new innovation channels for the data.

A new data-as-a-service paradigm where the data can be traded and com-
mercialized securely and transparently and with total liberty at the local and
global scale directly from the data producer is necessary. This new paradigm
is the result of an evolution process where data producers are more active
owners of the collected data while at the same time catapulting disruptive
data-centric applications and services. i3-MARKET takes a step forward and
provides support tools for this maturity vision/process.

13-MARKET is a fully open source backplane platform that can be used
as a set of support tools or a standalone platform implementation of data
economy support services. i3-MARKET is the result of shared perspectives
from a representative global group of experts, providing a common vision
in data economy and identifying impacts and business opportunities in the
different areas where data is produced.

Data economy is commonly referring to the diversity in the use of data
to provide social benefits and have a direct impact in people’s life. From a
technological point of view, data economy implies technological services to
underpin the delivery of data applications that bring value and address the
diverse demands on selling, buying, and trading data assets. The demand
and the supply side in the data is increasing exponentially and it is being
demonstrated that the value that the data has today is as relevant as any other
tangible and intangible assets in the global economy.

X

X Preface

This publication is supported with EU research funds under grant agree-
ment i3-MARKET-871754. Intelligent, Interoperable, Integrative and deploy-
able open source MARKETplace with trusted and secure software tools
for incentivising the industry data economy and the Science Foundation
Ireland research funds under grant agreement SFI/12/RC/2289_P2. Insight
SFI Research Centre for Data Analytics. The European Commission and
the SFI support for the production of this publication does not constitute an
endorsement of the contents, which reflect the views only of the authors, and
the Commission, the SFI or its authors cannot be held responsible for any use
which may be made of the information contained therein.

Dr. J. Martin Serrano O.

13-MARKET Scientific Manager and Data Scientist

Adjunct Lecturer and Senior SFI Research Fellow at University of Galway
Data Science Institute - Insight SFI Research Centre for Data Analytics

Unit Head of Internet of Things, Stream Processing and Intelligent Systems
Research Group

University of Galway, www.universityofgalway.ie | Ollscoil na Gaillimh
<jamiemartin.serranoorozco @universityofgalway.ie >

<martin.serrano @insight-centre.org>

<martin.serrano @nuigalway.ie>

@
i3-MARKET

Who Should Read this Book?

General Public and Students

This Book is a unique opportunity for understanding the future of data spaces
and marketplace assets, their services, and their ability to identify different
methodologies indicators and the data-driven economy from a human-centric
perspective supports the digital transformation.

Entrepreneurs and SMEs

This Book is a unique opportunity for understanding the most updated
software tools to innovate, increase opportunities, and increase the power of
innovation into small and entrepreneurs to meet its full potential promoting
participation across the data economy values and evolution of society towards
a single digital strategy.

Technical Experts and Software Developers

This book is a guide for technolgy experts and open source enthusiast that
includes the most recent experiences in Europe towards innovating software
technology for for the financial and banking sectors.

Data Spaces & Data Markeplaces Policy Makers

This Book represent a unique offering for non-technical experts but that par-
ticipates in the data economy process and the core data economy servicesto
enable the sharing of innovation and new services across data spaces and
marketplaces such as policy makers and standardisation organisatiosna and
groups

X1

- @
iI3-MARKET

What is Addressed in the i3-MARKET Book
Series?

“Concepts and Design Innovations for the Digital Transformation of Data
Spaces and Data Marketplaces”

In the first part of the i3-MARKET book series, we begin by discussing
the principles of the modern data economy that lead to making the society
more aware about the value of the data that is produced everyday by them-
selves but also in a collective manner, i.e., in an industrial manufacturing
plant, a smart city full of sensors generating data about the behaviours of
the city and their inhabitants and/or the wellbeing and healthcare levels of a
region or specific locations, etc. Data business is one of the most disruptive
areas in today’s global economy, particularly with the value that large corpo-
rates have embedded in their solutions and products as a result of the use of
data from every individual.

“Systems and Implemented Technologies for Data-driven Innovation,
Addressing Data Spaces and Marketplaces Semantic Interoperability Needs”

In the second i3-MARKET series book, we start reviewing the basic
technological principles and software best practices and standards for imple-
menting and deploying data spaces and data marketplaces. The book provides
a definition for data-driven society as: The process to transform data produc-
tion into data economy for the people using the emerging technologies and
scientific advances in data science to underpin the delivery of data economic
models and services. This book further discusses why data spaces and data
marketplaces are the focus in today’s data-driven society as the trend to

Xiii

Xiv What is Addressed in the i3-MARKET Book Series?

rapidly transforming the data perception in every aspect of our activities. In
this book, technology assets that are designed and implemented following the
13-MARKET backplane reference implementation (WebRI) that uses open
data, big data, [oT, and Al design principles are introduced. Moreover, the
series of software assets grouped as sub-systems and composed by software
artefacts are included and explained in full. Further, we describe i3-MARKET
backplane tools and how these can be used for supporting marketplaces and
its components including details of available data assets. Next, we provide
a description of solutions developed in i3-MARKET as an overview of
the potential for being the reference open source solution to improve data
economy across different data marketplaces.

“Technical Innovation, Solving the Data Spaces and Marketplaces
Interoperability Problems for the Global Data-driven Economy”

In the third 13-MARKET series book, we are focusing on including the
best practices and simplest software methods and mechanisms that allow the
i3-MARKET backplane reference implementation to be instantiated, tested,
and validated even before the technical experts and developers community
decide to integrate the i3-MARKET as a reference implementation or adopted
open source software tools. In this book, the purpose of offering a guide book
for technical experts and developers is addressed. This book addresses the so-
called industrial deployment or pilots that need to have a clear understanding
of the technological components and also the software infrastructures, thus
it is important to provide the easy-to-follow steps to avoid overwhelm the
deployment process.

13-MARKET has three industrial pilots defined in terms of data resources
used to deploy data-driven applications that use most of the i3-MARKET
backplane services and functionalities. The different software technologies
developed, including the use of open source frameworks, within the context of
the i3-MARKET is considered as a bill of software artefacts of the resources
needed to perform demonstrators, proof of concepts, and prototype solutions.
The i3-MARKET handbook provided can actually be used as input for
configurators and developers to set up and pre-test testbeds, and, therefore,
it is extremely valuable to organizations to be used properly.

@
i3-MARKET

What is Covered in this i3-MARKET Part Il

Book?

“Systems and Implemented Technologies for
Data-Driven Innovation, Addressing Data Spaces
and Marketplaces Semantic Interoperability
Needs”

Data Economy is commonly referring to the diversity in The use of data
to provide social benefits and have a direct impact in people’s life, from
a technological point of view data economy implies technological services
to underpin the delivery of data applications that bring value and addressed
the diverse demands on selling, buying and trading data assets. The demand
and the supply side in the data is increasing exponentially and it is being
demonstrated that the value that the data has today is as relevant as any
other tangible and intangible assets in the global economy. In this second
book it is further discuss why Data is the focus in current technological
developments towards digital markets and the meaning for data being the next
asset to appear evolution in trading markets and at the same time it focuses
on introducing the i3-MARKET technology and the proposed solutions.

This book further discusses why data spaces and data marketplaces are
the focus in today’s data-driven society as the trend to rapidly transforming
the data perception in every aspect of our activities. In this book, technol-
ogy assets that are designed and implemented following the i3-MARKET
Backplane reference architecture (RA) that uses open data, big data, [oT, and
Al design principles are introduced. Moreover, the series of software assets
grouped as sub-systems and composed by software artefacts are included and
explained in full.

XV

xvi What is Covered in this i3-MARKET Part Il Book?

Furthermore, this book series describes i3-MARKET Backplane tools
and how these can be used for supporting marketplaces and its components
including details of available data assets. Next, we provide a description of
solutions developed in i3-MARKET as an overview of the potential for being
the reference open-source solution to improve data economy across different
data marketplaces.

= @
i3-MARKET

Acknowledgements

Immense thanks to our families for their incomparable affection, jollity, and
constant understanding that scientific career is not a work but a lifestyle,
for encouraging us to be creative, for their enormous patience during the
time away from them, invested in our scientific endeavours and responsi-
bilities, and for their understanding about our deep love to our professional
life and its consequences — we love you!

To all our friends and relatives for their comprehension when we had no
time to spend with them and when we were not able to join in time because we
were in a conference or attending yet another meeting and for their attention
and the interest they have been showing all this time to keep our friendship
alive; be sure, our sacrifices are well rewarded.

To all our colleagues, staff members, and students at our respective insti-
tutions, organizations, and companies for patiently listening with apparent
attention to the descriptions and progress of our work and for the great
experiences and the great time spent while working together with us and the
contributions provided to culminate this book series project. In particular,
thanks to the support and confidence from all people who believed this series
of books would be finished in time and also to those that did not trust on it,
because, thanks to them, we were more motivated to culminate the project.

To the scientific community who is our family when we are away and
working far from our loved ones, for their incomparable affection, loyalty,
and constant encouragement to be creative, and for their enormous patience
during the time invested in understanding, presenting, and providing feedback
to new concepts and ideas — sincerely to you all, thanks a million!

Martin Serrano on Behalf of All Authors

Xvil

A&

o0

iI3-MARKET

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2

Figure 5.3

Overall system.
The Backplane Gateway component diagram.

Data access component diagram.
Trust, security, and privacy component diagram. .
Semantic engine component diagram.
Data storage system component diagram.
Decentralized storage component diagram.
Distributed storage component diagram.
i3-MARKET deployment view.
Wallet DesktopUL.
UI password request for the encrypted storage. . .
Wallet start-upflow.
Wallet signature flow.
OIDC authentication using Wallet Desktop and the
13-MARKET SDK (sequence diagram).
OIDC authentication using the wallet (activity
diagram).
A fragment of the Server Wallet APL.
Auditable accounting architecture.
Auditable accounting library distribution.
Auditable accounting flow.
Overview of the Non-repudiation Protocol.
NRP — step 1: consumer gets cipherblock and
non-repudiable proof of origin (PoO).
NRP — step 2: consumer sends a proof of recep-

XiX

XX List of Figures
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 7.1
Figure 7.2

Figure 7.3

Figure 7.4
Figure 7.5

Figure 7.6

Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11

Figure 8.1
Figure 8.2
Figure 8.3

Figure 8.4
Figure 8.5
Figure 8.6

Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11

NRP — step 3: provider publishes the secret, and

consumer decrypts the cipherblock. 51
Conflict resolution: verification (NRP completeness). 52
Conflict resolution: dispute. 52
CRS API at swagger.editor.io. 53
Use-case 1: giving explicit consent. 60
Use-case 1: revoking consent. 61
Use-case 2: giving explicit consent. 62
Use-case 2: revoking consent. 63
Context view of the smart contract manager. . . . 66
Component diagram of the smart contract manager

subsystem. 67
Sequence diagram — retrieve contractual parame-

terstemplate. 68
Sequence diagram — create agreement. 68

Data sharing agreement negotiation, key pair gen-
eration, storage in wallet, and agreement creation

onblockchain. 0. 69
Sequence diagram — check agreements by offer-

ingID. 70
Conflict resolution. 71
Agreement lifecycle and states. 71
Agreement violation — conflict resolution. 72
BESU architecture. 85
Alice sends a private transaction to Bob using

Orion privacy manager. 86
Backplane architecture. 93
Data monetization components. 94
NRP Phase 1 — consumer gets cipherblock and

non-repudiable proof of origin. 95
NRPPhase 1 Part2. 96
NRP consumer sends PoR. 96
NRP provider publishes the secret, and consumer

decrypts the cipherblock. 97
Tokenization process. 98
Tokenizer architecture. 103
Pricing manager architecture. 105
NRPPartl. 106
NRPPart2. 107

Figure 8.12
Figure 8.13
Figure 8.14
Figure 8.15
Figure 8.16
Figure 8.17
Figure 8.18
Figure 8.19
Figure 8.20
Figure 8.21
Figure 8.22
Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4
Figure 9.5

Figure 9.6
Figure 9.7
Figure 9.8

Figure 9.9

Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17

Figure 9.18

List of Figures XX

NRPStep3Part1. 107
NRPStep3Part2. 107
Invoicing process. 108
Tokenizationmodel. 109
Exchange inprocess. 110
Paymentprocess. L. 111
Exchange outprocess. 112
Clearing request process. 113
Clearing execution process. 114
Tokenization API. 115
Pricing manager API. 116
High-level Backplane block diagram. 124
High-level Backplane block diagram. 125
High-level operations of the semantic engine

SYStBIM. e 125
Main interfaces and interactions of the semantic

engine system. 126
Main operations and interactions for the federated

functionalities of the semantic engine system. . . 126
i3-MARKET services layout. 128

Sequence diagram for registering a data provider. . 129
Sequence diagram for querying, deleting, and

updating data offerings. 130
Get offering by offering ID. 137
Get a list of offerings by provider ID. 137
Get a list of offerings by category. 138
Delete offeringby ID. 139
Get data offering template. 139
Query list of offerings by active state. 140
Query list of offerings by shared state. 140
Query offerings based on text/keyword. 141
RDF triple in graph representation describing

“Sensor A measures 21.8°C”. 146

A&

o0
iI3-MARKET
List of Tables
Table 2.1 Main technical contributions. 16
Table 4.1 Main technical contributions. 38
Table 7.1 Smart contract manager — user stories. 65

XX1il

= @
i3-MARKET

List of Contributors

Achille, Zappa, NUIG, Ireland

Alessandro, Amicone, GFT, Italy

Andrei, Coman, Siemens SRL, Romania

Andres, Ojamaa, Guardtime, Estonia

Angel, Cataron, Siemens SRL, Romania
Antonio,Jara, Libellium/HOPU, Spain

Birthe, Boehm, Siemens AG (Erlangen), Germany
Borja, Ruiz, Aros, Spain

Bruno, Almeida, UNPARALLEL, Portugal
Bruno, Michel, IBM, Switzerland

Carlos Miguel, Pina Vaz Gomes, IBM, Switzerland
Carmen, Pereira, Atos, Spain

Chi, Hung Le, NUIG, Ireland

Deborah, Goll Digital SME, Belgium

Dimitris, Drakoulis, 7elesto, Greece

Edgar, Fries, Siemens AG (Erlangen), Germany
Fernando, Roman Garcia, UPC, Spain

Filia, Filippou, Telesto, Greece

XXV

XXvi List of Contributors

George, Benos, Telesto, Greece

German, Molina, Libellium/HOPU, Spain
Hoan, Quoc, NUIG, Ireland

losif, Furtuna, Siemens SRL, Romania

Isabelle, Landreau, IDEMIA, France

Ivan, Martinez, Atos, Spain

James, Philpot, Digital SME, Belgium

Jean Loup, Depinay, IDEMIA, France

Joao, Oliveira, UNPARALLEL, Portugal

Jose, Luis Muiioz Tapia, UPC, Spain

Juan Eleazar, Escudero, Libellium/HOPU, Spain
Juan, Hernandez Serrano, UPC, Spain

Juan , Salmerén, UPC, Spain

Justina, Bieliauskaite Digital SME, Belgium
Kaarel, Hanson, Guardtime, Estonia

Lauren, Del Giudice, IDEMIA, France

Luca, Marangoni, GFT, Italy

Lucas, Asmelash, Digital SME, Belgium

Lukas, Zimmerli, IBM, Switzerland

Marcio, Mateus, UNPARALLEL, Portugal
Marec, Catrisse, UPC, Spain

Mari, Paz Linares, UPC, Spain

Maria, Angeles Sanguino Gonzalez, Afos, Spain
Maria, Smyth, NUIG, Ireland

Marina, Cugurra, ETA Consulting

Marquart, Franz, Siemens AG (Erlangen), Germany
Martin, Serrano, NUIG, Ireland

List of Contributors

Mirza, Fardeen Baig, NUIG, Ireland

Oxana, Matruglio, Siemens AG (Erlangen), Germany
Pascal, Duville, IDEMIA, France

Pedro, Ferreira, UNPARALLEL, Portugal

Pedro, Malo, UNPARALLEL, Portugal

Philippe, Hercelin, IDEMIA, France

Qaiser, Mehmood, NUIG, Ireland

Rafael, Genés, UPC, Spain

Raul, Santos, Afos, Spain

Rishabh, Chandaliya, NUIG, Ireland

Rupert, Gobber, GFT, Italy

Stefanie, Wolf, Siemens AG (Erlangen), Germany
Stratos, Baloutsos,AUEB, Greece

Susanne, Stahnke, Siemens AG (Erlangen), Germany
Tanel, Ojalill, Guardtime, Estonia

Timoleon, Farmakis, AUEB, Greece

Tomas, Pariente Lobo, Atos, Spain

Toufik, Ailane, Siemens AG (Erlangen), Germany
Victor, Divi, UPC, Spain

Vasiliki, Koniakou, AUEB, Greece

Yvonne, Kovacs, Siemens SRL, Romania

XX Vil

= @
i3-MARKET

List of Abbreviations

API Application program interface
AUEB Athens university of economic and business
CRS Conflict-resolver service

DAML Digital asset modelling language
Dapp Decentralized application

DC Data consumer

DCAT-AP DCAT application profile

DID Distributed identifier

DLT Distributed ledger technology

DP Data provider

DSA Data sharing agreement

EVM Ethereum virtual machine

GDPR General data protection regulation
HW Hardware wallet

IBAN International bank account number
IRI Internationalised resource identifier
JSON JavaScript object notation

JWA JSON web algorithms

JWK JSON web key

JWS JSON web signature

NRP Non-repudiation protocol

ODIC OpenlD connect

OWL Ontology web language

PoA Proof of authority

PoO Proof of origin

PoP Proof of publication

XX1X

XXX List of Abbreviations

PoR
PoW
QoS
RA
RDF
RP
RPC
SCM
SDK
SEA
SEED
SLA
SPARQL
SSI
SW
™
TPMs
TRL
TRN
TSP
TTPA
Turtle
Ul
URI
vVC
W3C

Proof of reception

Proof of work

Quality of service

Reference architecture
Resource description framework
Relying party

Remote procedure call

Smart contract manager
Software development kit
Service execution agreement
Semantic engine
Service-level agreement
SPARQL protocol and RDF query language
Self-sovereign identity
Software wallet

Translation memory

Trusted platform modules
Technology readiness level
Transaction reference number
Trust, security, and privacy
Trusted third-party auditor
Terse RDF triple language
User interface

Uniform resource identifier
Verifiable credentials

World wide web consortium

1

Reference Architecture

The overall picture is the description of the system including the main build-
ing block or subsystems. Figure 1.1 shows the overall component diagram for
i3-MARKET.

i3-MARKET BACKPLANE

GATEWAY

4

| Backplane Trust, Security Semantic

| Level1 Gateway Daéa :t[:r::ss and Privacy Das; ftl'::ge Engine

1 System ¥ System 4 System

e e e T R B

7’ -t Backplane BN Authentication | Distributed Metadata

I Level 2 API & Authorization Data Storage Management Al

Decentralized Semantic

Backplane Secure Data Smart
Data Storage Storage

Auth — Transfer & Contracts
Manager Anonymization

Backplane Data Transfer
Data
\ 4’ Monetization
N e ____ Management 4

Figure 1.1 Overall system.

Backplane
Router

_——— e ————

1.1 Level 1

Backplane gateway system:

The Backplane Gateway system is the building block in charge of offering to
all participants and marketplaces access to the Backplane system. The goal of
the Backplane API is therefore twofold: on one hand, it serves an integrated
API endpoint for all the i3-MARKET services offered by i3-MARKET and

2 Reference Architecture

implemented in the respective building blocks. On the other hand, it provides
secure mechanisms for preventing not allowed accesses.

In terms of public interfaces, the functionality integrated by the Backplane
Gateway is exposed throughout the Backplane API.

In terms of internal connections with other i3-MARKET building blocks,
the Backplane Gateway system has secure communication with the rest of
the subsystems to integrate their services into the Backplane API. For this
integration, any service must have a complete specification following the
OpenAPI Specification 3.0.

Data access system:
The data access system is the building block in charge of allowing data
consumers obtain access to the data offered by the data providers.

It exposes its functionality, publicly, through the secure data access API.

This data access system is securely linked with the Backplane API in
order to guarantee two main issues.

Ensuring all the involved stakeholders have signed the required contracts
and monitoring the quantities of exchanged data assets for the token-based
monetization service.

Trust, security, and privacy system:
The trust, security, and privacy (TSP) is the building block in charge of pro-
viding the self-sovereign identity, access management, contracting, consents,
accounting, and payments blockchain-based solutions managed in the i3-
MARKET system in order to guarantee the desired levels of trust, security,
and privacy for federated data markets.

The TSP system exposes its functionally, publicly, through the Backplane
APL.

In terms of dependencies with other existing building blocks, the TSP
interacts with the decentralized ledger of the data storage system and with
the data access system for the monetization of the data assets.

Semantic engine system:

The semantic engine system is the building block in charge of providing
the needed semantic data models for making possible the consumers and
applications understand the meaning of the data exchanged between different
stakeholders. Apart from that, the semantic engine will allow the participants
to take advantage of this semantic data model by means of providing a
metadata management in charge of registering, offering, and performing
queries for discovery purposes.

12 Level2 3

All this metadata management and query functionality is exposed,
publicly, through the Backplane APIL

In terms of dependencies with other building blocks, the semantic engine
mainly interacts with the storage system for storing the offering descriptions.

Data storage system:
The data storage system is the building block in charge of storing common
data shared across all participant instances.

It interacts with mostly all main building blocks, especially with the
semantic engine system for performing the synchronization between semantic
repositories and distributed storage and with the trust, security, and pri-
vacy for instantiating and executing smart contracts in the blockchain-based
decentralized storage.

1.2 Level 2

Backplane gateway system — general description:
The Backplane Gateway has two main purposes:

Single entrypoint:

The Backplane offers a single set of endpoints, allowing clients to interact
with all the services offered by the i3-MARKET project through a single API.
This allows the whole system to have a modular and distributed architecture,
while providing the ease of use of a single common interface.

Auth management:

All authentication and authorization flows are centralized and managed by the
Backplane Gateway so that the subsystems are protected without them need-
ing to handle their own auth flows. The actual authentication/authorization
is delegated to specialized subsystems. This centralization also allows the
support of several auth flows (and the addition of new ones) transparent to
the several subsystems.

Besides these main purposes, the presence of the Backplane Gateway
provides several benefits.

It allows the subsystems to be isolated and not exposed publicly so that
they can only be accessed by the Backplane or other subsystems.External
connections are all handled by the Backplane, making connection security
and encryption simpler and more straightforward.The nature of the Backplane
functionalities makes it easily scalable and replicable, making the addition of
new Backplane instances transparent for both the subsystems and the clients.
The Backplane Gateway is shown in Figure 1.2.

4 Reference Architecture

Backplane APIT T

Backplane Gateway

Backplane Auth
Manager

Backplane Router

Figure 1.2 The Backplane Gateway component diagram.

Inner building blocks:
The Backplane Gateway consists of three main components.

Backplane API:
The Backplane API is the set of endpoints exposed by the Gateway. It com-
prises all the publicly available endpoints of the subsystems integrated with
the Backplane as well as a few other endpoints, belonging to the Backplane
itself, used in the authentication/authorization flows.

The API follows the OpenAPI Specification 3.0, and the endpoints
corresponding to each subsystem are generated automatically based on the
subsystem’s own OpenAPI specification.

Backplane auth manager:

The Backplane auth manager is responsible for handling the authentication
and the authorization required for the endpoints of the different subsystems.
The actual auth processes are delegated to the corresponding subsystem
(user/service-centric authentication subsystem), depending on the require-
ments of the endpoint and client.

Backplane router:
The Backplane router is the component of the Backplane responsible for the
forwarding of the incoming requests to the several subsystems. It also checks

12 Level2 5

whether the endpoint requires authentication/authorization, invoking the auth
manager if it does.

Data access system — general description:
The data access system consists of four main subsystems for implementing
the transfer of data. Figure 1.3 shows the subsystems.

2]

Data Access System

Authentication & Authorization Subsystem @ Data Transfer Transparency Subsystem E
s Data Transfer E Data Transfer E
Policy Management Role Management Managsment Tracking

Data Transfer E

Scope Management

Menitor
Data Management Subsystem E Secure Data Transfer & Anonymization E
Subsystem
Batch Data @ Streaming Data E .
Management Management Data Encryption Data Proxy

Figure 1.3 Data access component diagram.

Inner building blocks:

Authentication and authorization:
The data access system will assist i3-MARKET with the following capabili-
ties for the exchanged data assets:

o Authentication: Verifies the identity of the user against the i3-MARKET
Backplane. 7

o Authorization: Verifies the permissions the authenticated user has in
the 13-MARKET platform allowing to perform authorized actions and
grants access to resources.

Authentication and authorization subsystem has the following scope
management:

e Policy management: Policy is a set of rules that defines how to protect
the assets in order to provide trust, security, and privacy. The policy

6 Reference Architecture

management component is in charge of enforcing the rule set pro-
vided by i3-MARKET Backplane inside of the data access system. The
responsibilities of the policy management module are:

o intercept access attempts;
o check attempt against rule set;
o grant access to permitted assets.

e Role management: A role is a set of policies attached to an entity in
order to define the access that entity has within the i3-MARKET data
access system. The role management component is in charge of fetching
the list of policies and verifying them against the data access system.
The responsibilities of the role management module are:

o get the list of policies associated with role from Backplane;
o verify role access by invoking policy management;
o allow or deny functionalities.

Secure data transfer and anonymization:
The secure data transfer and anonymization subsystem has the following
components:

e Data encryption: The responsibilities of the data encryption module are:

o key generation and exchange;
o transfer data in an encrypted way between endpoints;
o decrypt data on the consumer side.

e Proxy: The proxy needs to be used when the identity of the data provider
needs to be hidden. This feature is optional; there is no need to imple-
ment it if there is no specific requirement referring to the anonymity of
the data provider. The responsibilities of the proxy module are:

o activate the proxy;
o configure the parameters to hide the identity;
o data transfer goes through the proxy.

Data transfer transparency:
The data transfer transparency subsystem has the following components:

e Data transfer management: This component is responsible for the man-
agement of the connection between the provider and the consumer and
implements the following functionalities:

1.2 Level2 7T

o initialize the connection;
o resume the connection;
o finalize the connection.

e Data transfer tracking: This component implements the following oper-
ation:

o measure the amount of transferred data.

e Data transfer monitor: The information about how much data was trans-
ferred, when the data transfer was initiated, and when it was completed
is monitored, and the following operations are triggered:

o inform the i3-MARKET Backplane that the data transfer was
performed and reports how much data was transferred;
o invoke the linked smart contract.

Data management:
Two methods for data transfer are supported by data access API, which are
supported by the following modules:

e Batch data transfer management: One-time data transfer for one chunk
of data in a session with the following methods:

o request data;
o transfer data.

e Data stream management: Continuous transfer of data based on a
subscription, e.g., publish/subscribe mechanism:

o subscribe to an offering;

o trigger data transfer — on the producer side;
o get data — on the consumer side;

o unsubscribe.

Trust, security, and privacy system — general description:

One of the pillars of the i3-MARKET Backplane is the “trust, security, and
privacy” system, which leverages the blockchain technologies to ensure trust,
security, and privacy by design, providing the following building blocks as
shown in Figure 1.4:

e an identity and access management system based on decentralized/self-
sovereign identity and Verifiable Credentials;
o smart wallets with different levels of security (Cloud/HW Wallet);

8 Reference Architecture

Trust, Security and Privacy System E
Smart Wallet E
SSIZIAM 2] Subsytem
Subsytem
Cloud Wallet 3 |
User-centricE Service-centric E HW Wallet E
Authication Authication
SW Wallet 3 |
Smart Contracts $:| Data Monetization $:|
Subsytem Subsytem
2 |
Smart Contract Explicit E Standard E Micro
Manager user-consent Paymenis Payments
P
Tokenization
Conflict | Auditable E E
Resolution accounting

Figure 1.4 Trust, security, and privacy component diagram.

e smart contracts to record, operate, and manage in a trusted and trans-
parent way the agreements between the different stakeholders and
particularly the explicit user consent of the data owner;

e a data monetization system based on crypto currency for secure, trusted,
and cost-effective peer-to-peer payments.

Inner building blocks:

SSI & IAM:

The SSI&IAM building block provides an authentication and authorization

mechanism to access i3-MARKET Backplane and stakeholder resources.
The user-centric authentication component implements the self-sovereign

identity paradigm ensuring that:

e identity and personal data are stored with the user;

e claims and attestations can be issued and verified between users and
trusted parties;

e users selectively grant access to data, and data only needs to be verified
a single time.

The service-centric authentication component makes the data market-
places of the network able to provide their users a distributed identity they
own and can use with other stakeholders.

1.2 Level2 9

Both the authentication mechanisms follow the OpenID Connect standard
to allow wide commercial acceptance.

Smart contracts:

The Smart Contract Manager enforces certain contractual parameters of the
data sharing agreement between a data provider and a consumer using pre-
defined smart contracts, which are based on the legal agreements. The Smart
Contract Manager component incorporates the conflict resolution, the explicit
user-consent, and the auditable accounting component.

Smart wallet:

13-MARKET wallets are key components that enable interaction between the
different stakeholders and services in the i3-MARKET ecosystem. A wallet
just stores and uses cryptographic material that, in i3-MARKET, are used to
achieve the following features: authentication and authorization (by proving
ownership of DIDs and Verifiable Credentials), and non-repudiation of data
exchange (by digitally signing different operations).

The smart wallet building block is designed to be secure and user friendly
and in a way that existing technologies can be easily added as i3-MARKET-
enabled wallets. In this project, we are going to integrate three types of
wallets:

e HW wallet: Hardware wallets are in charge of storing the user’s pri-
vate keys using a physical device as storage. It performs cryptographic
operations to reduce the key exposition. This specific wallet satisfies the
highest security policies since it is based on ‘something you have’ and
you are the owner of the data.

o SW wallet: Software wallets store the user’s private keys on the storage
of a general-purpose device (e.g., computer or smartphone). It combines
the security polices of ‘something you have’ and ‘something you know’.
Despite no specific hardware is needed, the loss of the device might
imply losing the keys if no backups are made.

e Cloud wallet: Cloud wallets store the user private keys on secure cloud
databases. Even though it has less strict security policies, it can offer
much more functionalities than the other wallet subsystems, such as
easier access and simpler key recovery.

Data monetization:

The data monetization building block provides a crypto currency solu-
tion that allows instant currency exchange among the participating data
spaces/marketplaces, and also supports full audibility of all transactions. This

10 Reference Architecture

is vital for a fully decentralized solution, as it provides the basis for building
trust in the federation backplane. The payment mechanism shall support
micro-payments and requires minimal cost.

The standard payment component permits in advance an a posteriori
payment for a specific dataset or piece of data with traditional payment
systems, ensuring trust, security, and full auditability of data transfers through
an ad-hoc non-repudiable protocol.

The tokenization component provides the creation of a crypto token for
instant currency exchange among the participating data spaces/marketplaces
ensuring the full auditability of payment transactions provided by the
blockchain technology.

The micro payment component provides a mechanism for reducing the
cost of crypto payment transactions especially for small amounts of tokens.

Semantic engine system — general description:

One of the core pillars in i3-MARKET is the semantic engine, which plays
an important role in terms of registration and querying the offerings in a
distributed and interoperable way. Semantic engine exposes different API
endpoints for various tasks, for example, registration and querying as shown
in Figure 1.5.

Semantic Engine System @
Semantic Data Storage E Metadata Management Subsystem {l
Semantic E Vocabulary E
Querying E Mapping Management

Offering Discovery E

Offering Registration E

Semantic Orchestrator E

Figure 1.5 Semantic engine component diagram.

Inner building blocks:

Metadata management:
The metadata management subsystem encompasses three components:

o Offering registration: This component allows users to register offerings.
Semantic engine exposes different endpoints for offering registration.

1.2 Level2 11

Examples are: (i) register data provider, (ii) register offering of a data
provider, and (iii) update offerings.

e Semantic mapping: This component does semantic mappings and trans-
forms (JSON to RDF) data received from API endpoints.

e Vocabulary management: This component keeps and manages all the
vocabularies, defined as i3-semantic model, used in different compo-
nents of the semantic engine.

Semantic storage:
This component communicates with the RDF triple store and pushes and
retrieves data from that store.

In i3-MARKET, open-source virtuoso was tested as a triple store, which
allows us to store RDF data and query using SPARQL query language. In gen-
eral, triple stores are used to management tool for metadata, using semantic
web query language (SPARQL) for accessing the information, which allows
us to store RDF data and query using. At the same time, MongoDB is used
to store metadata together with data descriptions and uses MongoDB query
language. Figure 1.6 shows the data storage system.

Data Storage System E

Distributed Data $j
Storage
Subsytem

Decentralized Data E
Storage

Subsytem

Figure 1.6 Data storage system component diagram.

Querying:
Two main components will be provided:
e Offering discovery: This component allows users, either data provider
or consumers, to query already registered offerings.
e Semantic orchestrator: The role of this component is to manage syn-
chronization with the distributed data storage component and the query
processing, for instance, local or distributed query.

12 Reference Architecture

Data storage system — general description:

Inner building blocks:

The storage system consists of two main subsystems for implementing,
respectively, the decentralized storage and distributed storage features, as
shown in Figure 1.7. The subsystems are, at least in the initial architecture,
relatively independent of other systems and, also, independent of each other.

Decentralized storage:

The diagram of decentralized storage subsystem is shown in Figure 1.7. The
decentralized storage subsystem is implemented as a blockchain-based dis-
tributed ledger network. The software implementation is Hyperledger BESU
in a permissioned setup using IBFT 2.0 consensus [10]. Hyperledger BESU
uses internally an embedded RocksDB instance for storing linked blocks (the
journal of transaction) and world state (the ledger). Hyperledger BESU can
instantiate and execute smart contracts for supporting the use cases of the
13-MARKET framework.

Decentralised Storage Subsyster§ |

Embedded ledger DB ¢

Smart Contracts for £ _]
Permissioning

Figure 1.7 Decentralized storage component diagram.

Distributed storage:

The diagram of the distributed storage subsystem is shown in Figure 1.8.
The subsystem consists of a distributed cluster of database nodes and an
optional interface layer (will not be implemented for V1). The database
provides an SQL interface to other i3-MARKET framework components. The
software implementation of the internal database is CockroachDB that can be
accessed via PostgreSQL-compatible wire protocol for which a large number
of client libraries exist for different languages and platforms. CockroachDB

1.2 Level2 13

Distributed Storage Subsystem

£]

API for external access

£]

Database

Figure 1.8 Distributed storage component diagram.

is a highly scalable and resilient distributed database. Only secure access to
the database will be enabled; hence, all clients need to use private keys and
valid certificates to access the database.

Deployment view:

The deployment or physical view “describes the mapping(s) of the soft-
ware onto the hardware and reflects its distributed aspect”; the i3-MARKET
deployment view is depicted in Figure 1.9. Four nodes constituted the i3-
MARKET RI1 cluster. On each node, it will be deployed a Backplane Gateway
System and an instance of all the rest i3-MARKET main building blocks
(trust, security, and privacy system, storage system, and data access system)
giving backend support to the Backplane Gateway System. In addition to that,
node 4 will host all the components related to the Semantic Engine Building
Block in the form of free Open Source Software Tools for SMEs, developers,
and large industries building/enhancing their data marketplaces. Figure 1.9
shows the proposed deployment as explained.

14 Reference Architecture

"Ma1A JuowAo[dop THNYVIN-E! 6°T 2an3ig

2

Wallets and Smart Contracts

This chapter is focused on the specification and development of the i3M-
Wallet, Auditable Accounting, Conflict Resolution, Explicit Consent, and
Smart Contract Manager subsystems.

All the subsystem development is already public in the i3-MARKET
GitHub and Gitlab repositories. For detailed information on every subsys-
tem, one can jump to their specific sections in this book or check the
documentation in the public repositories, which is constantly updated.

Table 2.1 summarizes the main technical contributions of the differ-
ent building blocks addressed in this book: the i3M-Wallet, the Auditable
Accounting, and the Smart Contract Manager.

2.1 i3-MARKET Wallet

There is a considerable amount of wallet applications. Some popular exam-
ples are MetaMask [6], TrustWallet [7], Exodus [8], or Electrum [9]. These
applications use a dedicated app for iOS and Android, and browser extensions
for desktop computers. Most of them are cryptocurrency wallets and are
therefore targeted to operate with crypto tokens/currencies, showing balances,
and allowing token transactions and swapping. However, there are not so
many solutions facing the secure storage of W3C Verifiable Credentials
and the selective disclosure of claims. Among them, the most common is
to build the Wallet upon an SSI solution based on Sovrin [10] [11] or
directly Hyperledger Aries [12] [13]. Fewer options have been found that
use the Ethereum DLT, namely uPort [14], which has been discontinued, and
Twala [15].

In i3-MARKET, the Wallet App has inherited some strong requirements:

e The technology must be open-source.
e It must work from the very beginning with Ethereum-like DLTs, as it
is the case of Hyperledger BESU, the chosen DLT for i3-MARKET.

15

16 Wallets and Smart Contracts

Table 2.1 Main technical contributions.

| Building block
i3M-Wallet

\ Main technical contributions

High-level functionalities supporting the main i3-
MARKET flows:

* Authentication/authorization
* Non-repudiation Protocol
» Explicit Data-Owner Consent
¢ Smart Contract Manager

Complete SSI (DIDs, VCs, and selective disclosure)
Wallet running on Ethereum-like DLTs with a complete
open-source codebase and not locked in by any vendor
infrastructure.

Designed to also support other DLTs.

Innovative, more secure, and privacy-preserving inter-
face with the Wallet application, including a secure
pairing protocol that does not require any external infras-
tructure.

Designed to be able to integrate any crypto key wal-
let, including hardware wallets.' Nowadays, IDEMIA’s
hardware wallet is already integrated.

Secure cloud vault allowing to completely operate
(restore) the Wallet from any device without loss of
context data.1

Auditable Accounting

Data is registered in a distributed high-availability
database distributed storage.

Use of a reliable, fast, scalable solution based on the
use of DLTs and Merkle trees to reliably notarize the
registered data.

Conflict Resolution/Non-
repudiation Protocol

i13-MARKET is enforcing a fair cryptographically veri-
fiable billing system with any kind of money, including
fiat money.

Reliable non-repudiable and cryptographically verifiable
log of every data exchange. The logs are designed to
not leak any sensitive data but to provide non-repudiable
proof of a digital data exchange under the specification
of a given data sharing agreement. These proofs can be
used to support fair unfakeable billing with fiat or crypto
money and also to support claims for eventual conflicts
in the data exchange. In many cases, i3-MARKET Back-
plane can automatically solve conflicts based on these
proofs.

Explicit Data-Owner Consent

i3-MARKET is, to the best of our knowledge, the only
technology that enforces the existence of Explicit Data-
Owner Consents when a provider is selling data. Data
owners can at any time revoke the consent and their data
will not be distributed any longer.

2.1 i3-MARKET Wallet 17

Table 2.1 Continued.
Building block Main technical contributions \
Smart Contract Manager Data sharing agreements are modelled with coloured
Petri nets, allowing their formal verification before they
are translated to smart contracts.
Smart contracts are developed using DAML, which
make the development DLT agnostic and allows for
translating our smart contracts to multiple DLTs, includ-
ing i3-MARKET’s Hyperledger BESU.

Obviously, it should be designed to be extendable for other DLTs in the
future, with special focus on Hyperledger Aries.

e It must be able to integrate existing key wallets, such as IDEMIA’s
hardware wallet, for signing.

e It must support SSI flows, but also crypto tokens, as i3-MARKET is
creating a custom one. Therefore, i3M-Wallet is going to be a hybrid
wallet, supporting SSI and cryptocurrencies.

e Adoption of SSI technologies should be easy for the end-users:

o The Wallet should be easy to backup and restore with no loss of
information.

o The end-user wallet should be universally accessible from any
device (desktop computer, mobile phone, etc.).

In the beginning, as a short-term solution for implementing SSI, we
adopted the uPort Wallet [14] since it was already working with Ethereum,
supports the disclosure of verifiable claims, its codebase is open-source, and
was mature enough and well-tested. Twala [15] and other Ethereum-based
SSIsolutions were in a very early stage in the beginning of i3-MARKET, with
little to no support for implementing the issuance of Verifiable Credentials
and the server part of a selective disclosure.

The uPort solution has now been split into two different projects, Serto
[16] and Veramo [17], being just the second in the libraries for creating and
managing DIDs and Verifiable Credentials without worrying about interop
and vendor lock-in. Veramo is at the very core of i3M-Wallet and the identity
solution of i3-MARKET.

In any case, it was clear that i3-MARKET success would need a custom
Wallet App supporting at the same time:

e Ethereum-based DLTs such as Hyperledger BESU, and potentially
others (currently analysing Hyperledger Aries).

18 Wallets and Smart Contracts

e Management of digital identities and Verifiable Credentials, including
selective disclosure of claims, as well as cryptocurrencies.

e Complete open-source codebase with a technological solution not
locked in by any vendor infrastructure.

e Enhanced usability in the sense of being universally accessi-
ble/recoverable from any device.

e The integration of any key wallet into the App, including hardware
wallets.

Besides all the above features, the current version of i3M-Walllet is
innovative in terms of the following:

e The desktop application has been built with privacy and security as a
main design goal. For that reason, i3M-Wallet is not a browser extension
and runs as a multi-platform application that is securely paired to local
applications (such as JavaScript running in a browser). Not sharing a
process with the browser, as extensions do, prevents a bunch of potential
“speculative execution” attacks and minimizes the exposure of the app to
attacks performed by malicious websites. Moreover, running the wallet
as an external application is more privacy-respecting for the end-user
since the Wallet will not have any access to the data exchanged with a
visited page, as it is partially the case with extensions, especially when
using Firefox, which has got a more limited sandbox for extensions than
Chrome.

e Even though there are complete and mature implementations of the
selective disclosure of verifiable claims running on Hyperledger Aries
and Sovrin, the solutions using Ethereum-like DLTs do not currently
implement a complete selective disclosure flow. The closest solution
was the popular but now abandoned uPort [14], which implemented a
selective disclosure where users could agree or not to disclose a set of
claims, but not to deal individually with each of them. The Serto [16]
solution (derived from uPort) is aimed at providing that, but it is still
not available for public testing. Twala [15] is more dedicated to digital
signatures, with a somehow limited selective disclosure of identities’
claims that, in any case, relies on the Twala ecosystem and closed
infrastructure. The selective disclosure flows of i3-MARKET identity
system, including the i3M-Wallet, is to the best of our knowledge the
first complete selective disclosure flow on Ethereum-like DLTs that is
completely open-source and not locked in by any vendor.

2.3 Conflict Resolution/Non-Repudiation Protocol 19

o The Wallet integrates a secure backup system (currently in testing phase)
designed to not be tied to any vendor infrastructure. The backup is
complete not only in terms of restoring cryptographic material but also
to restore high-level i3-MARKET data, including identities, Verifiable
Credentials, and non-repudiation proofs of data exchanges.

2.2 Auditable Accounting

Marketplaces need to record, audit, and provide availability and non-
repudiation for data involved in exchanges. The auditing tasks in these
systems are typically performed by a trusted third-party auditor (TTPA) who
is responsible for checking the integrity of the content and thus for increasing
stakeholders’ trust in data exchanges. It is a centralized model where all the
power and responsibility fall on the TTPA, which is a single point of failure
and cannot be disputed by users. Decentralized architectures and protocols
appear as an alternative to avoid those risks while providing the same quality
of service (QoS).

The challenges of designing a feasible storage auditing framework
emanate from the security challenges of decentralized solutions and the
performance overhead due to on-chain operations. In this context, the work in
[18] presents a solution based on a Merkle hash tree for Auditable Account-
ing. Their approach is similar to ours and the project is also open-source.
However, the implementation is made for the Bitcoin network while our
project uses an Ethereum-based network built with the Hyperledger BESU
client. In other works, polynomial commitment schemes are used to create
succinct proofs of data possession and guarantee data availability [19] [20]
[21] [22]. However, i3-MARKET’s Auditable Accounting system is faster
and more scalable but with less complexity than the mentioned alternatives.
This is made possible thanks to the following:

o the usage of Merkle trees for aggregating notarization proofs of the data
to register;

o the use of a smart contract for storing just the roots of those Merkle trees
on the blockchain, which allows for reliable verification while heavily
reducing the needs of storage in the blockchain.

The storage of the registered data with their corresponding Merkle proofs
(needed for verifying against the Merkle roots) is available and ready to use
as a fully distributed database provided in the i3-MARKET ecosystem.

20 Wallets and Smart Contracts

2.3 Conflict Resolution/Non-Repudiation Protocol

One of the main issues with digital data trading is related to the legal
support if either the consumer or the provider does not adhere to the signed
agreement. If not under the umbrella of a big player that assumes the risks,
this situation diminishes the confidence in the data exchange and prevents the
ignition of an ecosystem of digital data trading.

13-MARKET provides a technology that relies on the use of a
blockchain/DLT to build confidence in digital data trading. Contrarily to
other approaches that also use a DLT for that purpose [23] [24] [25], 13-
MARKET does not want to force its stakeholders to use specific crypto
currencies/tokens (although it provides one if desired), which can be used
to automatize payments when certain conditions are met; i3-MARKET wants
to build confidence on data exchanges with any payment system, including
the most common one: fiat money. As a result, i3-MARKET is, to the best of
our knowledge, the first technology that uses a DLT just as a reliable ledger
of the data exchange with the goal of supporting a fair billing system (also
with fiat money) and to be able to solve eventual disputes.

The i13-MARKET innovative approach generates proofs of every data
exchange that can be later used to prove what was exchanged, when it was
exchanged, and under which data sharing agreement. i3-MARKET does not
define per-se a payment system (although it provides a crypto token if desired)
but generates cryptographically verifiable and reliable data that can be used
to properly invoice, and to support eventual future disputes, since both the
consumer and the provider, and any third party they allowed as well, can
verify them.

Besides those disputes based on subjective opinions (for instance, a
consumer not liking the acquired dataset), i3-MARKET can automatically
solve disputes and even enforce penalties if it were part of the agreement.

2.4 Explicit Consent

i3-MARKET’s architecture has been designed to allow all the stakeholders
— namely providers, consumers, data owners, and marketplace operators —
to meet the strictest policies in terms of privacy and data protection, which in
fact leads to meet the GDPR requirements with little effort.

Article 4 of the GDPR [26] defines consent as “any freely given, specific,
informed and unambiguous indication of the data subject’s wishes by which
he or she, by a statement or by a clear affirmative action, signifies agreement

2.5 Smart Contract Manager 21

to the processing of personal data relating to him or her”. Data controllers
shall be able to demonstrate that they hold the Explicit Consent of the data
subjects to process (Article 7) and/or trade their data. To the best of our
knowledge, no technology is enforcing user consent to the point of preventing
trading without it.

It is a remarkably innovative feature of the i3-MARKET project that the
Explicit Consent of the data subjects is absolutely required for trading users’
data.

2.5 Smart Contract Manager

There is noticeable interest in the literature related to automating service-level
agreements, specifically data sharing agreements, by leveraging a distributed
ledger technology (DLT), such as the blockchain. DLTs, and in particular
smart contracts, help provide potential decentralized markets that furnish
a peer-to-peer interaction between the different parties without third-party
interference. Hence, this contributes to empowering the shared economy
applications.

A framework that enforces the parameters of the legal data-sharing
agreements with the use of smart contracts is proposed in [23]. As they
describe, these parameters are automatically enforced. Moreover, they have
a voting-based system. This voting system is external and acts as Conflict
Resolution in case of any breaches to the agreement terms. However, these
smart contracts are written in Solidity, which need to be formally verified and
prove that they are error prone.

The authors of [24] present an approach based on blockchain and smart
contracts to enable dynamic payments during the entire SLA lifetime (com-
pensation value). A smart contract is implemented to detect and record
any violations on the blockchain. Once the violation is detected via the
“monitoring”’-smart contract, the compensation value will automatically be
transferred to the customer. In their work, they also use Solidity contracts.

Ocean Protocol, presented in [25], has proposed a new approach called
service execution agreement (SEA), which brings the idea of SLAs to the
blockchain. An SEA represents the service-level specification of an SLA,
which can be translated into a smart contract. SEAs are implemented as
smart contracts running on the blockchain. They have a modular design
consisting of three parts: service identifier, conditions and fulfilment, and
reward logic. Nevertheless, Ocean Protocol uses Solidity smart contracts
running on Ethereum. Moreover, Ocean Protocol has integrated a reward

22 Wallets and Smart Contracts

logic into SEA components to reward a network of verifiers for their work.
According to Ocean Protocol, the role of verifiers is to maintain data integrity
and availability. However, this would require the interference of a third party
(representing the network of verifiers).

In this work, we have modelled all the possible execution paths of the
data sharing agreement (service-level agreement for the data market domain)
using coloured Petri nets [27], a modelling method that allows describing
a variety of resource types and execution logic in a way that can be for-
mally verified. As a result, we can formally verify the modelled agreement’s
behavioural properties and then, with a clear understanding of how these
contractual agreements are executed, translate them to smart contracts retain-
ing the correctness and completeness of the modelled agreement. On top of
that, unlike many of the presented work that relies on Solidity and Ethereum
blockchain, we use the digital asset modelling language (DAML) [28], an
open-source smart contracts programming language inspired by Haskell,
which helps make our approach more general and focus more on the business
logic and the design of our approach. DAML allows platform-independence
and can be later integrated into several DLTs, including i3-MARKET’s
Hyperledger BESU.

3

I3-MARKET Wallets

3.1 Objectives

i3M-Wallets is a set of technologies that facilitate the interaction of
the different i3-MARKET stakeholders with the Backplane API. It man-
ages i13-MARKET identities, data agreements (with signature verifica-
tion/generation), non-repudiation proofs (generation/verification), and secrets
for data encryption/decryption.

All the code has been made publicly available at the i3M-Wallet
monorepo [2]. Several packages are provided in this repo, but a standard
13-MARKET user/developer is likely only needing:

* i3M Server Wallet: It is an interactionless wallet implementation
not requiring any user interaction. It has been designed to be oper-
ated by a “machine” or service. Current implementation is in Type-
Script/JavaScript and can be easily imported to any JS project with
NPM/Yarn.

* i3M-Wallet Desktop App: It is a desktop application (Windows,
MacOS, and Linux) thought to be operated by end-users. The app can
be securely paired to any application, allowing the application to interact
with the wallet through an HTTP API. Wallet actions requested by any
application will require explicit confirmation of the end-user through the
app interface (window).

* i3M-Wallet Protocol API: A TypeScript/JavaScript library that can be
used to easily connect to an i3M-Wallet Desktop App. It wraps all the
functionalities provided by the wallet’s HTTP API into convenient class
methods. It works in Node.js (both ESM and CJS) and browsers. Follow
the pairing example to properly pair your JS application to the wallet
and start using the Wallet API.

* i3M-Wallet OpenAPI Specification: In order to get a better under-
standing of what functionalities of the wallet are provided to paired

23

24 i3-MARKET Wallets

applications, a developer should analyse the i3M-Wallet OpenAPI

Specification [39] or just visualize it online at editor.swagger.io'.

The complete documentation of every package is provided in every
package’s README of the open-source public repositories.

3.2 Technical Requirements
i3M-Wallets implement the following requirements:

Identity management:

The wallet implements key functionalities for enabling the self-sovereign
identity (SSI) solution of i3-MARKET. These functionalities are described
below.

DID management:

The i3-MARKET identity subsystem heavily relies on the use of distributed
identifiers (DID) [40]. The wallet should then be able to manage DIDs,
specifically:

* Create DID: The wallet should be able to create a DID and the comple-
mentary cryptographic key for managing it. The keys must be securely
stored/managed.

* Present DID: The wallet should be able to present a DID upon request
and prove ownership of it.

* Resolve DID: The wallet should be able to retrieve the public data
associated with a DID, including (but not limited to) the public keys
associated with the DID.

* Verify asset signature: The wallet should be able to verify signatures
using the DID of the signer.

* Sign assets: The wallet should be able to sign assets using the private
key associated with a DID.

* Deactivate DID: The wallet should be able to deactivate a DID.

Verifiable Credentials management:

13M-Wallets handle i13-MARKET identities, which, in the end, are DIDs and
a set of Verifiable Credentials issued for those DIDs. A Verifiable Credential
[41] is a tamper-evident credential that can be cryptographically verified and

"https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET- V 3-Publi
c-Repository/SP3-SCGBSSW-I3mWalletMonorepo/public/packages/wallet-desktop-openap
i/openapi.yaml

https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/public/packages/wallet-desktop-openapi/openapi.yaml
https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/public/packages/wallet-desktop-openapi/openapi.yaml
https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/public/packages/wallet-desktop-openapi/openapi.yaml

3.3 Solution Design/Blocks 25

stores claims about an identity issued by different entities. An example of
a Verifiable Credential could be a university diploma issued to a student.
The specific requirements implemented by the i3M-Wallets with regard to
the management of Verifiable Credentials are:

* Verify Verifiable Credential: Verify the validity of a Verifiable Creden-
tial by verifying the signatures of the issuers.

» Share Verifiable Credential: Share an owned Verifiable Credential
upon request and prove ownership.

» Store Verifiable Credential: Store Verifiable Credentials associated
with owned identities.

Secure data exchanges:
For a secure data exchange to happen, the i3M-Wallet should support
the management of the cryptographic material needed for the secure data
exchange, including the storage and verification of the data sharing agree-
ments, the verifiable proofs for the non-repudiation protocol, and the crypto-
graphic material associated with every data exchange. Please refer to Chapter
14 for better understanding the flow of a secure data exchange.

Specifically, an i3M-Wallet implements the following requirements
regarding secure data exchanges.

» Store data sharing agreements: Store data sharing agreements asso-
ciated with one of the identities managed by the wallet. The data
sharing agreements are verified (both schema and signatures) before they
are stored. The cryptographic material associated with the agreement,
including the freshly created agreement-specific keys are also verified
and stored.

Sign data sharing agreements: Sign a data sharing agreement using

one of the owned identities.

* Store non-repudiation proofs: For the conflict-resolution system to
work, the wallet should store non-repudiation proofs for every data
exchange, which can later be used to unequivocally prove that the data
exchange happened and what was exchanged. Non-repudiation proofs
are verified before being stored.

3.3 Solution Design/Blocks

The development of i3M-Wallets is organized in different packages/modules
providing different functionalities. All the packages have been made publicly
available at the i3M-Wallet monorepo, namely:

26

i3-MARKET Wallets

e Base Wallet: base-wallet [42]

e SW Wallet: sw-wallet [43]

 BOK Wallet: bok-wallet [44]

» Wallet Desktop: wallet-desktop [45]

» Server Wallet: server-wallet [46]

* Wallet OpenAPI: wallet-desktop-openapi [47]
* Wallet Protocol: wallet-protocol [48]

» Wallet Protocol API: wallet-protocol-api [49]

» Wallet Protocol Utils: wallet-protocol-utils [50]

The Base Wallet [42] package is a high-level implementation of the

i3M-Wallet functionalities. It internally uses a crypto wallet. For such a
purpose, it uses the so-called KeyWallet interface, which currently has several
implementations:

* SW Wallet [43]: A software implementation of a hierarchically deter-
ministic wallet, which can be recomputed with a seed.

* BOK Wallet [44]: A software implementation of a wallet implemented
as a bag of (independent) keys.

* HW Wallet: A package allowing the use of IDEMIA’s i3-MARKET
HW Wallet as the internal KeyWallet. The implementation of this pack-
age involves IDEMIA’s proprietary code implementing the open-source
KeyWallet interface. A video demonstrating how it is used with the
13M-Wallet Desktop application can be watched at [51].

* Wallet Desktop [45] is the i3M-Wallet Desktop application providing a
secure and convenient user interface to the i3-MARKET Base Wallet. It
can be defined as a cross-platform facility tool that eases the communi-
cation between a wallet (software or hardware) and the i3-MARKET
SDK via an HTTP API. Furthermore, it provides some features like
wallet synchronization using a secure cloud vault. It also has a user
interface (UI) to display the information of the selected wallet and ask
for user consent if any wallet operation needs it. The Figure 3.1 shows
an example of the Wallet UL

If the wallet is to be run by a service instead of an actual person,

the Server Wallet [46] should be used instead, which is distributed as a
JavaScript/TypeScript library that can be easily instantiated from server code.

Both the Server Wallet and the Wallet Desktop expose some functionali-

ties that can be used programmatically from paired applications. The Wallet
OpenAPI [47] defines the internal HTTP API that is exposed (more details
in section of Interface Description). However, for security reasons, the API is

3.3 Solution Design/Blocks 27

File Edit window Help

Wallets |
3 ey 2 i

Name: Testing
Type:

HD SW Wallet
Provider:

i3Market

Wallet Functions

Developer Functions

Execute Transaction Create Transaction
Query Balance

BB Testing

Figure 3.1 Wallet Desktop UL

not directly available via HTTP. Indeed, it is encapsulated inside a secure
session that is established after successful pairing of the wallet with an
application.

Creating a secure session requires the execution of the Wallet Protocol
[48], which implements the i3M-Wallet pairing protocol and the agreement
of a secure (both encrypted and authenticated) session between the wallet and
the paired application.

The Wallet Protocol enables any application to securely connect to the
wallet. It solves two problems: the discovery of the wallet and the secure
channel creation. The i3M-Wallet pairing protocol is designed to pair appli-
cations running in the same machine and to not require any external entity for
the process, and it is heavily inspired in the Bluetooth Secure Simple Pairing
protocol in use since Bluetooth 2.1 [52]. The protocol has been carefully
designed and validated with a formal security analysis using Tamarin’s prover
[53], a tool that has also been used to validate TLS1.3, among other security
protocols. The complete description and design are available in open access
repositories.

In order to ease the use of the Wallet Protocol a set of libraries have been
developed for both Node.js and browser JavaScript. Wallet Protocol Utils [50]
defines a set of utilities for the pairing, including dialogs for setting the PIN
in browser JS apps and Node.js, and session managers for properly managing

28 i3-MARKET Wallets

wallet-protocol’s sessions obtained after a successful pairing. Moreover, Wal-
let Protocol API [49] is a TypeScript/JavaScript library that wraps all the
in-session encapsulated calls to the wallet’s HI'TP API into convenient class
and methods.

3.4 Diagrams
Wallet Desktop:

Figure 3.3 shows the start-up flow of the Wallet Desktop. The first thing it
does is loading the application configuration. It is a JSON file whose path
depends on the operative system running the Wallet Desktop:
% APPDATA %\wallet-desktop\config.json on Windows
$XDG_CONFIG_HOME/wallet-desktop/config.json or ~/.config/wallet
-desktop/config.json on Linux
~/Library/Application Support/wallet-dektop/config.json on macOS

Then the Wallet Desktop initializes the user interface and the so-called
extra features, which nowadays is just an encrypted storage for supplementary
data (cryptographic material is securely stored/managed by the KeyWallet).
Figure 3.2 shows the Ul asking for the encrypted storage password.

File Edit Window Help

Enter the application password. You have 3 left.

Jvrrite here to search an option...

Figure 3.2 UI password request for the encrypted storage.

3.4 Diagrams 29

File Edit Window Help

Enter the application password. You have 3 left.

|write here to search an option...

Figure 3.3 Wallet start-up flow.

The wallet factory oversees instantiating and the wallet modules. Wallet
modules have an entry function that returns a wallet object. On the start-up,
it will use the configuration file to select the current wallet.

Finally, it initializes the HTTP API. From now on, the application will
listen to the user interface and the HTTP port in parallel; being securely
encapsulated inside the HTTP connection, the wallet will receive calls to
the internal HTTP API defined by the Wallet OpenAPI. The complete flow
diagram is as defined in Figure 3.3.

As an example of invoking one of the wallet’s API functionalities, let us
follow the flow for generating a signature depicted in Figure 3.4.

As the Wallet Desktop receives an HTTP request in a Wallet Protocol’s
session, the request encapsulates (both encrypted and authenticated) an HTTP
call to perform a signature; the OpenAPI Validation express module uses
the OpenAPI definitions present in the package wallet-desktop-openapi to
validate the request body. If the request is valid, the sign API handler gets the
current wallet selected by the user and it calls its sign function. The current
wallet can be any kind of hardware or software wallet supported by Wallet
Desktop.

30 i3-MARKET Wallets

HTTP Request

T Wallet Electron App

|

(1 OpenApi Validation
ValidateResponse

Validate response using

openapl.yam {dev only)

Request received

HTTP Response
de a—»@

ValidateRequest

Validate request using

openapi.yam|
—

[Valid sign request

~

Wallet / B

BaseWallet f 0

L
| SelectAccountDialog No account 1D FetchSignData w | FormatSignature w

Ul shows a dialog to select an Obtain message to sign Format the signature in the
and account ID from request proper format (RAW, [WS)

wt selected /Account selected
%t needed \Consent not needed

UserConsentDialog Accept GetKeyWallet

Ul shows a dialeg to ask user LGet current key wallet J
consent

.

(KeyWallet

GetPrivatekey
Gets the private key using
its associated account id

E —'-F'Fr—'-'-r'
S

It defines how accounts are
stored and how signatures -
are implemented

Figure 3.4 Wallet signature flow.

BaseWallet is a class present in the base-wallet package that offers a
default implementation of a wallet. Nonetheless, it requires an object imple-
menting the KeyWallet interface to work. KeyWallet defines the low-level
implementation of the wallet: it can store keys and use them to sign. Note that
by splitting the wallet in BaseWallet and KeyWallet, software wallet (SW)

3.4 Diagrams 31

and hardware wallet (HW) can share high-level wallet functionalities, such
as signature formatting or key recovering.

To perform a signature, an account must be selected. If the API request
does not contain an account ID, the Wallet Desktop will show the list of
accounts inside the wallet so that the user can select one. Then, the Base-
Wallet will check the application configuration to check if signatures need
user consent. If true, the wallet application will show a dialog.

Once the account ID is retrieved and the user consents the signature, the
KeyWallet is now able to perform a signature. First, it will get the private key
associated with the current account ID, and then it will sign the requested
message.

Since the signature format is a common functionality of any wallet,
KeyWallets must return signatures in DER encoding so that the BaseWallet
can format it in the requested format.

Finally, the Wallet Desktop application builds the response message. On
development, the OpenApi Validation module uses the OpenApi definitions
to verify the response format (Figure 3.4). If it is correct, the response is
sent back to the application encapsulated inside the Wallet Protocol’s secure
session.

OIDC Authentication:

Wallet Desktop can be used in conjunction with the i3-MARKET OIDC
provider to authenticate users. This flow is added here so that views of
flows using the Wallet are in this book. However, more detailed information
should be available at deliverables in “Trust, Security and Privacy Solutions
for Securing Data Marketplaces” at https://www.i3-market.eu/research-and-
technology-library/.

Figure 3.5 shows how to perform this authentication flow. As a summary,
it specifies how the OIDC provider uses the i3-MARKET SDK to create a
selective disclosure request asking a set of verifiable claims to the Wallet
Desktop. If the user has them and accepts the disclosure, the Wallet Desktop
will answer with a list of verifiable claims along with a proof of ownership.
This proof consists of a signature of the disclosure response using the private
key of the user DID.

The flow starts when an OpenlD Connect relying party (OIDC RP)
redirects a user to the OIDC provider using a scope. The scope is a string
that specifies which verifiable claims are requested. The scope supported are:

32

i3-MARKET Wallets

OIDC Provider |

| i3M Provider: OIDC RP I

| SDA SDK |

REDIRECT to 0IDC Provi
Joidc/auth?scope=...

ider

/oidg)

auth?scope=...[&agent:

GET
Fsdk]

‘ ‘Selective disclosure request

POST /disclosure
{ Selective disclosure request }

i3M Consumer

i3M-Wallet App

End

{Selective disclosure response}

Partially
disclosy

yfully authorize selective
re?

user

Allow|

POST /interaction/callback

‘ Eoo oK

/oidg)

auth?scope=...[&agent:

disclosure OK

GET
=sdk]

‘ ‘REDIRECT RP /callback?code=[co

e]

GET /callback?code=]|

codel

POST oidc/token
{ code=[code], ...}

U{ access_token, id_token, ... }

Figure 3.5 OIDC authentication using Wallet Desktop and the i3-MARKET SDK (sequence
diagram).

an idToken, which is a jwt token containing the user information.

ve: This scope is used to add the verifiable claims inside the idToken.
ve:<claim>: It notifies to the OIDC provider that users may want to

openid: The standard OpenlD scope. It asks the OIDC provider to return

present an optional claim called <claim>. It is useful to ask optional
claims like some extra user profile information.

vee: <claim>: It notifies to the OIDC provider that users must present

a valid claim called <claim> to proceed with the authentication. It can
be used to ask users to present a claim that demonstrates their role
(consumer, provider, data owner, etc.).

An example of scope is “openid vc vce:consumer vc:profile”. Using this
scope, the OIDC provider builds and signs a selective disclosure request. It
will be sent to the Wallet Desktop so as to obtain the required claims.
The Wallet Desktop HTTP API runs locally on the user computer. Cloud
servers cannot access it directly so that the disclosure request must be sent
by the user’s computer. An approach is to create a simple frontend that only
sends the selective disclosure request to the Wallet Desktop.

3.5 Interfaces 33

OIDC login C? i3M Desktop Stakeholder
!
OIDC RP SDA SDK
Authentication

Exchange code

Foreward
OIDC code
for token
Initialize o | Call auth
0IDC flow | endpoint

wallet-desktop

base-wallet + xx-wallet

oidc-provider Sign selective

disclosure response

<

parameters [Build selective
Generate OIDC code disclosure response
Validate response | llet. i

SDA SDK

SDASDK _ [gyiid and sign selecive | Resolve seleciive o pog idate
l request | | disclostre request | =

A
Validate code
token

Process auth

Figure 3.6 OIDC authentication using the wallet (activity diagram).

Then, the wallet displays a dialog to individually consent each verifiable
claim. If the user allows the disclosure, the accepted verifiable claims will
be sent back to the OIDC provider. After verifying all the claims, the OIDC
provider will deliver an idToken and an accessToken to the i3M provider.
Figure 3.6 is an equivalent diagram but putting more emphasis on where each
block acts.

3.5 Interfaces

All the i3M-Wallet packages, but the i3M-Wallet Desktop App, are pro-
vided as TypeScript/JavaScript packages. The code is properly commented
and TypeDoc has been used to convert comments in the TypeScript source
code into rendered HTML documentation. As a result, the documentation is
conveniently available when coding and also as HTML pages that can be
accessed from the package’s READMEs. As an example, Figure 3.7 shows a
fragment of the API for the Server Wallet package.

The Wallet Desktop application follows the Wallet OpenAPI Specifica-
tion. It is a REST-like API with four entities: identity, selective disclosure,
resource, and transaction. It also has a set of helper functions.

- Identity: It can be used to create or list the DID of the user.

34 i3-MARKET Wallets

didJwtVerify

» didJwtVerify(requestBody)

Parameters
Name Type

requestBody RequestBody

Returns

Promi

executeTransaction

> executeTransaction(options?): Promise < void >

Figure 3.7 A fragment of the Server Wallet APIL.

/identities Listall DIDs

/identities Create an account

/identities/select Gets an identity selected by the user.

/identities/{did}/sign Signs a message

/identities/{did}/info Gets extra information of an identity.

/identities/{did}/deploy-tx Signs and deploys a transaction

3.6 Background Technologies 35

- Selective disclosure: Used to get a set of resources proving its owner-
ship. They are signed with the requester private key.

SET /disclosure/{jwt} Request selective disclosure of resources A\

- Resource: Besides identities and secrets, the wallet may securely store
arbitrary objects in a secure vault. The list of requests for resource is
shown in the following diagram:

~ /resource Lists the resources that match the filter specified in the query
s s parameters.

POST /resources Create a resource N

- Transaction: Endpoints for deploying signed transactions to the DLT
the wallet is connected to.

POST /transaction/deploy Deploy a signed transaction A4

- Utils: Additional helper functions.

Use the wallet to verify a JWT. The Wallet only supports DID issuers
and the 'ES256K1' algorithm. Useful to verify JWT created by another v
wallet instance.

/did-jwt
/verify

GET /providerinfo Gets info of the DLT provider the wallet is using A4

3.6 Background Technologies

The Wallet Desktop application uses Electron [54] to build a cross-platform
application. Electron is a framework for creating native applications using
web technologies using chromium. It also has implemented the Node.js core
libraries so that the application can easily access to the operative system
functionalities.

The libraries of the wallet monorepo use Ethers.js and Veramo to
implement the integration of the Wallet with the i3-MARKET DLT:

— Ethers.js [55] is a complete and compact library for interacting
with the Ethereum blockchain. It was originally designed for use
with ethers.io and has since expanded into a more general-purpose
library.

36 i3-MARKET Wallets

— Veramo [56] is a JavaScript Framework for Verifiable Data that was
designed from the ground up to be flexible and modular, which makes
it highly scalable. It can run on several environments: node, mobile, and
browser. Its main utility is to make easy the use of DIDs, Verifiable
Credentials, and data-centric protocols to bring next-generation features
to users.

Wallet OpenAPI meets the OpenAPI specification [57]. Wallet Desktop
validates all inputs against the OpenAPI schema using express-openapi-
validator [58].

Documentation for the different packages has been made available, thanks
to TypeDoc [59].

4

Auditable Accounting

4.1 Objectives

The auditable accounting component is responsible of registering auditable
logs. As such, this component is one of the main tools to enhance the trust
in the ecosystem of data marketplaces. Our solution must enforce the data
sharing agreement terms, agreed upon all involved parties, by recording them
in an auditable, transparent, and immutable way. Smart contracts are the
key part of the proposed solution for auditable accounting. Figure 4.1 shows
that the auditable accounting component is an abstraction layer to access the
smart contracts and to allow the integration with the rest of the platform. The
auditable accounting component is a service that includes an API to automate
the process of logging and auditing interactions between components and
record the registries in the blockchain.

Auditable data registration

< &

Auditable Accounting

Distributed
storage

Figure 4.1 Auditable accounting architecture.

38 Auditable Accounting

The auditable accounting development has been made publicly avail-
able in the i3-MARKET GitHub and Gitlab repositories (e.g., https://gith
ub.com/i3-Market- V3-Public-Repository/SP3-SCGBSSW-AA-Auditable
Accounting). The Table 4.1 summarises the technical contributions used to
design and implement the i3-MARKET Auditable accounting component.

4.2 Technical Requirements

Table 4.1 Main technical contributions.
Name Description \ Labels
Auditable Log i13-MARKET needs to be able to log data | V1
and events in blockchain. It is a key com- | Epic
ponent for accounting, billing, and conflict | Data marketplace
resolution. It is also important to con- | Data consumer
trol access to sensitive information and to | Data provider
detect potential data breaches. Data owner
A public distributed ledger will be used to
store non-repudiable and reliable proofs of
the required actions.

Children:

1. Auditable accounting: marketplace
billing

2. Auditable accounting: conflict resolu-
tion

. Auditable accounting: providing sensi-
tive data

. Providing sensitive data

. Conflict resolution

. Marketplace billing

. Consumer billing

. Provider billing

W

03N L b

Parents:

1. REQ-B-005 — i3-MARKET will
ensure trust

2. REQ-B-008 — i3-MARKET will pro-
vide a payment solution

3. Semantic description of the SLS and the
subscription

https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-AA-AuditableAccounting
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-AA-AuditableAccounting
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-AA-AuditableAccounting

4.3 Solution Design/Blocks 39

4.3 Solution Design/Blocks

The solution must be scalable and cost-efficient. In this regard, transaction
costs can be a considerable problem if, as it is expected, the number of
auditable registries that need to be stored in the blockchain is high. To over-
come this problem, it is a requirement to implement a transaction optimizer
to efficiently register substantial amounts of data in the blockchain without
incurring in excessive costs. To achieve this, we first store registries in an
internal database of the component and then aggregate the registries with a
Merkle tree to minimize the number of blockchain transactions and provide
the appropriate data for proving each individual registry.

The smart contract managed by the auditable accounting component is
used to store the necessary evidence of the aggregated registries from the
DSA. Once the registration process is complete, the auditable accounting
component will save a copy of all the information needed to verify that the
registration was successful in the blockchain. This information can be con-
sulted and obtained later by the marketplace users. The auditable accounting
component provides the functionality to trace registries and obtain “certifi-
cates” of them that can be publicly or privately used to prove that a certain
registry was performed. Users must be able to download these certificates and
validate the registry without further interaction with the auditable accounting
component having a proof that can be universally validated without the
intervention of any other entity or software component. The certificate of a
DSA will provide: the blockchain that has been used to create the auditable
data registration, the address of the smart contract used, and the “proof of
registry” of the associated data.

The auditable accounting component is a service that includes an API to
automate the process of logging and auditing interactions between compo-
nents and record the registries in the blockchain. As shown in Figure 4.1, in
general, the API of the AA module is accessed through the Backplane API
gateway. Additionally, the auditable accounting component can be accessed
directly from any internal component of the platform.

On the other hand, to allow external parties to check that logs have been
properly registered in the blockchain, interested parties need to obtain certain
data from the distributed ledger as well as some off-chain data provided
by the auditable accounting module via an API. This off-chain data are
essentially Merkle proofs for each individual record. It is important that the
off-chain data is provided with high availability. For this reason, the auditable
accounting module uses the distributed storage component. In this way, high

40 Auditable Accounting

availability and data replication is provided to the relevant off-chain data
required to store the registries and verify auditable logs.

Database model:

The database model proposed for this component is based on two SQL tables.
The first one is the related one with the blockchain. It contains the transactions
prepared or sent to the blockchain. Figure 4.2 shows the deployed columns
as follows:

v [blockchain
v [H Columns (5)
H id
7 nonce
A txhash

| timestamp

| registrationstate

Figure 4.2 Auditable accounting library distribution.

* Id: Primary key to link with the other table.

* Nonce: Nonce from the account to build the transaction.
* Txhash: Hash of the transaction.

* Timestamp: Exact date of the creation of the transaction.
* Registrationstate: Status of the transaction.

o Unregistered: Transaction not created.

o Pending: Transaction created but not sent to the blockchain.

o Mined: Transaction sent with less than 12 block confirmations.

o Confirmed: Transaction sent with more that 12 block confirma-
tions.

On the other hand, the registry table is responsible to store the proofs of
the data hashes that want to be validated against the blockchain.

4.4 Diagrams 41

It contains the following columns:

v [registry
v [[Columns (6)
i id
f dateofreception
f datahash
f merkleroot
f merkleproof

i readyforregistration

* Id: Primary key to link with the other table.

* Dateofreception: Date when the data is received.

* Datahash: Cryptographic hash function of the data. It is one of the
leaves of the Merkle tree.

* Merkleroot: Root of the Merkle tree.

* Merkleproof: Concatenated hashes that allow to validate the datahash
to the root of the tree.

* Readyforregistration: Boolean to indicate if the tree is built and ready
to be deployed in the blockchain.

Smart contract:

The smart contract deployed for this component just stores the root of the
Merkle tree that summarizes all the data hashes stored in the database. It
only allows to modify that value by the owner of the smart contract, which
shares the same account with the auditable accounting. Also, it includes the
capability to subscribe to an event that notifies you about a new root released.
The Solidity code is the following:

SPOX -

pragma solidity >=0
contract AuditableAccounting {

uint256 public currentRoot;
address public owner;

event newRegistry(uint256 prevRootHash, uint256 currentRootHash);

modifier onlyOwner(){ require(msg.sender == owner, "sender must be the
contract owner"); _; }

constructor() { owner = msg.sender; }

function setNewRegistry(uint256 _newRoot) public onlyOwner {
emit newRegistry(currentRoot, _newRoot);
currentRoot = _newRoot;
3
}

42 Auditable Accounting

4.4 Diagrams

The workflow to register auditable data is shown in Figure 4.3.

| Database | | Smart Contract|
j | V
: | :

I

| Generate registry
. r=hash(data)
pa—

' .

1 Send registry

! Jregistries (r)

Save registry

‘
o]
‘

OK 200

Calls with internal cron
T

, Compute new root
/calculateMerkleRoot

-

H Store root and update proofs ;

oK J

<

' 1 updateRegistries

Verify registry...

: Get ID
Jregistryfid

Get ID

]|

OK 200 {ID}
v

'
'
:
Get current Root...

| Get Root
J/getCurrentRoot

Get currentRoot

i
)

{currentRoot} | ‘
I !

:
|_ OK 200 {currentRoot}
< T
g

Figure 4.3 Auditable accounting flow.

The hash of the data to be registered is sent to the API using the end-
point/registries. Each hash to be registered is stored by the auditable account-
ing module in distributed storage. Then, the endpoint /calculateMerkleRoot
has to be called. When called, this endpoint creates the structure that is going
to be registered in the blockchain. In more detail, this structure is a Merkle
hash tree. The controller of the endpoint computes the Merkle root with all
the pending registries, computes an individual proof for each registry, and
stores these proofs in the distributed storage. Additionally, a transaction to be
sent to the blockchain is created and stored in the blockchain SQL table in
the distributed storage. Next, the endpoint /updateRegistries can be called
to store the Merkle root of the registries in the blockchain via the smart
contract. We would like to stress that the endpoints /calculateMerkleRoot

4.5 Interfaces 43

and /updateRegistries can be called with a “cron job” or similar to schedule
registrations in the blockchain at the desired frequency. Finally, if a party
wants to verify a certain registry, it can call the endpoint /registry/:id to obtain
the corresponding Merkle proof, compute the Merkle root from this proof,
and compare it to the root registered in the smart contract. If both are the
same, this means that the registry is valid.

4.5 Interfaces

The component is built from a Loopback 4 framework, which facilitates the
management of the smart contract and the database generating an API that
allows to integrate the procedures with the Backplane. But, as a high-level
definition, the endpoints are divided into two controllers.

Firstly, the RegistryBlockchain controller manages the smart contract inter-
actions and has the following endpoints:

RegistryBlockchainController v
/calculateMerkleRoot
/getCurrentRoot

/updateRegistries

* /calculateMerkleRoot: Gets the pending registries from distributed
storage that are not included in the current root and computes the new
one.

¢ /getCurrentRoot: Gets the current root from the smart contract.

* /updateRegistries: Updates the status of the stored transactions and
computes a new transaction.

On the other hand, there is the registry controller, which is responsible to
manage the data hashes that are included in the auditable accounting system.

RegistryController v

/registries/count
/registries/{id}
/registries/{id}
/registries/{id}

‘ /registries/{id}

/registries

/registries

/registries

44 Auditable Accounting

* GET /registries/count: Returns the number of stored registries.
 PUT /registries/{id }: Forces the creation of a specific registry.
* PATCH /registries/{id }: Updates a specific registry.

* GET /registries/{id }: Returns the value of a specific registry.

* DELETE /registries/{id } : Removes a specific registry.

» POST /registries: Generates a new registry.

» GET /registries: Returns the value of the registries.

4.6 Background Technologies
* Solidity:

Solidity is an object-oriented, high-level language for implementing smart
contracts. Smart contracts are programs that govern the behaviour of accounts
within the Ethereum state. It is a curly-bracket language. It is influenced by
C++, Python, and JavaScript and is designed to target the Ethereum virtual
machine (EVM).

Solidity is used to develop the smart contract deployed on the blockchain,
which is responsible to store the root of the Merkle hash tree.

* PostgreSQL:

PostgreSQL is a powerful, open-source object-relational database system
with over 30 years of active development that has earned it a strong reputation
for reliability, feature robustness, and performance.

PostgreSQL is used to store the registries and the Merkle proofs of each
registry.

* Loopback 4:

LoopBack 4 is an award-winning, highly extensible, open-source Node.js
and TypeScript framework based on Express. It enables you to quickly create
APIs and microservices composed from backend systems such as databases
and SOAP or REST services. Also, it allows to manage custom data sources
like a smart contract.

Loopback is used to generate the API that manages the registration of
the data, the computation of the Merkle hash trees, and the smart contract
executions.

3]

Conflict Resolution/Non-repudiation
Protocol

5.1 Objectives

The conflict resolution system’s main goal is to prevent and/or solve conflicts
when invoicing for a given exchange of data. It is therefore a core subsystem
for the i3-MARKET secure data exchanges.

For the conflict resolution system to work, the i3-MARKET Non-
repudiation Protocol (NRP) must be executed with every exchanged block
of data. The Non-repudiation Protocol generates verifiable proofs of the data
exchange that can be used to later prove that a given digital data exchange
happened and that it met the agreed conditions (based on a data sharing
agreement).

If the NRP is followed, the NRP proofs can be used to support fair
unfakeable billing with fiat or crypto money and to prevent or solve eventual
disputes with the data exchange alike.

A complementary conflict-resolver service (CRS) has been developed,
which can be run by any trusted third party to issue verifiable signed
resolutions regarding the execution of the NRP.

In short, as per the above explanation, the conflict resolution/Non-
repudiation Protocol system relies on two subsystems, both already made
publicly available in the i3-MARKET GitHub and Gitlab repo:

e the Non-repudiation Protocol library [60];
e the conflict-resolver service [61].

Updated detailed documentation can be found in, e.g., https://github.com
/i3-Market- V3-Public-Repository/SP3-SCGBSSW-CR-Documentation#c
onflict-resolution--non-repudiation-protocol.

45

https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-Documentation#conflict-resolution--non-repudiation-protocol.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-Documentation#conflict-resolution--non-repudiation-protocol.
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-Documentation#conflict-resolution--non-repudiation-protocol.

46 Conflict Resolution/Non-repudiation Protocol

5.2 Technical Requirements

The conflict resolution/Non-repudiation Protocol must prevent the following
situations between the two peers of a data exchange, namely provider and
consumer:

e to deny that a given data-block exchange happened;
e or to assert that a data-block exchange that did not happen, happened.

As a result, providers will not be able to invoice a consumer for a data-
block not exchanged; and consumers will not be able to deny or cancel a
payment for a data-block that was successfully exchanged.

For it to happen, every block of data must be exchanged using the NRP.
Accounted proofs give no room to alter the invoicing (fiat money) or the
crypto payments (i3-MARKET tokens) if both entities reliably execute the
protocol; otherwise, the conflict resolver service can be invoked to univocally
solve which entity is intentionally or unintentionally malfunctioning.

5.3 Solution Design/Blocks

The Non-repudiation Protocol starts with a provider Alice, hereby A, sending
a signed proof of origin (PoO) along with an encrypted block of data to a
consumer Bob, hereby B.

An overview of the protocol is depicted in Figure 5.1, and more detailed
sequence diagrams of every step are provided in the following sections.

After validating the PoO, B will demonstrate his will to get the data by
sending a signed proof of reception (PoR). Just recall that B is at this point
not yet able to decrypt the data since he does not know the secret to decrypt
them.

The PoR is a proof that can be used by A to demonstrate that B is
committed to get the secret to decrypt the block of data.

Now A can release the secret as part of a proof of publication (PoP).
However, as B may state that he did not receive the PoP, A also publishes the
secret to the ledger. It is now under B’s responsibility to get the secret from
the ledger since he implicitly agreed to it when sending the PoR.

For A to create a valid invoice for that block of data, she must present a
valid PoR and demonstrate that the secret was published to the ledger within
the agreed delay (part of the agreement). As a result, the lack of one or both
proofs will result in an invalid invoice.

The conflict-resolver service (CRS) can be queried to provide a signed
resolution about the Non-repudiation Protocol associated with an invoice

5.3 Solution Design/Blocks 47

i3-MARKET non-repudiation prolocol

! ; Jls.mmmmm ‘1
g SETREY 2 + | decrytp it yed), and tha Po0:

. rucenad cgherblock and |
D:I sgrad axchanga !

{ep 2 consumer sends a Proat of Recepuon PoR) }

| _Croate signdd PoR & croote proaf of

=T ==

@ wolidato Polt £

10. storo PoRt

The PoR is non-epudiatle proal of
1 Consumer boing commited 1o gat
11 secrat 1o decrypl 1he cperiock
I I
] winp 3. provider publishes ihe secrel,
i 1 1

11, Prowder pubeshes secrol on fhe DLT

The one-ime Secre el was e 1o oncrypt
Eha block is publshod to the DUT using the
nan-repudiation smart contract

L

changekd, secrel)

I 7
E
&
&

'
he aciual Pof® 15 e secret published Creale signod PoP !

[13 Consumer gets the secret 0 me o ™y
I I

opt ./ [mo reaponse lllest responte) H

1135 Wiho PoP s not recened, the comsumer
1| Downioads the secret bom the DLT

|| it tres PR the eonsumes cormenitod o get
1| e secrat oen the DLT aven f tha PoP wes
1| et rocessst

[0 @y cisa, there is & predobnediagresd H

|| max timoeout pooToSocratDolay b0 wt
1| orihe secrel o be maladie on the DLT

15, Tha consumer docrypts tha cichablock)

Figure 5.1 Overview of the Non-repudiation Protocol.

48 Conflict Resolution/Non-repudiation Protocol

being valid or invalid. It could be invoked by either the consumer or the
provider. The latter should be mandatory, being the resolution sent along with
the invoice to the consumer.

However, this resolution does not ensure that the published secret could
be used to decrypt the encrypted block of data. If the consumer B is not able
to decrypt the cipherblock, he could initiate a dispute on the CRS. The CRS
will also provide signed resolution of whether B is right or not.

5.4 Diagrams

This section presents detailed diagrams for the Non-repudiation Protocol and
conflict resolution already depicted in the previous section. For a diagram
with high-level overview of the NRP, please refer to Figures 5.2-5.6 for the
different interactions and use cases.

e NRP — step 1: consumer gets cipherblock and non-repudiable proof
of origin (PoO).

e NRP — step 2: consumer sends a proof of reception (PoR).

e NRP — step 3: provider publishes the secret, and consumer decrypts
the cipherblock.

e Conflict resolution: verification (NRP completeness).

e Conlflict resolution: dispute.

5.5 Interfaces

A standard i3-MARKET developer interacts with the conflict resolution/Non-
repudiation Protocol system using the API of the non-repudiation library from
the JavScript/TypeScript code or querying the conflict resolver service HTTP
APL

API of the non-repudiation library:

The non-repudiation library API is a documented typescript library whose
API can be properly documented “on the fly” while programming.
Besides that, automated TypeDoc documentation is generated and available
at https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-
NonRepudiationLibrary/blob/public/docs/API.md.

5.5 Interfaces

i3 MRP - step 1: consumer gets cipherblock and non-repudiable Proof of Crigin (PoO)

Lsing agroco
of oparation s

3. enorypt data biock with socne

enchlg (only AE modes
LRt

Concumiar Prowidar
SDAAE]
| - sowsoK | : Diaia Transier Manager
. .
! GET duta jo: <block |io=| 1. a block ol data
| [t vy ok a3

cipherbiock=Enc ., (hiock]

I

FDU=M§,-“". i
Iss: ‘orig,
proolType: [Pty
lat: <timestamg_now=,
canhangeli{
id: s
crig: skiing & Fublic kay as a compact JWK of
e pecrd e
gesl- string if Public key as a compact JWE of
o Cors L
hashaly: slring ! agreed hash akgarithm
enoalg: sting /! agreed encryption akgarithm
signinghig: string /! agreed JWS signing
akgarkhm
dgerbpmractidoness: sinng if contact

agmed exchange

Slgnondddenss: sinng (' addmss of the

onig in the ledger

pooToPerDalay: rumiser (f max milissoands
batweon ssued Pol and wiied PoH

pooTeSecretDoay: number /i max milisecands
batween ssupd Pol and seomt publishes on the
Inciger

schemat: sting ! an optional schema. In the
fuune it will b used to check tha deorypied data

cipherhiockDyst: string) hash of the
clptertiock i basebdur with no padcing

secretOormmigment: skring ! hash of e socnot
Hriat can e used 1o decrypt the bock in beseSdun
with no paceing

I

rhiock [Hhe consumen cannot

B melum
--T|mwlﬂmimm

b Po) &. alidate Pots against
moehed cipherblock and

opt A prvealz 1'o0] E
| lerminata g
L e e —— bl i
|:sm.ﬂ:uc | SOMAP
: Diata Transfer Marager

49

Figure 5.2 NRP — step 1: consumer gets cipherblock and non-repudiable proof of origin

(PoO).

50 Conflict Resolution/Non-repudiation Protocol

i3M NRP - step 2: consumer sends a Proof of Reception (FPoR)

iZM Consumer i2M Provider
SDAAP]
Consumer: SDA SDE : Data Transfer Manager

PDR:JW %L‘lﬂ"ﬂlfll!r {{
iss: 'dest]
proofType: 'FoR,
iat: <timastamp_nows=,
poo: string, f The Pol as & compact JW
exchange: <the same exchange in the PpC=

N |

1. create proof of
reception (PoR)

W

I

FoR

i 1 >

| 2 vahdats PoR validate PoR

. _ walidate Paol :l
opt [invalid PoR]

Sé_ terminate

| I

| 3. store PoR.

| The PoR is non-repudisble proof of store PoR.

| the consumer being commited to get

i the secret to decrypt the cipherblock
Consumer: SDA SDK SDAAPI

: Data Transfer Manager

Figure 5.3 NRP — step 2: consumer sends a proof of reception (PoR).

API of the conflict resolver service:

The conflict resolver service implements a HTTP API following the OpenAPI
standard. The specification can be consulted in the openapi.json file in the root
directory of the conflict resolver service at [61]. For convenience, it can also
be visualized online at editor.swagger.io' as it is shown in Figure 5.7.

The CRS provides two endpoints: one for checking that the protocol was
executed properly, and the other one to initiate a dispute when a consumer
claims that he cannot decrypt the cipherblock he has been invoiced for.

! https://editor.swagger.io/?url=https://raw.githubusercontent.com/i3-MARKET-V3-

Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService/public/spec/openapi.yaml

5.5 Interfaces 51

i3M NRP - step 3: provider publishes the secr=t, and consurmer decrypts the cipherblock

VEM Comasmar N Frovser 15 Backsiune
SO AR
S r——
T o

1. Privader pubishes seera on tha DUT.

Tha ona-1me el thal was used 1o &ncnpl |

v B 16 oS Do B2 [DLT (583 [o call 52 Sl iy anchingak, secin]
NS alion SMa Corac.
Thhaa haz . ot [il wih kncsas: saer
[peesicar adrasa | and anchangald.

I i
2,)
2 Prodder comnes tha PoP. e H N:‘J‘.:Ij:_“ ml
A prool of pubbcalion "Fof®) @ craaled, H :‘ﬂ:‘:;fw:m*
Dl iy 10 RECHan 1) prooREs, Sisee ' . oy ¥ "
1 elual PoP is e see el pulisied ::"‘ﬁm":‘ mm:‘:?&ﬂrﬁfin
wlh sm;cgﬂlrﬁ:l. Ty G, | Sacral: sinsg N Cosspact MK of i seeral
e g 5 POP & ikaly b Tas 1 u
: gy B M ok s o i 0 hy sarfiationThaa: sirng & DLT 1x Saah
| thea LT, il
! -
- '
T e — T '

(2. Comanier pets the st i tha PeP 5 A

I
opt] (e respanas | e reszana] '
| PP i
I -
|| 3.5 W i PoP i nal recdved, T Sonsurmar
|| downboila Tha decral from e DLT.

Wi o PO, el Conc e comsiled b gal

U sl Focas L DT sy if Ui PP wiica

nol meved.

I @iy Cirai, T b @ praslinedtagied |
mix bmsoad pooTeSaecnaDalay [TS .
o i Seesd 190 D asdiaibia o fa OLT i

loop o [AEls AAcral g racalesd A& SarTRAITIme - Fad L - 30a TR cra i ly]

;'

| iy
| agcrdil < PoClial + peoToBacaiDaty
| i) == Palhaschanga secneCosmian

g

a [racratac: paElAbas indma || mesld ascran
! BT

| |
E. The conEusier deciypls e cphariook. &'I

|4. Tha Sofaiiel wiilles 1 Sorl D]

SRyl CapherTioc k. with STl
cecnpledfioc=Dee . [Gphertinek]

-

! waletuna 1hal:
v Biock mests Ped, e

i N |

e] e o

- Daba Trarsher Manager

Figure 54 NRP — step 3: provider publishes the secret, and consumer decrypts the
cipherblock.

The endpoints require JWT bearer authentication. The JWT can be
obtained after performing a login with OIDC and presenting valid i3-
MARKET credentials.

52 Conflict Resolution/Non-repudiation Protocol

I Proder

I3-MARKET conllictr

1 (NRP

TIH Euckpiune

1| atton . e prond o
|| velcation

|| Pa ity ki bAGER, & privicas aSoul

ol i) o

of okt of U
[ty

coremarar (]

EIMhM-I

v cePaspsal iy et anehangs.orkg JWH
smaidin's pobl kiy)

it e . [oo g baciparS e Aricriscs,

E-MARKET OLT

arrut s puitatent &5
dmcriadlid < pod. pod el +

e pac et puc duc ot Duley.

—

Spgutfsedion = WS]
N :;lmp- uad il

il Surieed A Mo s Didia o
s alring Y S s nay o s SR i WK

sate sty th susis SR of the o

E-MARKET OLT

Figure 5.5 Conflict resolution: verification (NRP completeness).

i3-MARKET eanllict fesalubion: dispule

i3-MARKET OLT

i3-MARKET OLT

3M Comeumer 1M Beckplune
[s | [e |
e e p—————————] i
1| i Esa e chafo! poperty Secrysl the . i
|| e bt Wik thes prabl b aecrt, 1 1 H
| EommUTE CAn NI o Sspate so el 1 N N
1| e & akgneel resc sian msmie by 6 iruntns !
1| thist ety i s e < prsertioek. |
1| st ety b decryplis. |
| comali deapulitacnl = IS ot] '
) el Ty eouesl’]
' o deal” '
! e s X MarincDali B msusd it]
| R g e PR i compet BN i
1 dmgudet attry H
| tpp o plinfeper |
| cpeitiech slring 1) the cibeiblock i & WE 0
] i
.:I i
| POBT Mapse | t |
! TR —————— H
: ot s charg iy :
| dasrypd e phutiess wilh screl: u
' cerrysteBlockelios o (Hpleticy) '
H bl [l H
! _T\'-mm_ Podeacsange.achans 1
1 ” |
i il par ‘vesoid s’ N
1 Eppas i’ 1
: [Pasisicr, b e B 0y WWQI smacistien: ccipter” | st :
H e ey [— TR — H
| _Iﬂi-ﬂl—f- s slring 1) M pubiic ey of the CFES is S |
| Ay siring Ul the gublic MK of B £ i vt |
: — :
Consumar E0AEDK]

Figure 5.6 Conlflict resolution: dispute.

5.5 Interfaces 53

® @ Swagger Editor x v

a & a " ® ® = e =
1UPC W Calendar M Drive @ OneDrive ® Atenea @SIA @ Froman @ code-Gittab > [0 Other Bookmarks
@ Swagger Editor File . Edit - Insert - GenerateServer » Generate Client » About « Try our new Editor

Conflict-Resolver Service
(CRS) API @ &=

The Conflict-Resolver Service (CSR) can be queried to provide a signed
resolution about the non-repudiation protocel associated to an invoice
being valid or invalid. It could be invoked by either the consumer or the
provider. It is a core element of the Conflict Resolution system in i3-
MARKET.

Conflict-Resolver Service ~

verification request of completeness of

/verifica

. non-repudiation protocol regarding a data v
tion

exchange

Figure 5.7 CRS API at swagger.editor.io.

o POST/verification.

The CRS can be queried to provide a signed resolution about a data
exchanged successfully performed or not. It could be invoked by either the
consumer or the provider. The provider should query this endpoint and send
it along with the invoice to the consumer.

This endpoint can be accessed at POST/verification and requires valid
13-MARKET consumer or provider’s credentials.

Input:

A verification request as a compact JSON Web Signature (JWS). For the
request to be accepted, it must be signed with the same key it was used during
the data exchange for this verification.

verificationRequest: string // the verification request in compact JWS format

A verification request is a JWS signed by either the consumer or
the provider using the same key he/she used for the data exchange. The
verification request payload holds a valid PoR:

54 Conflict Resolution/Non-repudiation Protocol

type: 'verificationRequest'

proofType: 'request’

iss: 'orig' | 'dest'

iat: number // unix timestamp for issued at

por: string // a compact JWS holding a PoR. The proof MUST be signed with the
same key as either 'orig' or 'dest' of the payload proof.

dataExchangeId: string // the unique id of this data exchange

Output:
It returns a signed resolution as a compact JWS with payload:

proofType: 'resolution’
type: 'verification'’

resolution: 'completed' | 'not completed' // whether the data exchange has been
verified to be complete

dataExchangeId: string // the unique id of this data exchange

iat: number // unix timestamp stating when it was resolved

iss: string // the public key of the CRS in JWK

sub: string // the public key (JWK) of the entity that requested a resolution

e POST/dispute.

Note that the signed resolution obtained from POST/verification does not
ensure that the published secret could be used to decrypt the encrypted block
of data. If the consumer B is not able to decrypt the cipherblock, he could
initiate a dispute on the CRS. The CRS will also provide signed resolution of
whether B is right or not.

All this is handled in this endpoint, which can only be queried if in
possession of valid i3-MARKET consumer’s credentials.

Input:
{

disputeRequest: string // the dispute request in compact JWS format
}

A dispute request as a compact JSON Web Signature (JWS). For the request
to be accepted, it must be signed with the same key it was used during the
data exchange for this verification.

5.6 Background Technologies 55

The payload of a decoded disputeRequest holds a valid PoR, and the

received cipherblock:
{

proofType: 'request’

type: 'disputeRequest’

iss: ‘'dest’

cipherblock: string // the cipherblock as a JWE string

iat: number // unix timestamp for issued at

por: string // a compact JWS holding a PoR. The proof MUST be signed with the
same key as either 'orig' or 'dest' of the payload proof.

dataExchangeld: string // the unique id of this data exchange

Output:
It returns a signed resolution as a compact JWS with payload:
{
proofType: 'resolution’
type: 'dispute'’

resolution: 'accepted' | 'denied' // resolution is 'denied' if the cipherblock
can be properly decrypted; otherwise is 'accepted'

dataExchangeld: string // the unique id of this data exchange

iat: number // unix timestamp stating when it was resolved

iss: string // the public key of the CRS in JWK

sub: string // the public key (JWK) of the entity that requested a resolution

5.6 Background Technologies

Both the non-repudiation library and the conflict resolver service need access
to a DLT. Access to the DLT is provided by the following technologies:

e Ethers.js [55] is a complete and compact library for interacting with the
Ethereum-based DLTs. Along with Web3 is the reference implementa-
tion for that purpose.

e Veramo [56] is a JavaScript Framework for Verifiable Data that was
designed from the ground up to be flexible and modular, which makes
it highly scalable. It can run on several environments: node, mobile, and
browser. Its main utility is to make easy the use of DIDs, Verifiable
Credentials, and data-centric protocols to bring next-generation features
to users.

56 Conflict Resolution/Non-repudiation Protocol

The smart contracts that regulate the Non-repudiation Protocol have
been developed in Solidity [37], an object-oriented, high-level language for
implementing smart contracts for Ethereum-like DLTs, and the development
environment of choice has been Hardhat.

The non-repudiation library can be instantiated from JavaScript or Type-
Script code. It internally uses Panva’s JOSE [63] to handle JSON web keys,
and Ajv [64] to check and verify JSON schema.

Conflict resolver service HTTP API is developed using Express [65],
a minimal and flexible Node.js web application framework that provides a
robust set of features for creating robust APIs (among other things).

The conflict resolver service meets the OpenAPI specification [57] with
validation of all inputs against the OpenAPI schema using express-openapi-
validator [58].

6

Explicit Consent

6.1 Objectives

i3-MARKET’s architecture has been designed to allow all the stakeholders
— namely providers, consumers, data owners, and marketplace operators —
to meet the strictest policies in terms of privacy and data protection, which in
fact leads to meet the GDPR requirements with little effort.

Article 4 of the GDPR [26] defines consent as “any freely given, specific,
informed and unambiguous indication of the data subject’s wishes by which
he or she, by a statement or by a clear affirmative action, signifies agreement
to the processing of personal data relating to him or her”. Data controllers
shall be able to demonstrate that they hold the explicit consent of the data
subjects to process (Article 7) and/or trade their data. To the best of our
knowledge, no technology is enforcing user consent to the point of preventing
trading without it.

It is a remarkably innovative feature of the i3-MARKET project that the
explicit consent of the data subjects is absolutely required for trading users’
data.

6.2 Technical Requirements

The explicit consent subsystem inherits the following technical requirements
from the GDPR [26]:

¢ Trading of sensitive data related to people/entities require their explicit
consent.

e The consent can be revoked.

e If a consent is revoked, the data cannot be sold/distributed again.

o The data should be also deleted from already sold datasets.

57

58 Explicit Consent

e The enforcement of the explicit consent should not leak any sensitive
data.

e The solution must support non-digitally native data subjects, which
delegate consent management to an i3-MARKET provider.

6.3 Solution Design/Blocks

The explicit consent system relies on two main complementary actions:
explicit consent and limited data lifetime.

Use-case 1: the data subject is an active i3-MARKET
stakeholder:

The explicit consent is a legal agreement between a data provider and the
subject of the data. It is out of the scope of i3-MARKET, which is just a
technology. However, for every subject involved, a provider should provide
an (anonymous) identifier of the consent signed by the subject using an
anonymous identity only known to the provider.

As aresult, a data offering in i3-MARKET that deals with sensitive data
includes a list of signed consents of the data subjects. The smart contract
manager (SCM) will verify the consent signatures and status when orches-
trating a data sharing agreement. If a consent is not in place or revoked, the
SCM prevents the exchange of the affected data.

Obviously, subject can at any time revoke a consent and therefore prevent
their data to be sold again. Proving ownership of the consent requires inter-
action with the SCM using the subject’s anonymous identity, which requires
the use of the i3M-Wallet.

Note that i3-MARKET does not analyze or check for validity of the
actual consent agreements between providers and data subjects. It is the
(legal) responsibility of the provider to have the consent in place when legally
required. Obviously, the way the consent anonymous ID is created guarantees
that the presented consent form was the one registered in i3-MARKET.

For a better understanding on how consents are managed, refer to the
detailed diagrams and the SCM explicit-consent endpoints.

6.3 Solution Design/Blocks 59

Use-case 2: the data subject delegates consent management to
an i3-MARKET provider:

The concept of limited data lifetime refers to when a dataset is sold; the
consumer accepts the legal obligation to delete it after the agreed lifetime.
The lifetime of course must meet the affecting regulation. In i3-MARKET,
we are using a 14-day lifetime for the wellbeing pilot.

Meeting the limited data lifetime requirement is out of the scope of
13-MARKET, which just labels datasets with the lifetime. Indeed, its imple-
mentation is the responsibility of the data providers and consumers, which
should sign legal agreements stating that the dataset should be deleted after
the agreed time (lifetime). Note that this does not imply that the consumer
cannot access the data again after erasing it; it only means that the consumer
will need to re-download them again.

When a data subject revokes consent, the GDPR not only states that her
data should not be sold again but also that it should be removed from any sold
dataset. Limited data lifetime is absolutely necessary to legally comply with
the GDPR. Re-downloading again guarantees that data related to revoked
consents “disappears” from any sold dataset.

6.3.1 Diagrams

In the following, we present four sequence diagrams representing the flows
for giving consent and revoking it in two use-cases:

1. The data subject is an active i3-MARKET stake holder that can use her
own wallet to interact with the i3-MARKET Backplane.

2. The data subject delegates consent management to the data provider,
which will therefore interact with the i3-MARKET Backplane on behalf
of the subject.

Use-case 2 meets the last technical requirement, introduced by the 13-
MARKET wellbeing pilot, which states that data subjects may not be digitally
natives or may not be interested in being an active i3-MARKET stakeholder.

The diagrams in Figures 6.1-6.4 are self-explanatory, but consider ana-
lyzing the SCM endpoints for the explicit consent for a better understanding
of the flow.

60 Explicit Consent

Explicit consent:

e Giving consent:

X

(D DA i

M Darta Crammr

M vt App

[t |

ot
+ Explict Lisar Consant
Ermart Contrat

& s [T e

Ty i

1

1

Fronsadar. The [WS hokdtha dgntues snd apeykus wih:

renFiaringid
comTSubac
consaFormtmh,
it
e

icleriifior of the Diata

mdﬂ“lhn’dl (=

tmh & ahsshofa

Pyt ezl paimaga

mr

attucics). Tha way
a=d Duts Prowicior

mandasicdrean

afthy

ey remd
amd ourt of the scope of S-MARKET.

hhﬂ—*h#ﬂhhﬂm

Dwemer
Thaangy
PuT L denksfer of
tho cnmsast with curt nvaaling any dats oft. ¥ b thas B
respomusiity of tha Provider b peovide Eae actual comsant fas F
rocuanbadl,

ks D

X

w

PO ipha_foreend

iy _cordee]_uigrad_fnsciion

|

E ‘Thaasneratihe mment mmh?imm—ﬂ.ﬂw&:

+ | S0P & jusk rebying the tramection 5o tee ledgar

P

|.anm|.mapp|

[t

ot
+ Explict Lisar Consant
Ernart Contrat

Figure 6.1 Use-case 1: giving explicit consent.

¢ Revoking consent:

138 Dt s Cvvnnar

i Walkt App

6.3 Solution Design/Blocks

61

13M Back planm

: Explicin Usar Consant
Erma i Contras

Back ane AP
e
EFLI'I' provzbs_rrrmeand :
| ufaCMmringid "
! conoagiubjects, d
N LL Lo B L Lt N
i} i
. ﬂ--h-hrw-a] . At . “
. '
| e 4
| Maglry corasrt_sigred_immacian 3
1 1 '
. Toa trannactan will trigrger that thesmart costras: ugslate the
; T ; ot
' g es art iy 1 vl oy ol e ran s s sigrar st aciual
' =i of the cnmeni mihe gorn i {wesderddl

._|' I

Backelane A7
EM

 Explicit Usar Contint

Ersa i Calradl

Figure 6.2 Use-case 1: revoking consent.

62 Explicit Consent

Limited data lifetime:

e Giving consent:

3M Provider 3 Backplane

oLt

Backplane AFL : Explicit User Consant
iy bt

conseniSubjects s alistof '
ananymous iderifiers of data
oraTaers, that can be safky J
published without revealing amy
idenzity irformation. Al of them i '
showld have signed the same: 4 b
cansert forme . |

conseniFormHash iz a hash of &)
digital represeniation of thelegal [} ;
conser Torm [with some added | L
ertrapy to avold premage + POET fighee_ponsent v
attacks]. The way it Is digkalieed o § dhalCeoring d,
Is agreed betwesn Data Craner | comseniSunjects. t
ard Data Frovider and out of the , comsaniFomHash, stanDale, .
scope af B-MARKET. The orly + endDale, senderfuddress § L
purpose of the corsent FormHash 1
|= 2o ume | a5 an identiller of the
conser withouws revealing any '
dana af it. It s then the '
responsibilty of the Prosider io '
hald the actual consent fanm if
mequested.

senderAddmss B the address 4

of the subject in the 3-MARKET]
oLT

1
i
| sign iransaciian

i

| POST
! fdepioy_consenl_signed_transaction [
i { trargaction § :

dcplu_'[t'i'::ncibn

The cwwner of the canser: kesps
' beirg the signer [Data Owner).
: The SCM I just relying the
transaction o the kedger

O R |_|

Backplans ABE] BLT

T SCM : Enplicit User Cons=mt
Smart Cantract

Figure 6.3 Use-case 2: giving explicit consent.

¢ Revoking consent:

6.3 Solution Design/Blocks

i3-MARKET Explicit User Consent: revoke consent
Use case 2: the Data Owner delegates consent management to the Provider

i3M Provider

63

i3M Backplane

DLT
Backplane APT : Explicit User Consent
S 5CM Smart Contract
‘ | PUT renke_cansent ;
i !| consentSubjects hiolds a list of
i datalferingid, +| fanarnyrmous) dentifiers of data
| oohceptZubjects, | aowmers whase consent should be
| sefderfddress ! revoked.
o - :
i i
L‘ (yetHio-be-signed) transaction I:I i
5 h [i
i] transactiaon 1 f
i i
fsigned) mesacton | i
1 Y i
i | POST i
| | fdepley_consent_signed_transaction f
L ! [trangaction | u
r 1 » i
5 h i
B ! deploy ransaction H
i | ey e
F h i
F | i
; J The transaction will trigger that the]!
i i arnarl contract updates the consent |,
p i status for all condents in i
i i conteplSubjects. i
. U Revocation wil only wark if the d
[' transaction signer is the sctual]
p i awner af the cengent in the smart i
1 . cantract {genderfddress), T
I 1 ' 1
transachion_reoapt
. [P Wi oo SN SN U J
. "
Prowider Backplane APT OLT
:5CM : Explicit User Consent

Smart Comtract

Figure 6.4 Use-case 2: revoking consent.

64 Explicit Consent

6.4 Background Technologies

The explicit user consent subsystem has no special selected technologies
since its development is actually split into other subsystems:

e Consent giving and revoking is implemented in the smart contract
manager, which is described in more detail in Chapter 9.

e Consent checking before exchanging data related to a data subject is
implemented between the smart contract manager and the secure data
access SDK.

7

Smart Contract Manager

7.1 Objectives

The smart contract manager (SCM) provides a gateway to access the smart
contracts and is used by other subsystems to integrate their functionalities
(conflict resolution, pricing manager, explicit user consent, and secure data
exchanges).

Smart contract manager facilitates the creation of agreement objects using
the data sharing agreement (DSA) smart contract. The DSA solidity contract
is based on a legal agreement for data sharing, considering the existing legal
framework (e.g., GDPR [26]). The agreement objects are used to enforce
agreed-upon obligations from the provider and consumer sides.

The smart contract manager development has been made publicly avail-
able in the i3-MARKET GitHub repository and the smart contracts the
subsystem uses at [66]. The Table 7.1 summarizes the Smart Contract
Manager user stories.

7.2 Technical Requirements

Table 7.1 Smart contract manager — user stories.

Name Description ‘ Labels
SCM Within i3-MARKET, DSA objects need to be stored on | User story

the blockchain in order to automatically enforce certain
clauses of the legal data trading agreement. Additionally,
automatic conflict resolution of certain types of viola-
tions has to be supported.
The smart contracts of the SCM need to combine legal
certainty with automated enforcement, built-in conflict
resolution mechanisms, and guaranteed access to rem-
edy. The SCM evaluates a signed resolution, issued by
the conflict-resolver service, which relies on the execu-
tion of the Non-repudiation Protocol. Depending on the
type of resolution, the state of the agreement is automat-
ically updated.

65

66 Smart Contract Manager

Table 7.1 Continued.
Description
Explicit data owner consent: In case of personal data,
legal consent of data owners is required. When the con-
sent is given, the SCM stores a list of explicit consents
for a specific offering. The consent can be revoked any-
time, and before an agreement is created, the consent
status is verified. As long as the data to be shared is
personal data, agreements can be created just when the
consent was given by the data owner.
Pricing: The price and the fee of the data are stored in
the agreement. The fee is requested from the pricing
manager, based on the price in the data offering.

7.3 Solution Design/Blocks

The smart contract manager extracts the contractual parameters from the
data offering description and returns a template with possible contractual
parameters (to be displayed in the marketplace), as shown in Figure 7.1. After
a data purchase request is sent, with a potential proposal of new parameters by
the consumer, the provider and consumer must sign the agreement and store it
in the wallet. As soon as both received the signed data sharing agreement and
saved it in the wallet, the provider can create and store the agreement on the
blockchain. The smart contract manager invokes the data sharing agreement
smart contract and creates an agreement with the proposed contractual param-
eters. The agreement object is put on the ledger and automatically enforced
by the corresponding smart contract (Figure 7.2).

Conflict J " Auditable
Resolution call Smart | Accounting
! Y
Non-repudiation
library

verify

resolution

get agreement extract contr.
Pr—
data parameters
Data ACCess gl i D ——— Semantic Engine
. N
7 "
L N
notify \ calculate fee
e sign . Y
'/ transaction \\
Notifcation ’ ™ ..
Pricing Manager
Manager

Figure 7.1 Context view of the smart contract manager.

7.3 Solution Design/Blocks 67

e

Figure 7.2 Component diagram of the smart contract manager subsystem.

The smart contract manager is interconnected with the following 13-
MARKET subsystems, as it is shown in Figures 7.3-7.5.

* Semantic engine: To retrieve the parameters and details about the data
offering descriptions to compile information for the contract agree-
ments.

* Conflict resolution: In order to check whether a violation to the con-
tract occurred, the conflict resolution is invoked. The conflict resolution
will prevent any two peers of a data exchange, namely provider and
consumer to deny that a given data-block exchange happened or to
assert that a data-block exchange that did not happen, happened. The
conflict-resolver service issues verifiable signed resolutions regarding
the execution of the i3-MARKET Non-Repudiation Protocol. The SCM
evaluates the signed resolution and, depending on the type of resolution,
automatically changes the state of the agreement in case of a violation,
as well as suggests penalties for one of the peers.

* Non-repudiation Protocol: The Non-repudiation Protocol aims at pre-
venting parties in a data exchange from falsely denying having taken
part in that exchange.

» Explicit data-owner consent: To ensure an explicit consent of the data
owners every time their personal data is traded, the explicit data owner
consent component is triggered.

* Pricing manager: The SCM requests the fee of the data based on the
price registered in the data offering by invoking the pricing manager
to calculate the corresponding fee and includes it in the contractual
template.

» User-centric authentication: To ensure that only authorized partic-
ipants (with the corresponding role) are able to trigger functionality

68 Smart Contract Manager

provided by the data sharing agreement smart contract (via the smart
contract manager), user-centric authentication is used (part of the
Backplane).

* i3M-Wallet: The raw transactions created in the SCM have to be signed
with an i3M-Wallet (either the Wallet Desktop App or the server wallet)
in order to deploy them.

SCM - Request contractual parameters template

SOKRI

template vith contractual parameter

template with contractual parameters

1
|
1

»
|
1
T
I
|
1
I
1
|
1
1
1
|
1
I
1
1
1
I
|
1
1
I
1
1
i

Figure 7.3 Sequence diagram — retrieve contractual parameters template.

SCM Create agreement

[] [

T T T
| | | | | |
| Create agreement | | | | | |

		I
! Create AGREEMENT rawTransaction _!	} }	
1 | 1 | I I |
1 | | Create AGREEMENT rawTransaction | | I |
1 1 r » I I |
1 1 1 | | I |
H | e rawTransaction | | 1 |

e
1 | | | | I |
1 | retum 1 | | I |
1 r 1 | | I |
1 1 ! | | I |
| L Ask to sign transaction | o | |
1 | | | " I |
| | |
| User-Wallet interaction 1 |
T T T T				
	!			
[Signed raw transaction		1		
				I
: | call deploy ransaction AP | : } } }

t d
1 | 1 | | I |
| | l call deploy transaction AP o |] |
I | I gl | I I
: : : ! deploy transaction | }
e —

1 1 1 | |
1 Iy return result | |
1 I~ 1 | |
|‘ ! notify AgreementCreated ! !
L | |
1 | |
1 1 |
| | |
1 | |
| | |

| I
| I
| I
| I

I
| | |
| notify AgreementGreated
f T T
| I
| I

Figure 7.4 Sequence diagram — create agreement.

Provider creates the data offering

Data offering is published
to the semantic engine

Consumer gets the data offerings
nd selects one

Get the contractual parameters
template
the data offering id

Consumer creates public key (for
data exchange) and fills the
template with the dynamic

parameters

Consumer creates data purcha
request (sends the template to
provider (inc. the public key of the
consumer (dest) for data exchange)

Provider rejects the template
(provider doesn't agree with
dynamic fieids)

s olaty
e ofthe providar service).
e e et
e weo
g

Consumer sends the signed
tractual template.
Consumer sends natification with It to
the provider

Provider receives the signed contract

Deploy signed transaction

SCM notifies provider and consu
the agreement s Active
fication

umer that

Retrieve notification based on pK,
Get Data Sharing Agreement from Wallet,
which contains publickeys
Decrypt notiffication using the private

Figure 7.5 Data sharing agreement negotiation, key pair generation, storage in wallet,

agreement creation on blockchain.

7.4 Diagrams 69

and

70 Smart Contract Manager

7.4 Diagrams

The smart contract manager extracts the static contractual parameters from
the data offering description using the semantic data model. The interactions
are shown in Figure 7.6. The dynamic parameters, such as the consumer DID,
start date, and end date of the agreement, are filled when a data purchase
request is created by the consumer.

Before storing an agreement on the blockchain using the smart contract
manager, the provider and the consumer should generate their public—private
keys (using the non-repudiation library) and they should each sign the con-
tract. After they filled in their public keys and the contract is signed, they
should store the generated key pairs and data sharing agreement in their
wallets as shown in Figure 7.7.

As soon as the negotiation between the provider and consumer is over and
they agree on specific contractual parameters, as well as store the final data
sharing agreement and the key pairs in their wallets, the provider can create
the agreement on the blockchain using the smart contract manager.

Firstly, a raw transaction is created using the data sharing agreement,
which was saved in the wallet. The successful response of creating an
agreement request is a raw transaction object. This raw transaction has to be
signed with the wallet using the provider’s DID. After the signed transaction
is obtained from the wallet, it has to be deployed. The response of the Smart
Contract Manager should be a transaction object with information about

Pravider creates agreement

Agreement state: Active

Agreement state: Active

Enforce Penalty:
New end date for agreement

Agreement state: Active Agreement state: Terminated

Figure 7.6 Sequence diagram — check agreements by offering ID.

7.4 Diagrams 71

Agreement Smart Contract

(7) evaluate

(8) prese :
: decoded resolution

penalties

(5) verify resolution
Smart Contract Manager SLLLASEEAENS Non-repudiation library

(6) receive decoded
resolution

(3) receive signed resolution
Conflict resolution

(1a) initiate dispute
(1b) request verification

(2) check proof

Figure 7.7 Conflict resolution.

Provider creates agreement

Agreement state: Active

1. Discover
service provider

Agreement state: Active

Enforce Penalty:

New end date for agreement

Agreement state: Active Agreement state: Terminated

Figure 7.8 Agreement lifecycle and states.

the transaction in Figure 7.8. If the confirmation is 1, the transaction was
successfully deployed, and the agreement is stored on the blockchain.

After that, the provider and consumer receive a notification that the
agreement is active, which means it was created and stored on the blockchain.
This notification will be encrypted and contains the agreement id. The noti-
fications should be retrieved from the notification manager based on the
provider/consumer public key and decrypted using the corresponding private
key. After they receive this notification, the provider should post the data

72 Smart Contract Manager

Conflict Resolution

Consumer
a) requests verification
b} initates dispute

Conflict resolution cheks proof

Consumer receives the signed
resolution

Consumer evaluates signed resolution (SCM)

Resolution type: Resolution type:
verification dispute

Resolution: completed Resolution: not-completed Resolution: accepted Resolution: denied

Violation: Violation:
T Data transfer not as described Data transfer not as described otation:
iolation Violation;
- Penalty options: Penalty options: -
Terminate agreement Terminate agreement
- New end date for agreement New end date for agreement
- New end date for agreement + price New end date for agreement + price
reduction reduction

Penalty options:

Penalty options:

Present penalties to consumer

Consumer proposes penalty

Provider receives chosen penalty

Provider rejects the proposed

Provider accepts the penalty penalty

Figure 7.9 Agreement violation — conflict resolution.

exchange agreement, the agreement id, and the private key to data access and
then the consumer can start the transfer — see Figure 7.9.

Agreement violation — conflict resolution:
After the data transfer is finished, a consumer can request a verification or
initiate a dispute using the conflict resolution. The proof of the completeness

7.5 Interfaces 73

of the data exchange will be checked and the consumer receives the signed
resolution based on that proof.

The smart contract manager evaluates the signed resolution. Within this
evaluation, the resolution is decoded and depending on the resolution, the
agreement’s state can change from active to violated.

The transfer was unsuccessful when the resolution is:

e not completed (in case of a verification) — the decryption key was not
published;

e accepted (in case of a dispute) — the cypher block cannot be properly
decrypted.

If the transfer was not successful, the agreement is violated. When the
agreement is violated, the consumer receives a list of penalties.
These penalties could be:

e new end date for agreement;
e new end date for agreement and a price reduction;
e termination of agreement.

The consumer should propose one of these penalties to the provider. The
provider will receive a notification with the chosen penalty and if he agrees
to the penalty, he should enforce on the blockchain. By enforcing the new
penalty, the agreement state changes from violated to active or terminated (in
case the penalty termination is chosen).

7.5 Interfaces

The smart contract manager API is the interface via which the clients gain
access to the smart contract parameters.
The endpoints documented below were grouped by modules.

Agreement:

GET /template/{offering id}

Request template with static and dynamic parameters
offering_id (required)

Example data

Content-Type: application/json
{

"dataOfferingDescription": {
"dataOfferingId": "63662ebdb7d5dd78b7159566",
"version": O,

74 Smart Contract Manager

"title": "Oil Supply Unit",
"category": "manufacturing",
"active": true

b

"parties": {

"providerDid":
"did:ethr:i3m:0x0243cc9dbc7157eel2cel898ac0c49b366822£32d57bcl08e127£f45b6c4
3a57e90",

"consumerDid": "string"

by
"purpose": "Oil supply Unit measurements",

"duration": {
"creationDate": O,
"startDate": 0,
"endDate": 0

)l

"intendedUse": {
"processData": true,
"shareDataWithThirdParty": false,
"editData": true

I

"licenseGrant": ({
"transferable": false,
"exclusiveness": true,
"paidUp": true,
"revocable": true,
"processing": true,
"modifying": true,
"analyzing": true,
"storingData": true,
"storingCopy": true,
"reproducing": true,
"distributing": false,
"loaning": false,
"selling": false,
"renting": false,
"furtherLicensing": false,
"leasing": false

I

"dataStream": false,

"personalData": false,
"pricingModel": {
"paymentType": "one-time purchase",
"pricingModelName": "string",
"basicPrice": 125.68,
"currency": "$",
"fee": 6.28,
"hasPaymentOnSubscription": {
"paymentOnSubscriptionName": "",
"paymentType": "",
"timeDuration": "",
"description"™: "",
"repeat": "",

"hasSubscriptionPrice": 0
b
"hasFreePrice": ({
"hasPriceFree": false
}
br
"dataExchangeAgreement": ({
"orig": "string",

7.5 Interfaces 75

"dest": "string",

"encAlg": "A128GCM",

"signingAlg": "ES256",

"hashAlg": "SHA-256",

"ledgerContractAddress": "0x8d407al1722633bddldcf221474be7a44c05d7c2£f",

"ledgerSignerAddress":
"0x02897978ebd80646bc469cbaldd79d8655cd862cb9fd2484141d66103260cc5404",

"pooToPorDelay": 100000,

"pooToPopDelay": 30000,

"pooToSecretDelay": 180000

I

"signatures": {
"providerSignature": "string",
"consumerSignature": "string"

}
}

Returns the template with static and dynamic contractual parameters
POST /sdk-ri/contract/create-data-purchase

Create data purchase request (not part of the Backplane) — sends noti-
fication to provider with the static and dynamic parameters filled in by the

consumer

POST /create agreement raw_transaction/{sender address}

Create agreement raw transaction (create Agreement)
sender_address (required)

Request body

body template (required)

{
"dataOfferingDescription": ({

"dataOfferingId": "63662ebdb7d5dd78b7159566",

"version": 0,

"title": "Oil Supply Unit",

"category": "manufacturing",

"active": true

by
"parties": {

"providerDid":
"did:ethr:i3m:0x0243cc9dbc7157eel2cel898ac0c490366822£32d57bcl08e127£45b6¢c4
3a57e90",

"consumerDid":
"did:ethr:i3m:0x03878572e4476a6b7b0223d07£53159e£923c874084ea56760£d130d80c
51409ad"

by
"purpose": "P&ID diagram of the Lube 0Oil supply Unit"
"duration": {

"creationDate": 1678997655,

"startDate": 1786678869,

"endDate": 1886678869

by
"intendedUse": ({

"processData": true,

"shareDataWithThirdParty": false,

"editData": true

by

76 Smart Contract Manager

"licenseGrant": {
"transferable": false,
"exclusiveness": false,

"paidUp": true,

"revocable": true,

"processing": true,

"modifying": true,

"analyzing": true,

"storingData": true,

"storingCopy": true,

"reproducing": true,

"distributing": false,

"loaning": false,

"selling": false,

"renting": false,

"furtherLicensing": false,

"leasing": false

I

"dataStream": false,
"personalData": false,
"pricingModel™: ({

"paymentType": "one-time purchase",

"pricingModelName": "string",

"basicPrice": 125.68,

"currency": "$",

"fee": 6.28,

"hasPaymentOnSubscription": {

"paymentOnSubscriptionName": "string",
"paymentType": "string",
"timeDuration": "string",
"description": "string",
"repeat": "string",
"hasSubscriptionPrice": 0

I

"hasFreePrice": {

"hasPriceFree": false
}
}!
"dataExchangeAgreement": {

"orig": "N"kEy\":\"EC\", \"crv\":\"P-
256\", \"x\":\"4sxPPpsZomxPmPwDAsqSp94QpZ3iXP8xX4VxWCSCEms\", \"y\":\"8YI bvV
rKPW63bGASHgRVWXE6uj 3T1nHWwoQi 9XaEBBE\", \"alg\": \"ES256\"} ",

"destll: IV{\Ithy\" . \llEc\"’ \"Crv\" : \HP_
256\", \"x\":\"6MGDU3EsCJEJZVV2KFhnF21xCRISyNpf4vWQrCIMk5M\ ", \"y\" : \" 00ZbKAd
00CqrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00N\", \"alg\":\"ES256\"}",

"encAlg": "A256GCM",

"signingAlg": "ES256",

"hashAlg": "SHA-256",

"ledgerContractAddress": "0x7B7C7c0c8952d1BDB7E4D90B1B7b7C48c13355D1",

"ledgerSignerAddress": "0x17bd12C2134AfC1f6E9302a532eFE30C19B9E903",

"pooToPorDelay": 10000,

"pooToPopDelay": 20000,

"pooToSecretDelay": 150000

I
"signatures": {

"providerSignature":
"eyJhbGci01JQUzMANCIsImtpZCI6ImIpbGIvimIhZ2dpbnNAaG9iYml0b24uzXhhbXBszSJ9.S
XTigJlzIGEgZGFuz2Vyb3VzIGJ1lc21luZXNzLCBGem9kbywgZ2 9pbmcgb3V0OIH1vdXIgZzGoveidg
WWIO1IHNOZXAgb250byB0aGUgcmOhZCwgYWS5kIGImIH1vdASBkb24ndCBrZWVwIH1vdXIgZmV1dCw
gdGhlcemXigJlzIG5vIGtub3dpbmegd2hlecmUgeW91IG1pZ2h0IGI1IIHN3ZXBOIGOMZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfTOkkOy42miAh2qyBzklxEsnk2IpN6tPidéVrklHkg

7.5 Interfaces 17

sGgDgHCAP60O8TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdviWXzg-
UD8biiReQF1£z28zGWVsdiNAUf8ZnyPEGVFN4422dNgiVIRmMBgrYRXe8P 1jQ7p8Vdz0TTrxUeT
31m8d9shnr21fJT8ImUjvAA2Xez2M1p8cBES5awDzT0qIOn6uiPlaCN_2 jLAeQT1qRHtfa64QQS
UmFAAjVKPbByi7xho0uTOcbH510a6GYmJUAfmWijwZ60D41ifKo8DYM-X72Eaw",
"consumerSignature":

"eyJhbGci0iJQUzM4ANCIsImtpZCI6ImIpbGIvImIhZ2dpbnNAaG9iYml0b24uZXhhbXBszSJ9.S
XTigJlzIGEgZGFuz2Vyb3VzIGJ1lc21luzZXNzLCBGecmOkbywgZ2 9pbmcgb3VOIH1vdXIgZG9veidg
WWI1IHNOZXAgb250byB0aGUgcmOhZCwgYW5kIGImIH1vdSBkb24ndCBrZWVwIH1vdXIgZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IG1lpZ2h0IGJI1IHN3ZXBOIGIMZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfTOkkOy42miAh2qyBzklxEsnk2IpN6tPid6VrklHkg
sGgDgHCAP60O8TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdviWXzg-
UD8biiReQF1£fz28zGWVsdiNAUf8ZnyPEgVFn442ZdNgiVJRmBgrYRXe8P 1jQ7p8Vdz0TTrxUeT
31m8d9shnr21fJT8ImUjvAA2Xez2M1p8cBES5awDzT0gqIOn6uiPlaCN_2 jLAeQT1qRHtfa64QQS
UmFAAJVKPbByi7xho0uTOcbH510a6GYmMJUAfmWjwZ60D4ifKo8DYM-X72Eaw"

}
}

Return type
raw_transaction

Example data
Content-Type: application/json

{

"nonce": 46,

"to": "0x4d722c3alCec5306710637103495dDA9DFAda905",

"from": "Oxc6b8cf76bd7078e56c6ce8c357dd91caeea70170",

"gasLimit": 12500000,

"gasPrice": 1000,

"chainId": 1337,

"data":
"0x667a8beb00
002000000000000
000
000
000
00000000000000000006737472696e67000
000000000"

}

Returns a raw transaction for the create agreement operation

POST /deploy signed transaction

Deploy signed transaction and send encrypted notification based on the event
emitted by the DataSharingAgreement smart contract

Request body

body signed_transaction (required)

78 Smart Contract Manager

Example data
Content-Type: application/json
{

"signedTransaction":
"0xf90f2a2e8203e883bebc20944d722c3alcec5306710637103495ddd9dfada905800b90ec4d
€e4b2db50003a0000
00792232224543222¢c22637276223
a22502d323536222¢c2278223a22364d4744753345734364454a5a5656324b46686e46326¢78
43524935794e7066347657517243494d60b354d222¢2279223a22304£5a624b41646£6£43717
251635042334266717930672d5935536d6e54796£76466£465933354630304e222¢c22616¢67
223a224553323536227d000
0004036313335306463336666643730
326262393739333663383936386364694e415566385a6e7950456756466e3434325a644e716
9564a526d4271725952586538505£5153556d4641416a564050624279693778686£3075544¢F
000
000
000673747
2696e6700820a95a05263ad3d
490c6ab7baf8d755814ece3390delle7dfOcfclef3ae58361£949429a056fec9bcb23e8clal
cfd7d30£f1c4959e63¢c1863ef1261b5941a9%9a22d779e855d"

}

Return type
transaction_object
Example data

{

"transactionHash":
"0x833013a9428427016fc4b3cd1£05e9b42b289f4£98cd5beccfb91f4aed5£d4630d4",

"transactionIndex": 0,

"blockHash":
"0x1fd6a7de60041d0ec9c4735b%ecd8b022e8cbbl54bc4f153cf9c517bc8f7e381",

"blockNumber": 661175,

"contractAddress": null,

"cumulativeGasUsed": 1672030,

"to": "0x4d722c3alCec5306710637103495dDd9DFAda905",

"from": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170",

"gasUsed": 1672030,

"logsBloom":
"0x00
000
0000000000240008000000000000000
000
00000000000000000100800000000
0000000000000000800
000™,

"logs": [
{
"transactionIndex": O,
"blockNumber": 661175,

"transactionHash":
"0x833013a9428427016fc4b3cdlf05e9b42b289f4£98cdSbccfb91f4aed5£d630d",
"address": "0x4d722c3alCec5306710637103495dDd9DFAda%05",

"topics": [

"0x40£080228d46fb72660eddafe315e4a5b47df236dc33b76fcdl22bcbea89p01d"

1,

"data":
"0x006000000000

7.5 Interfaces 79

0001200000000000000000000
00£000000000000000000000000000000
000000000000000000000000000000008c7b226b7479223a224543222¢c22637276223a22502
d323536222c2278223a22347378505070735a6£6d78506d5077444173715370393451705a33
69585038785834567857435343666d73222¢c2279223a223859495f627656724b50573633624
741734867527677584536756a33546c6e48776£516939586145424245222c22616c67223a22
4553323536227d4000
0008¢c7b226b7479223a224543222c22637276
223a22502d323536222c2278223a22364d4744753345734364454a5a5656324b46686e46326
c7843524935794e7066347657517243494d6b354d222¢2279223a22304£5a624b41646£6£43
717251635042334266717930672d5935536d6e54796£76466£465933354630304e222c22616
c67223a224553323536227400",
"logIndex": O,
"blockHash":
"0x1fd6a7de60041d0ec9c4735b9%ecd8b022e8cbbl54bc4£153cf9c517bc8£7e381"
}
1,
"confirmations": 1,
"status": 1

Returns transaction receipt with confirmation 1
GET /get agreement/{agreement id}

Retrieve an agreement by agreement id
Path parameters

agreement_id (required)

Example data

Content-Type: application/json

{

"agreementId": 15,

"providerPublicKey": "{\"kty\":\"EC\",\"crv\":\"P-
256\",\"X\":\"4sxPPpsZomemeDAsqu94QpZ3iXP8xX4VxWCSCfms\",\"y\":\"8YI_va
rKPW63bGAsHgRvwXE6uj3T1nHwoQi9XaEBBE\", \"alg\":\"ES256\"}",

"consumerPublicKey": "{\"kty\":\"EC\",\"crv\":\"P-
256\",\"x\":\"6MGDU3ESCAEJZVV2KFhnF21xCRI5yNpf4vWQrCIMk5M\ ", \"y\ " : \ "00ZbKAd
00CqgrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00N\", \"alg\":\"ES256\"}",

"dataExchangeAgreementHash":
"61350dc3££d702bb97936c8968d9£c19629a427157d6254bea5d415616edf07e",

"dataOffering”: ({

"dataOfferingId": "63662ebdb7d5dd78b7159566",
"dataOfferingVersion": O,
"dataOfferingTitle": "0il Supply Unit"

I

"purpose": "P&ID diagram of the Lube 0il supply Unit",

"state": O,

"agreementDates": [

1671753600,
1786678869,
1886678869

1,

"intendedUse": {

"processData": true,
"shareDataWithThirdParty": false,
"editData": true

by

80 Smart Contract Manager

"licenseGrant": {

"transferable": false,

"exclusiveness": true,

"paidUp": true,

"revocable": true,

"processing": true,

"modifying": true,

"analyzing": true,

"storingData": true,

"storingCopy": true,

"reproducing": true,

"distributing": false,

"loaning": false,

"selling": false,

"renting": false,

"furtherLicensing": false,

"leasing": false

} 4

"dataStream": false,
"personalData": false,
"pricingModel": {

"paymentType": "one-time purchase",

"price": 125.68,

"currency": "$",

"fee": 6.28,

"paymentOnSubscription": {

"timeDuration": "string",
"repeat": "string"
s
"isFree": false
} 4
"violation": {
"violationType": O
) 4
"signatures": {

"providerSignature":
"eyJhbGciOiJQUzMANCIsImtpZCI6ImIpbGIvimIhZz2dpbnNAaG91iYml0b24uzZXhhbXBszZSJ9.S
XTigJlzIGEgZGFuzZ2Vyb3VzIGJI1lc21luZXNzLCBGcmOkbywgZ2 9pbmcgb3VOIH1vdXIgZGOvecidg
WWI1IHNOZXAgb250byB0aGUgcm9hzZCwgYWS5kIGImIH1vdSBkb24ndCBrZWVwIHlvdXIgZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlecmUgeW91IGlpZ2h0IGJI1IIHN3ZXBOIGOmZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfTO0kkOy42miAh2qgyBzklxEsnk2IpN6tPid6VrklHkg
sGgDgHCAP608TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdvWXzg-
UD8biiReQF1£z28zGWVsdiNAUf8ZnyPEQVFN4422dNgiVIRmBgrYRXe8P_13jQ7p8Vdz0TTrxUeT
31m8d9shnr21fJT8ImUjvAA2Xez2M1p8cBES5awDzT0qIOn6uiPlaCN_2 jLAeQT1gRHtfa64Q0QS
UnFAAJVKPbBy17xho0uTOcbH510a6GYmIUAfmWjwZ60D41fKo8DYM-XT72Eaw",

"consumerSignature":
"eyJhbGciOiJQUzMANCIsImtpZCI6ImIpbGIvimIhZz2dpbnNAaG91iYml0b24uzZXhhbXBsZSJ9.S
XTigJlzIGEgZGFuz2Vyb3VzIGJI1c21luzZXNzLCBGemIkbywgZ2 9pbmcgb3V0IH1vdXIgZG9veidg
WWI1IHNOZXAgb250byB0aGUgcm9hzZCwgYWS5kIGImIH1vdSBkb24ndCBrZWVwIHlvdXIgzZmV1dCw
gdGhlcmXigJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IGlpZ2h0IGJI1ITIHN3ZXB0IGO9MZiB0by4 . cu
22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfTO0kkOy42miAh2qgyBzklxEsnk2IpN6tPid6VrklHkg
sGgDgHCAP608TTB5dDDIt11Vo6 1pcbUrhiUSMxbbXUvdvWXzg-
UD8biiReQF1£z282zGWVsdiNAU£8ZnyPEGVFn4422dNgiVIRmBqrYRXe8P ijQ7p8Vdz0TTrxUeT
31m8d9shnr21fJT8ImU]jvAA2Xez2M1p8cBES5awDzT0qIOn6uiPlaCN_ 2 jLAeQT1gRHtfa64QQS
UnFAAJVKPbByYi7xho0uTOcbH510a6GYmIUAfmWjwZ60D41fKo8DYM-X72Eaw"

}
}

7.5 Interfaces 81

Returns the agreement by agreement id
GET /get pricing model/{agreement id}

Retrieve an agreement’s pricing model
pricingModel
Example data

Content-Type: application/json

{
"pricingModel": {
"paymentType": "one-time purchase",
"price": 125.68,
"currency": "$",
"fee": 6.28,
"paymentOnSubscription": {
"timeDuration": "string",
"repeat": "string"
by

"isFree": false
}
}

Returns the pricing model by agreement id
GET /check active agreements

Retrieve all the active agreements. (The agreements become active when they
are created and stored on the blockchain.)

Returns a list of active agreements

GET /check agreements_by consumer/{consumer public keys}

/{active}

Retrieve all or just the active agreements of a consumer
Path parameters

— consumer_public_keys (required)
— active (required)
Example data

-0
("KEy" I TECH, Meryt s np-
256", "x" :"6MGDU3EsSCdAEJZVV2KFhnF21xCRI5yNpf4vWQrCIMk5M", "y" : "00ZbKA
dooCqgrQcPB3Bfqy0g-Y5SmnTyovFoFY35F00M", "alg" : "ES256" }

]

- false
Return type
Returns all/active agreements based on consumer’s public keys
GET /check agreements by provider/{provider public keys}

/{active}

Retrieve all or just the active agreements of a provider

82 Smart Contract Manager

Path parameters

— provider_public_keys (required)
— active (required)

Example data
- [
{("kty":"EC", "crv":"P-
256", "x":"4sxPPpsZomxPmPwDAsqSp94QpZ31iXP8xX4VXWCSCEms", "y": "8YI bv
VrKPW63bGAsHgRvWXE6uj3T1lnHwoQi9XaEBBE", "alg" :"ES256" }
]

- true

Return type
Returns all/active agreements based on provider’s public keys

GET /check agreements by data offering/{offering id}

Retrieve all agreements for a data offering
Returns all agreements by offering id

GET /retrieve agreements/{consumer public key}

Retrieve the active agreement by consumer public key whose start date is
reached
Returns active agreement by consumer public key whose start date is reached

GET /state/{agreement id}

Check the state of the agreement: active, violated, or terminated
Returns agreement’s state based on agreement id

POST /evaluate signed resolution

Evaluate a signed resolution
body signed_resolution (required)

{

"proof":
"eyJhbGciOiJFUzI1INiJ9.eyJdwcm9IvZ1R5cGUi01TJyZXNVvPHV0aWOuIliwiZGF0YUV4Y2hhbmdlS
WQi0iJTTmg5eUtYYjJlaGxWSFJIZQkllayl6Z1lpVaDJtUINvMWpwbGg3SWEtNHIRIiwiaWF0Ijox
NJjQ20TUxNjM1ILCIpc3MiO1iJ7XCIhbGdcIjpcIkVTMjU2XCIsXCJIjcnZecIjpcIlAtMjU2XCIsXCT
kXCI6XCJ1Z1INpST1ITEANTWMI TmMwbkFhM3FGTjNBTjBvR2JhMzNIQWFr SHFkdm1nXCIsXCJrdH
1cIjpcIkVDXCIsXCI4XCI6XCIMN1dAmVIhHYkgwaW82SnBtOTRTMWxwZGk2eUdOVDFPbVo2NUFfa
INfaGs4XCIsXCI5XCI6XCI2WUUwb1BPcFACcUM3NURfanRKVIWZ 5NWxzWGxHak81ZzZRWG12RHAN
REtjXCJ9Iiwic3ViIjoielwiYWxnXCI6XCJIJFUzIINIwiLFwiY3J2XCI6XCIQLTIINIwiLFwia3R
5XCI6XCIFQlwiLlFwieFwiOlwiV1lhzQOnVPWndWamhvZkpWNGtBaGJIJhNnduMUVZRHAVSWEnWGIyZ1
ZuTDh4Y1wiLFwieVwiOlwiaDRmTDVRAJRFWXQ3WGRLCWRIeTFaSnMOX1FXWURrWTF6VXpThb0k2M
U43WVwifSIsInJlc29sdXRpb24i01JkZW5pZWQiLCI0eXB1IjoiZGlzcHV0ZSJ9. TtxUm3E6LEm
wEI74cr6RO4-nw-xcFaeARY0Z4z1dBVlc JUOMCvOFtr9tCDhggfLiJgb4RIPINfIytFZMUbx -
g",

"sender address": "0x4d82Bd33baA4Fe5489C45bBdC206019403dcF829"

}

7.5 Interfaces 83

Returns a raw transaction for the create agreement operation
POST /propose penalty

Propose penalty

Request body

body choose_penalty (required)
{

"agreementId": 15,
"chosenPenalty": "NewEndDateForAgreementAndReductionOfPayment",
"paymentPercentage": 16,
"newEndDate": 189898999
}
Returns the chosen penalty and sends notification to the provider with the

chosen penalty
PUT /enforce penalty

Agree to penalty by enforcing it on the blockchain

Request body

body enforce_penalty (required)

{

"senderAddress": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170",
"agreementId": 15,
"chosenPenalty": "NewEndDateForAgreementAndReductionOfPayment",
"paymentPercentage": 16,

"newEndDate": 189898999
}

Returns a raw transaction for the enforce penalty operation

PUT /terminate
Terminate agreement for batch data based on the last block of successful
transfer and for streaming data if the end date is reached

body terminate (required)

{
"senderAddress": "0xC6b8cf76BD7078e56C6CE8C357dD91caeEa70170"
"agreementId": 15,
"proof": "JWT",

}

Returns a raw transaction for the terminate agreement operation

Explicit consent:

POST /give consent

Give consent to a user
body consent (required)

84 Smart Contract Manager

}

"dataOfferingId": "63909dae0863a775a4d71bc9o"
"consentSubjects": [

"did:ethr:i3m:0x026b23ab3cc76f1dald5d2aa087d29894146ee52b56¢c23392a7f1
36f7dc2a7a90c",

"did:ethr:i3m:0x020bc2643908df0ebab258a2dac38cd3b42ce2088al0ade3b501d4
85ababf9f5ad6"
1,

"consentFormHash":

"36bede32098bd09%el15a23274a37117e58a8b08bf54aled48331alff8cc509e6da",

"startDate": 1633344669,
"endDate": 1673344669,
"senderAddress": "0x9aDA42ff81B9D661cC4fdab62791DaC30cfe7305"

Returns a raw transaction for the give consent operation

PUT /revoke consent

Revoke consent by consent subjects
body consent (required)

{

}

"dataOfferingId": "63909dae0863a775a4d71bc9",
"consentSubjects": [

"did:ethr:13m:0x026b23ab3cc76f1dald5d2aa087d29894146ee52b56c23392a7f1
36f7dc2a7a90c"

1,
"senderAddress": "0x9%9aDA42ff81B9D661cC4fdab62791DaC30cfe7305"

Returns a raw transaction for the enforce penalty operation

GET /check consent status/{dataOfferingId}

Retrieve consent status
Returns a list of consent status based on data offering and consent subject
(optional)

POST /deploy consent signed transaction

Deploy signed transaction and send encrypted notification based on the event
emitted by the ExplicitUserConsent smart contract

body signed_transaction (required)

Returns transaction receipt with confirmation 1

7.6 Background Technologies 85

7.6 Background Technologies
e Hyperledger BESU:

1 Technology

Technology | Hyperledger BESU

name

Summary Hyperledger BESU is an Ethereum client designed to be enterprise-friendly for
both public and private permissioned network use cases. It can also be run on test
networks such as Rinkeby, Ropsten, and Gorli. Hyperledger BESU includes sev-
eral consensus algorithms including PoW and PoA (IBFT, IBFT 2.0, Etherhash,
and Clique). It also supports features including privacy and permissioning.

Description | Hyperledger BESU is an open-source Ethereum client developed under the

Apache 2.0 license and written in Java. It runs on the Ethereum public networks,
private networks, and test networks such as Rinkeby, Ropsten, and Gérli. BESU
implements Proof of Work (Ethash) and Proof of Authority (IBFT 2.0 and
Clique) consensus mechanisms.

BESU includes a command line interface and JSON-RPC API for running,
maintaining, debugging, and monitoring nodes in an Ethereum network. BESU
nodes support authentication and authorization, that is, identifying the user that
performed the API query and allowing the execution of a specific set of methods.
BESU supports two authentication mechanisms: username and password or JWT
public key; see Figure 7.10.

The communications are performed using the API via RPC over HTTP or via
WebSockets. The API supports typical Ethereum functionalities such as:

 ether mining;
* smart contract development;
« decentralized application (Dapp) development.

The resultant BESU architecture is the following:

| JSON RPC & GraphQL ‘

STORAGE ETHEREUM CORE NETWORKING
devp2p

World State Elack Validator Consensus

Account State Tx Processar

ETHS
Account.

Storage Eum

Code Storage

IBF Sub-Protocal

Figure 7.10 BESU architecture.

86 Smart Contract Manager

Technology

BESU uses a private transaction manager, Orion, to implement privacy. Each
BESU node sending or receiving private transactions requires an associated
Orion node. Private transactions pass from the BESU node to the associated
Orion node (see Figure 7.11). The Orion node encrypts and directly distributes
(that is, point-to-point) the private transaction to the Orion nodes participating in
the transaction.

Alice's
ORION NODE

[:

Y (]
Bob's Mary's
ORION NODE ~RION MNODE

. =
Alice’s b K

Mary’s

Figure 7.11 Alice sends a private transaction to Bob
using Orion privacy manager.

BESU also supports permissioning, which stands for permitting only specified
nodes and accounts to participate by enabling node permissioning and account
permissioning on the network. It supports local permissioning (a configuration
file for each node) or on-chain (via smart contracts).

Keywords

Blockchain, distributed ledger, Ethereum, privacy, permissioning, authentication

ICT
problem(s)
and related
functional-
ity(ies)

Bullet list of the ICT problem(s) that the technology solves and associated
functionalities.

¢ Distributed ledger

o Auditable data storage

o Persistent transaction history

o Permissioned and non-permissioned network
o Pseudo-anonymous user identity

¢ Smart contracts

o Turing-complete machine
o Immutable code (auditable and verifiable)

* Privacy

o Send cryptocurrency using private transactions
o Execute smart contracts using private transactions

7.6 Background Technologies 87

1 Technology

¢ Authentication

o JWT-based tokens
o Username and password
o JWT public key authentication

* Monitoring

o Visual representation of declining node or network performance
o Collection of log files to enable issue diagnosis

¢ Communications

o Full-nodes and miners using HTTP/WebSockets
o Encrypted communications for privacy (Orion) and signer (Eth-

Signer) using TLS
TRL Current technology readiness level of the technology:
e TRL 7 — system prototype demonstration in operational environment
Website https://www.hyperledger.org/projects/besu

Standards | BESU nodes are compatible with Ethereum public network. It supports different
consensus protocols: Proof of Work (Ethash) and Proof of Authority IBFT 2.0
and Clique).

The communications use HTTP and JSON-RPC protocols. Clients can be authen-
ticated using JWT.

Smart contracts are coded using Solidity.

e Solidity:

Solidity is an object-oriented, high-level language for implementing smart
contracts. Smart contracts are programs that govern the behaviour of accounts
within the Ethereum state. It is a curly-bracket language. It is designed to
target the Ethereum virtual machine (EVM).

Solidity is used to develop the smart contracts that are deployed on the
Ethereum blockchain.

e Hardhat:

Hardhat is a development environment for Ethereum software. It consists
of different components for compiling, debugging, and deploying smart
contracts, all of which work together to create a complete development
environment.

Hardhat has a plug-in for integration with ethers.js, which is a compact
library for interacting with the Ethereum blockchain.

88 Smart Contract Manager

e Swagger:

Swagger is a set of open-source rules and tools for developing RESTful
APIs. It simplifies the process of writing APIs by specifying the standards
and providing the tools required to write safe, performant, and scalable APIs.
Moreover, the Swagger framework allows developers to create interactive,
machine and human-readable API documentation.

8

iI3-MARKET Crypto Token and Data
Monetization

8.1 Objectives

The federation of independent data spaces/marketplaces further calls for a
highly secure, trusted, and cost-efficient payment solution.

At first a standard payment solution has been designed providing a proto-
col to exchange data with a non-repudiable and auditable accounting of data
transfers. This ensures transparent billing and support for conflict resolution.

This protocol is based on a cryptographic proof exchange between data
consumer and data provider and a final recording of this proof on the
blockchain as “notarization” on the data exchange.

Then a tokenization solution has been designed providing a crypto token
based on Ethereum standard ERC-1155 and the concept of “distributed trea-
sury”, which means that each data marketplace joining the federation could
exchange token for fiat money with a fixed value. The tokens minted by each
marketplace are “tagged” differently so that there is always a link between
the tokens and the issuer, which must provide the associated amount of fiat
money during a “clearing” phase between the data marketplaces.

This allows instant currency exchange among all the stakeholders partic-
ipating in the federation and also supports full audibility of all transactions.

However, until the landscape of cryptocurrencies and tokens is clarified,
with the EU Parliament vote on adopting MiCA(https://eur-lex.europa.e
u/legal-content/EN/TXT/?7uri=CELEX%3A52020PC0593) regulation,
which is expected to establish harmonized rules for crypto-assets at the EU
level, thereby providing legal certainty and guidance as to the usage of crypto
tokens, the i3-MARKET Alliance decided to only use tokens as a means for
distributing fees for the long-term sustainability of the system.

The choice to establish a new crypto token for real-time trading of data
assets between federated data spaces and marketplaces in the i3-MARKET

&9

 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0593)
 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0593)

90 i3-MARKET Crypto Token and Data Monetization

platform was made to overcome the boundaries of individual marketplaces
and build a trustworthy working environment, one of the keys to establishing
a single European data economy.

In particular, the problems solved by the adoption of the token as a
currency (like the use of the blockchain in our non-repudiable protocol) are:

e to exchange value in a peer-to-peer manner, without the need for
someone in between;

e to make sure that ownership is transferred and that information about the
exchange cannot be tampered with.

This is extremely disruptive for the market because information is decen-
tralized and the control is distributed among all network marketplaces, thus
avoiding the designation of an impartial central intermediary. Decentralized
communities provide certainty of identity, certainty of provenance and the
smart contracts, like the treasury smart contract designed here, and certainty
of execution (“if I pay with tokens, I get value in return”) in the network.

The main technical contributions are the design and development of an
ad-hoc blockchain-based non-repudiation protocol and the design of a crypto
token solution based on the concept of “distributed treasury” to allow and
trust the real-time trading of data assets among federated data spaces and
marketplaces.

The designed non-repudiable protocol, instead of relying on trusted third
parties for storing the non-repudiation evidence information, uses the Hyper-
ledger BESU blockchain deployed on the i3-MARKET nodes that preserve
both the proof of origin and proof of receipt of the parties involved. This
is to ensure two things: one is that the information sent cannot be denied,
for example, a DC has sent a message to a DP, so the DC cannot deny the
behaviour. The other is that the recipient of the information cannot be denied.
Similarly, DP has sent a message to DC, but DC cannot claim that it has
not received this message. In this sense, the blockchain guarantees both the
non-repudiation of information and the non-tampering of data by the parties
involved.

The tokenization component and the cryptographic token flow have been
designed to support all the different interactions between the subjects of 13-
MARKET, namely data marketplace, data provider, and data consumer. To
enable the trading of assets among the i3-MARKET network marketplaces,
a custom flow has been designed consisting of four different phases, which,
starting from the mint of the token from a data marketplace, allow it to be
used as a means of payment for data or fees and to trace the path up to the

return to the original marketplace, where it is burned. In particular, the use
of the token in these phases enables payments that are easy to make, reliable,
safe, and verifiable both within and between marketplaces and allows correct

8.2 Technical Requirements

management to differentiate the tokens issued by different marketplaces.

8.2 Technical Requirements

For the components of the data monetization subsystem, the following

requirements have been defined in the form of epics and user stories.

Standard payments:

Epics:

Name
Standard
payments

User stories:

Name
In advance
payment

A posteriori
payment

Non-
repudiation
Protocol

Description

Standard payments refer to payments for a specific
dataset or piece of data. Initially, it should support:
payment in advance — a posteriori payment. In
both cases, it should also support: pay per dataset
or specific piece of data — subscription (flat rate
within a specific set of conditions)

Description
As a data provider, I want to be paid in advance
for providing my data so that I can monetize them
immediately

As a data provider, I want to be paid a posteriori
for providing my data so that I can have more
consumers to subscribe my offering

As a data provider, I want to provide my data with
a Non-repudiation Protocol so that I can bill data
consumers based on reliable data exchanges

As a data consumer, I want to consume data with
a non-repudiation protocol so that I can contest
wrong billings

Labels

Epic data Consumer

Data provider
Data marketplace

Labels

User story

Data provider
Data consumer
Data marketplace

User story

Data marketplace
Data consumer
Data provider

User story
Data consumer
Data provider

92

i3-MARKET Crypto Token and Data Monetization

Tokenization:

Epics:
Name Description
Currency The federation of independent data
tokeniza- spaces/marketplaces further calls for a highly

tion

User stories:

Name
Provide
crypto
tokens
(exchange
in)

Payment
with
crypto
tokens

Withdraw
crypto
tokens
(exchange
out)

Clearing

secure, trusted, and cost-efficient payment
solution. Therefore, a suitable crypto currency
solution that allows instant currency exchange
among the participating data spaces/marketplaces
and also supports full audibility of all transactions
has to be provided

Description

As a data marketplace, I want to provide crypto
tokens to data consumer so that I will enable P2P
payments for data exchange

As a data consumer, I want to purchase crypto
tokens from a data marketplace so that I can
subscribe offering from other marketplaces in the
i13-MARKET network

As a data provider, I want to receive payment
with crypto tokens so that I can receive instant
payments

As a data provider/data owner, I want to receive
fiat currency from a data marketplace so that I can
monetize the crypto tokens received for providing
my data

As a data consumer, I want to receive fiat currency
from a data marketplace so that I can monetize my
crypto tokens if I leave the i3-MARKET network

As a data marketplace, I want to receive fiat cur-
rency for the tokens emitted by other data mar-
ketplaces so that I can monetize these tokens if [
leave the i3-MARKET network or with a specific
scheduling

Labels

Epic

Data marketplace
Data consumer
Data provider
Data owner

Labels

User story

Data marketplace
Data consumer

User story

Data marketplace
Data consumer
Data provider
Data owner

User story

Data marketplace
Data consumer
Data provider
Data owner

User story
Data marketplace

8.3 Solution Design/Blocks

8.3 Solution Design/Blocks

93

The following are the high-level capabilities provided by the data monetiza-

tion subsystem:

1. Standard payments: In advance or a posteriori payment for a specific

dataset or piece of data.

2. Tokenization: Creation of a crypto token solution for instant currency
exchange among the participating data spaces/marketplaces.
3. Pricing manager: Managing of i3-MARKET cost and price model.

From Figure 8.1, the data monetization subsystem block interacts with

following two building blocks:

— Data storage system: The data monetization subsystem uses the data

Storage system for recording crypto token transactions.

— Backplane system: The data monetization subsystem has been used from
the Backplane system for accounting and executing payment operations

for data purchases and tokenization operations.

— Data access system: The data monetization subsystem has been used
from the data access system for accounting and/or executing payments

for data exchanges.

Backplane APl Secure Data Access API
/)

i3Market Framework
Backplane System E Data Access System E
pm— Data Access § |
Subsytem %) Managemnt
Subsytem Trust, Security and Privacy System $:]
ssigiAM 2] Smart Wallet 3 |
: Subsytem
T’ Semantic Engine System
Data Storage System NG, {l Smart Contracts {l Data Monetization E
Semantic Subsytem Subsytem
Distributed Data 3 | P 4 Y
Storage g Metadata 3 |
Subsystem
Subsytem
Decentralized Data | semantic 3 |
Orchestration
Storage
Subsytem Subsystem
0

Figure 8.1 Backplane architecture.

See Figure 8.2 for the specific component diagram.

94 i3-MARKET Crypto Token and Data Monetization

Data Monetization $:I
Subsytem
Standard @ Pricing @
Payments Manager

Tokenization {]

Figure 8.2 Data monetization components.

The data monetization subsystem is in charge of providing ‘“‘standard
payments”, “pricing manager”, and “tokenization” capabilities.

Inside, we can find:

— component “standard payments” responsible for managing the pay-
ments, in advance or a posteriori, for a specific dataset or piece of
data;

— component “tokenization” responsible for the creation of a crypto token
for instant currency exchange and other tokenization operations among
the participating data spaces/marketplaces;

— component “pricing manager” responsible for managing the price and
the cost model.

8.4 Standard Payment

The Non-repudiation Protocol aims at preventing parties in a data exchange
from falsely denying having taken part in that exchange. The protocol flow
begins when a data consumer requests a block of data from the data provider.
See Figure 8.3 for details.

At first, the data provider has to generate a one-time symmetric secret
key (JWK) for a given JWA algorithm identifier; this secret is going to be
used to encrypt the data block required by the data consumer (Figure 8.4).
After the data encryption, the data provider builds a proof of origin JWT
object, containing information about the parties (source, destination, etc.),
the timestamp, the hash algorithm used, the hash of the block, the secret key,
and the encrypted cipherblock. See Figure 8.5 for more details.

8.4 Standard Payment 95

Consumer Provider
SDA API
| 1 EDA SDKI : Data Trapsfer Marager

LGET pata (147 <block 182) | 11 query a block of datz)

>

2. create random (high entropy) create ong-time secret
one-time symmetric JWK sacrat [
T
'

3. encrypt data block with secret T cipherblock=Enc, ., .(block)

using agreed encAlg (only AE modes]‘:l

of operation supported)
PoO=IW3_ 1.

iss: "o
proofTy
iat: <timestamp_now>,
exchangp: {
id: sqring
erig: gtrirng // Public key 2z 2 compact JWK of
the provider
dest: gtring Public key 2z 2 compact JWK of
the conzumer

| kaskAllg: string agread hask algorithm
encAlg: string // 2greed encryption algorithm
sigmiggAlg: string // 2greed JWS sigeing

' algorithm

| ledgerContractAddrass: string contract

' address

1 | 4 create proof of origin (PoOJH ledzerSizneraddress. sring | 2ddres: of the

between idsusd PoO and secret published on the
ladger
schema?: string an optional schema. In the

‘ future it gill be used to check the decrypted data
ciphefblockDgst: string // hash of the
cipherblogk im bazef4url witk ro padding
secrefCommitment: string // hash of the secret
that can Be used to decrvpt the block in basedsurl
! with no padding

)

i

Figure 8.3 NRP Phase 1 — consumer gets cipherblock and non-repudiable proof of origin.

This object is then signed with the private key of the data provider and
returned to the data consumer.

The data consumer, at this point (Figure 8.5), can validate the proof
received using the data provider public key. If the validation is successful, he
can store the proof in his local memory. After having completed these steps,
he generates another proof, the proof or receipt. This proof is generated as

96 i3-MARKET Crypto Token and Data Monetization

| |
I_I 5. return cipherblock (the consumer cmnmj

block, 200) decrytp it vet), and the PoQ

validate Po0Q

received cipherblock and

agreed exchange
: l
oEl J/ limvalid PaO]

‘terminate

| stora|Po0
o

: SDA SDK |

6. validate PoO ag2inst T

SDAAPI
: Data Transfer Manager

Figure 8.4 NRP Phase 1 Part 2.

13M NRP - step 2: consumer sends a Proof of Reception (PoR)

i3M Consumer i3M Provider
SDA APT
Consumer: SDA SDK : Data Transfer Manager
P0R=n‘rscﬂ ﬂl!ﬂ@l({

iss: 'dest’,
proofType: 'PoR’,
iat: <timestamp_now>,
peo: string, // The PoO a5 2 compact JWS.

1. create proof of
reception (PoR)

exchange: <the same exchange in the PoO>

L.

-alidate PYR
|2.validatePoR5 5“ {

3. store PoR.
The PoR is non-repudiable proof of store PoR.
the consumer being commited to get
the secret to decrypt the cipherblock

L

Consumer: SDA SDK SDA API
: Data Transfer Manager

Figure 8.5 NRP consumer sends PoR.

8.4 Standard Payment 97

another JWT object containing information about the parties (iss, sub, etc.),
the timestamp, the hash of the received proof of origin, and the hash algorithm
used.

The proof of receipt is then signed with the data consumer private key
and sent back to the data provider. Once proof of receipt is received, the data
provider can validate it using the data consumer public key; see Figure 8.6.

13M Consumer 13M Provider 13M Backplaze |

SDA AFI
Consumer: 3DA $DK - Datz Transfer Manager

1. Provider publishas sscrat on tha DLT.

The one-time secret that was us . .
it to the I cell s setregistry(exchangald, sacray)

The secret cae be queried wil
(provider address) 2nd exch

2mge in the RoO>
5 3 compact|JWS
of the sacrat

T 1% Hash
oR
-
3. Consumer gets the sacrat in the ?e?h
| opt / [=e respansc || fent reapemsc]
5 1 the PoP i r
uul\:\]nad the sac
Witk tha PoR, the consumer commited 1o gat
om the DLT even if the Po? was
d.
Too #Delay]
e LIREEEL BEETRTIRL D s J

|
b

4. The consumer verifies the secret

at|< PoO.iat + pooToeSec lay
cret) == PoQ.exchange. secretfommitment

] |

opt {seerst sue puwlivked in time || invalid szerse |
\terminzaie X

N

rblegk)

lock meets PoQ exchangp scheme

apt lbad dcceypriom | validaties failed] |
| terminats X
Consumer; SDA SDK sDaAM
- Data Transfer Manazer

Figure 8.6 NRP provider publishes the secret, and consumer decrypts the cipherblock.

The provider now publishes the one-time secret that was used to encrypt
the block on the i3M BESU blockchain. A proof of publication is then created

98 i3-MARKET Crypto Token and Data Monetization

but only to accelerate the process, since the actual proof of publication is the
secret published within the smart contract. The PoP is then sent to the data
consumer.

If the data consumer does not receive the proof and the key in a
predefined/agreed max timeout, he can retrieve them directly from the
blockchain. Once having received the proof of publication and the secret key,
the data consumer can validate the proof of publication with the auditable
accounting public key and verify that the hash of the key received is equal to
the hash of the key previously received in the proof of origin.

As the last step, if the verification is successful, he can decrypt the block
with the secret key and validate it with the hashed block included in the proof
of origin. If some validation or verification problems arise, the flow will enter
a conflict resolution phase.

8.5 Tokenization

The tokenization process and the components used to create and manage
a cryptographic token for instant currency exchange and other tokeniza-
tion operations among participating i3-MARKET actors are represented in
Figure 8.7.

i3-MARKET tokenization architecture:

Starting from the right of the architecture in Figure 8.21, to manage the
operational flows between the various data spaces/marketplaces involved in

TOKENIZER

e e e a e =

|
1
! '(Q? I
| -r SDERI : X e ,
: MARKETPLACE (* —————————— | ‘ PostgreSQL
! . BACKPLANE <+~~~ ¢ 1
|
|
1 |
d

Token

i
|
'y % operations + A :
i . management 2 —
i S e ' l[s—® |
AN [il
otl |
DATA PROVIDER ™. PRICING MANAGER | e | i
& =\ |pessseescccccccccoccog i i
DATA CONSUMER |~ AN \ i/ 1 ERCI1155 |
| WALLET S N Pricing management | S | |
\: @ = | and Cost management |
S 1
- !
TREASURY
13M ACTORS I3M INTERFACE MICROSERVICE SMART CONTRACT

Figure 8.7 Tokenization process.

8.5 Tokenization 99

currency exchange within the i3-MARKET platform, a specific i3-MARKET
treasury smart contract has been created. This smart contract contains and
maintains for each wallet the token balance of the data marketplaces, DP, DC,
and community members. More specifically, it is responsible for managing
the secure transfer of tokens between the parties and for tracking immutably
payments made in both tokens and fiat money.

To enable interaction with the treasury smart contract functionalities,
we have created two microservices, the tokenizer and the pricing manager.
The tokenizer allows the i3-MARKET actors to interact with the treasury
smart contract and keep track of all the marketplace operations, and the
pricing manager manages the data price and the fees. These two services
are integrated with the i3M Backplane and the SDK-RI to be used from an
i3-MARKET DM.

Treasury smart contract operations:

The most important features involving the tokenization operations are pre-
sented below; these have been implemented within the treasury contract,
which extends the ERC-1155 standard.

e Register a data marketplace:

To register a new data marketplace and its token type, a mapping to bond
the data marketplace addresses and the index identifier of the new token type
is required.

The function that inserts a new marketplace in the smart contract, incre-
ments an index variable and is added in the mapping of the marketplace
address as key and using a unit value as the identifier of the new token type.

contract I3-MARKETTreasury is ERC1155 {

uint public index = ©;
mapping(address => uint) public mpIndex;

constructor() public ERC1155("https://i3-MARKET.com/marketplace/{id}.json"){
}

/*
* add a new Data Marketplace in the platform
*/
function addMarketplace(address _mpAdd) external onlySameAdd(_mpAdd)
onlyNewMpAdd(_mpAdd) {
index += 1;
marketplaces.push(_mpAdd);
mpIndex[_mpAdd] = index;

100 i3-MARKET Crypto Token and Data Monetization

e Exchange in:

The exchange method must be called by a data marketplace, which issues
and transfers the right amount of tokens (of its token type) to the user who
pays in fiat money.

ERC1155 function:

_mint(address account, uint256 id, uint256 amount, bytes data)

e Fee payment:

The payment method should transfer the token fees, taken “arbitrarily”
from the token types available in the data consumer balance, to the data
provider.

The ERC1155 function used for the payment:

safeBatchTransferFrom(address from, address to,
uint256[] ids, uint256[] amounts, bytes data)

Example: Starting from the first token type in the balance loop until the
amount is covered.

function configurePayment(address from, uint256 amount) private view returns
(uint256[] memory ids, uint256[] memory amounts) {
uint256[] memory mpIds = new uint256[](index);
uint256[] memory mpTokens = new uint256[](index);
for (uint256 i = @; i < index && amount != @; ++i) {
uint256 mpBalance = super.balanceOf(from, i + 1);
if (mpBalance != 0) {
mpIds[i] = i + 1;
mpTokens[i] = getMarketplaceNeededTokens(mpBalance, amount);
amount = amount - mpTokens[i];
}

}
require(amount == @, "NOT ENOUGH TOKENS");

return (mpIds, mpTokens);

e Exchange out:

The exchange-out method should transfer the right amount of token,
taken “arbitrarily” (first the tokens belonging to the data marketplace in the
exchange out and once finished, the others) from the token types available in
the balance, from a community member to a data marketplace.

The ERC1155 function used for the exchange-out operation:

safeBatchTransferFrom(address from, address to,
uint256[] ids, uint256[] amounts, bytes data)

8.5 Tokenization 101

e (Clearing:

The clearing method should be called for every token type present in the
data marketplace balance, aside from the token type the data marketplace has
created.

The ERC1155 function used for the clearing operation:

safeTransferFrom(address from, address to,
uint256 id, uint256 amount, bytes data)

struct ClearingOperation{
string transferld;
address toAdd;
uint tokenAmount;

function clearing(ClearingOperation[] memory _clearingOps) external payable
onlyMp(msg.sender){

//clearing for each marketplace contained
for (uint i = @; i < _clearingOps.length; ++i){
isMarketplace(_clearingOps[i].toAdd,"ADD ISN'T A MP");
if(_clearingOps[i].tokenAmount > minimumClearingThreshold) {
super.safeTransferFrom(msg.sender, _clearingOps[i].toAdd,mpIndex[_clear
ingOps[i].toAdd], _clearingOps[i].tokenAmount, "@xe");

//create transaction with isPaid param to False as Fiat money payment
is not completed yet

txs[_clearingOps[i].transferId] =
TokenTransfer(_clearingOps[i].transferId, msg.sender, _clearingOps[i].toAdd,
_clearingOps[i].tokenAmount, false, "");

emit TokenTransferred(_clearingOps[i].transferId, "clearing",
msg.sender, _clearingOps[i].toAdd);

}

¢ Exchange-out and clearing strategy:

Since a marketplace has first to collect the fiat money from all the
DM involved in an exchange-out operation before transferring the money
requested, here we describe the suggested strategy that each marketplace
should implement in its code. Other strategies can be used in agreement with
the network marketplaces.

Requirements:

e Set a number variable X as the interval of days that a marketplace
collects exchange-out requests.

102 i3-MARKET Crypto Token and Data Monetization

e Set a numeric variable Z as the interval of days in which a marketplace
must wait for other marketplaces to pay in fiat money for the tokens sent
via clearing.

Strategy flow:
Marketplace ordered steps for the exchange-out operation:

1. Starting from the first day a marketplace starts operating, in the
first X days, the marketplace should collect all the exchange-out requests
from the users (community).

2. At the end of X days, the marketplace asks to exchange the tokens in its
balance that belong to other marketplaces.

3. Now the marketplace should wait for another Z days so that all the other
marketplaces can pay with fiat money the tokens sent with the clearing
operation.

4. Once the Z days have passed and the fiat money from the clearings are
collected, the marketplace can pay out the users that in the first X days
requested the exchange-out of tokens.

The marketplace can restart in parallel this flow and collect another round
of exchange-out requests at the end of point 2.

Tracking of token transfers (exchange out, clearing):

The token payment process involves storing in the blockchain the history
of the transactions made once the token transfer is completed.

We want to save the transfer operation in a mapping of structs, where the
key identifier is a unique value generated outside.

// object that stores the token transfer information
struct TokenTransfer ({
uint transferId;
address fromAddress;
address toAddress;
uint tokenAmount;
bool isPaid; //True if the fiat money payment has been completed
//False if only the token transfer is completed
string transferCode;

}

//mapping to track all the token transfer transactions
mapping (uint => TokenTransfer) public transactions;

Tokenizer service:

The main purpose of the tokenizer service is to allow the i3-MARKET actors
(i.e., marketplace, data provider, and data consumer) to call the i3-MARKET

8.5 Tokenization 103

treasury smart contract methods and interact with the i3-MARKET token
flow; see Figure 8.8. The tokenizer is a Node.js backend service with a local
Postgres database to persist the marketplace token activities.

TOKENIZER TREASURY
Fesssssssssssssssssesd SMART CONTRACT
| I e
! 1 !
i) i |
: X : Y 3 :

I | —
| I 7
: o . 520 |
I (o1 |
I PostgreSQL | i
| d e 11 | !
1| nege i i
| ® | | ERC1155 |
| | BACKEND DATABASE | | l-——————-- !
I |
DM MICROSERVICE BLOCKCHAIN

Figure 8.8 Tokenizer architecture.

Each data marketplace needs an instance of the tokenizer and a dedicated
local database. The tokenizer tracks the status of transactions made by a
marketplace on the treasury smart contract using blockchain events, while the
full history of each transaction is stored in the local database for verification
and error prevention.

To deploy a transaction on the i3M BESU blockchain, the transaction
should be first signed with the i3-MARKET Wallet. The tokenizer post
operations create a transaction object that must be signed and then deployed
separately using the flow presented below.

1. The first step is to create a new raw transaction using one of the
post operations available (i.e., exchangeln, exchangeOut, clearing, fee-
payment, etc.). After a successful transaction, the payload of the
response will be a transaction object like this one:

transferId”:"68aaB652-6457-5786-81cb-2ee2cc986aab’
transactionObject”:{
"nonce” :12,
"gasLimit" :12566060,
"gasPrice"” :284695,
"to":"Bx3663f8622526ecB82aE571e4265DAd6967dd74266"
"from"” :"Bx56cOF1E9ACF797A3C12a749634224368ebC1f59A",
"data” : "8x9089776870006000600000600000000000000000BD0OEDBOGETE000A18943!

104 i3-MARKET Crypto Token and Data Monetization

With this operation, the marketplace tokenizer service saves in its
database the operation with the operation_name (i.e., exchangeln,
exchangeOut, clearingln, clearingOut, fee-payment, etc.) with sta-
tus UNSIGNED-OPERATION, the address of the user involved, the date,
and a unique transferID to get this operation at a later time:

TRANSFERID OPERATION STATUS USER DATE
1111 operation_name unsigned_operation address date

2. Now the raw transaction has to be signed with the i3M wallet. Only
the fields contained in the “transactionObject” are used for the signing
transaction operation. Below is the object to be signed:

"nonce” :12
"gasLimit” :125808660
"ga ice" :284695,

"to" :"@x366318622526ecB82aE571e42650Ad6967dd74268" ,
"from”:"Bx58cBF1E9ACF797A3¢c12a749634224368ebC1 594"

"data”:"@8x9897708876006600000006600000006600000000600000008870660a1894332.

3. The next step is to deploy the signed transaction. Once the market-
place gets the signed raw transaction, it can call the deployment end-
point of the tokenization service /treasury/transactions/deploy-signed-
transaction. The response of the request should be a long transaction
object with information about the transaction.

4. When the operation deployment is successful, the marketplace tokenizer
service updates in its database the previous operation with status open.

TRANSFERID OPERATION STATUS USER DATE
1111 operation_name open address Later-date

Pricing manager service:

Pricing manager is a Java microservice to configure and evaluate the price
and the cost of data; see Figure 8.9. The microservice uses the i3-MARKET
BESU blockchain and an in-memory database to persist data.

8.6 Diagrams 105

|
: 1
|
| : |
| | |
: | :
| L BACKEND ! 08—
| —l 1|2=@ |
101 i l
: NS : ol _J| |
! | |
| ' |
|
|

PRICING MANAGER TREASURY
s st v o sk ok s 7 SMART CONTRACT
| ________
| i
. |
&) spring i AT
|

o000
IN-MEMORY DB

Figure 8.9 Pricing manager architecture.
The service APIs are logically divided into two subsets.

Pricing management:

This service allows to calculate the price of some data based on a preconfig-
ured formula. The service, through the exposed APIs, allows you to manage
the formula and customize the parameters and constants.

The formula and the constant values are stored in an in-memory database
inside the service, as every marketplace can have a customized formula if
needed.

Currently, in the i3-MARKET platform, all the data marketplaces will use
the formula provided by AUEB.

Cost management:

This service can be used to calculate the fee of some data, which depends
on the price of the data and the percentage of the fee. The fee percentage is
stored in the blockchain and more specifically in the treasury smart contract.

8.6 Diagrams

The following diagrams describe the processes involving the components of
the data monetization subsystem.

These requirements have been collected using the Trello Boards system
taking into account functional use cases and general requirement reported by
partners, stakeholders, big companies, and SMEs.

Standard payment:

A Non-repudiable Protocol is used for accounting data transfers. Based on
the accounted data exchanges and smart contract information about data
consumer (company name, VAT, billing address, etc.) and pricing, the data
provider will invoice the data consumer; see Figure 8.5. The payment will be
done using standard bank payment methods.

106 i3-MARKET Crypto Token and Data Monetization

e Accounting:

The Non-repudiation Protocol aims at preventing parties in a data
exchange from falsely denying having taken part in that exchange. To ensure
the traceability of data exchanges and manage conflicts, the proof of origin of
the data provider and the proof of receipt of the data consumer are stored in
the immutable ledger; see Figure 8.10.

i3-MARKET non-repudiation protocol
130 Comsumer i3M[Provider i3M Backplane

SDAAPI
Consumer: SDA SDK Data Transfer Manager i3-MARKETDLT

! /
=S tep 1: comsumer gets cipherblock and non-repudiable Proof of Origin (Po0) [r———

I I
(id7: <block id>} [query a block of dara™)

GET dara

2. create random (high entropy) - create ong-time secret
one-time symmetric TWK sacret

3. encrypt data block with secret
using agreed sncAlg (only AE modes
of operation supported)

cipherblock=Enc . _{block)
]

r . Creste sighed PoO
4. create proof of origin -'PoO';\ e ep @

{ cipherplock. Po0 } |

5. zeturn cipherblock (the consumer cannot -
gt

7| decrytp it yet), and the PoO

- 1 '
o0 | 6. validate PoO against m:
received cipharblock and |,

l‘_ agreed exchange H

store PoO|

validate

7. store PQDB

Figure 8.10 NRP Part 1.

In the first step of the protocol, shown in Figure 8.11, a block of data
is requested from the data consumer to the data provider. The data provider
encrypts the requested block, creates the proof of origin, and returns this proof
to the consumer with the encrypted block. At this point, the data consumer
validates the proof of origin received from the data provider, stores the proof
in its local memory, and creates the proof of receipt.

In the second step, the data consumer sends the proof to the data provider;
see Figure 8.11. The data provider validates the proof of receipt and stores
it in local storage. As a third step, the provider publishes the secret on the
blockchain and sends the proof of publication to the data consumer.

The data consumer can obtain the proof of publication and the crypto-
graphic key directly from the data provider or from the blockchain if this is
not received within a maximum time; see Figures 8.12 and 8.13. The data
consumer then checks that the key is received, that the PoP is valid, and that

8.6 Diagrams 107

{step 2: consumer semds a Proof of Reception (PoR) |

H :
' '
! Create signed PoR | 8. create proof of |
D:I reception (PoR} '
I
'
:
validate P
& validars or)| o TE
10. store PoR.

The PoR is non-repudiable proof of store PoR |
the consumer being commited to get
the secret to decrypt the cipherblock

T T

Figure 8.11 NRP Part 2.

=

the key hash is the same as the key commitment parameter included within the
PoO. At this point, the data consumer decrypts and validates the previously
received cipherblock.

=% step 3: provider publizhes the secret, and consumer decrypts the cipherbleck I'==
|
[I

11, Provider publishes secret on the DLT. B
The one-time secret that was used to sncrypt call sc saqragistry(axchangeld, dacrar)
ths block 15 published to the DLT using the = = =
non-repudiation smart contract.

[|
12. Provider creates the PobP.
A proof of publication {"PoP") is created,
but oaly to accelarate the process, since
the actual PoP is the secret publizshed Create sigged PoP
with the smart contract. In any case,
receiving the PoP is likely faster than
waiting for the zacret to be published on
the DLT.

i 12, Consumer gats the secret in the Pnl’%
I
T T

B

T GREEEETE R

BoP

Figure 8.12 NRP Step 3 Part 1.

il 1 1 L 1 1

I
oE! s [2e respemie || lest respamie]
:anP

1| 13.5. T the PoP is mot received, the consumer
downloads the secret from the DLT.

With the PoR., the consumar commited to get
the secret from the DLT even if the PoP was
Bot received.

In amy caze, there is a predefined agreed
max timeout pooToSecretDelay to wait

for the s eerateo be svalaible ex the DLT

| getdecrat \'ix:halie.1Q¢i¢!$\Il!Ir\dﬂIL 5, exchamge.id)

tverify thir hash(secrer) 3= l
1 Po0. exchapge secrarCommittent | 14. The consumer verifies the ;qquﬁ

:d!:)‘}'pt cipherblock with pecret. |
| decrypredBlock=Dec (clpherblock) |13 The consumer decrvpts the cipherblock. 1)
i

[comsumer: 504 DX | DA APT
: Data Transfer Manager

13-MARKET DLT

Figure 8.13 NRP Step 3 Part 2.

108 i3-MARKET Crypto Token and Data Monetization

¢ Invoice management:

In this process, the data provider retrieves from the Backplane the
information (based on the accounted data exchanges and the smart contract
agreement) to produce the invoices for the data consumers.

Data consumers could check the invoices verifying the accounted infor-
mation and pay the invoices with standard payment methods; see Figure 8.14.

Figure 8.14 Invoicing process.

Tokenization:

An i3-MARKET crypto token has been created customizing Ethereum ERC-
1155 standard. The treasury smart contract contains and maintains the
different balances for each data marketplace and user in the i3-MARKET
network. When a data consumer obtains tokens from a data marketplace
paying fiat money (exchange in), both the total balance of data consumer
wallet and the specific data marketplace balance will be increased.

8.6 Diagrams 109

During the payment for data phase between a data consumer and a data
provider, the data consumer can pay the data price in fiat money or in
tokens to the data provider. In addition to the data price payment, the data
consumer will pay some fees in tokens to the i3M community, the provider
data marketplace, and the consumer data marketplace; see Figure 8.15.

A community member (or a DP if we enable data price payments in
tokens) will be able to ask fiat money for his token balance from any of the
network DM (exchange out) and the amount of token will be transferred from
the total balance of community member wallet to the balance of DM wallet;
the community member can pay with tokens belonging to the DM with which
it is doing the operation or with tokens belonging to other DMs.

Finally, a DM will be able to ask for the clearing of tokens distributed
by the other DMs (clearing) — Figure 8.15. For each specific DM balance of
the requesting DM wallet, a clearing request will be created, and all the DMs
involved will be notified and should pay fiat money to the requesting DM
and confirm clearing execution. On clearing confirmation, the tokens will be
transferred from requesting DM wallet to clearing DM wallet (requesting DM
already approved the transfer during the clearing request) in Figure 8.16.

'ﬂ/. Exchange IN

aurg

-~ token
Pa},l:rlnam o n
— eurg token -
data price COTmmunty G]ea:ring
fee
auro
Data —_— Data
: Community
- token
% Exchange OUT

Figure 8.15 Tokenization model.

¢ Exchange in:

In the exchange in phase, the user requests a specific amount of tokens
from a data marketplace, which, upon receiving the payment in fiat money
from the user, returns the tokens in the amount requested as depicted in
Figure 8.16.

i3-MARKET Crypto Token and Data Monetization

110

SUBHO] B4 N
UM SSHIPPE SIEIISHIEWN BU1 O
SIUSIBJEI B WIEIUEW 0 SIGE UEH0]
-3 wojsnd e 51 unssdu) e

H H
e e . T o
................... Wy H
iz : 1 H
; i i
| | H
UEHC] JRISURY PUR RUSAR UIYSED W3 | | H
| | H
(s52.1ppIagem SL : : ' H
H | [ssuppyieem ‘UeRoLwnu] Uysey L50d "] H
H i ' S5IUDDE 1SITM JHUNGUOT) TID0 0 DUSE DUE SSRIDDE SRR UBM SUSHD] HE3 |
H H : : ! H
1Bl [enUspYUos| | ; ; UONEINUBUING WZW dPINE! ﬂ suwey _ i i
SE uIID BdediaEEled Byl woy| H : : H H
Aiua paued 8q pinod ide uiyses| & ' ! : ; H
: ! ! ! ! :
H ' | H T T T =i
: ; ! ! UOQELLIOHLE JUsuied Pasu) H

" i !]
m _ “ H udiEweg juRwhed Eanbas]
H H i i i H
: : ! i ! H

H : i Aemalet juawied of Jaipal ;

H H H \ H

H H 1 ! H

i “ m : v Su29l Wig! an doy

i i i ; i i
h i H .
: i g
H H H H

: : ey i
DS-IE! JEzIuEAaL - JjUII-IBEN Was suejdyieg _ ady i _ — dde jaiem: 4
_ fnseall WEl 7 7 IdV sueldizel |gy sueidpeg aoe|djaxiely e1eq

wo) P ?Lcuﬁlﬁtﬁa R

e

_ (30 + RO 3p03 USNEMIUSUINY) 5823y

¥ 2010 ﬂ awey

T H

Rwnsues eeg se ubo)

Figure 8.16 Exchange in process.

8.6 Diagrams 111

As shown in the flow above, when the fiat money payment is received
by the data marketplace, it authenticates with the Backplane so that it can
call the “exchange in” method of the treasury smart contract; see Figure 8.17.
The smart contract mints the tokens directly into the address of the user who
requested the tokens; see Figure 8.17.

e Payment:

In the payment phase, first, the user logs in as data consumer and then
can start a data exchange. As a first step, the data consumer makes a first

er_id, conivact idrasa)

OIDE AuthorizaBon Access (Authentication ode grast + PKCE)
e
e

Data Consumner
o
Ay

Figure 8.17 Payment process.

112 i3-MARKET Crypto Token and Data Monetization

transaction in the blockchain in which he inserts tokens on deposit and,
therefore, commits himself to the data provider by offering a guarantee
(monetary security). When the data exchange is concluded, the right amount
of tokens are taken from the data consumer deposit and moved to the data
provider balance; see Figure 8.18.

¢ Exchange out:

foallelACGrecss (5 v Data MAKGIDIAcE walkl

Smart Contract
IM Treasury

e

ckplane AP
Tokarizer

[E.a'. :.

code grant + PKCE)

POST ieashout {signedTrass acticn]
ot

Backplare SDK

l

?s:v o user 1BAN

Access
conate cameul tesemat

Chent Agp

Dats Marketplace

oInc
cashent raguent

{ et

rehun
s 1M dokesy

Iogn 3 Data Consumen, Dalia Provides, Diata wmer

ame) i
:‘a_v)
e

b =) |

Figure 8.18 Exchange out process.

8.6 Diagrams 113

In the exchange out phase, the data provider after the login with the
data marketplace can start the withdrawal of the i3-MARKET tokens in his
balance sheet (Figure 8.19). At first, he confirms the cash-out operation via
his wallet application that calls the “exchange out” method in the treasury
smart contract. If the operation is successful, the smart contract saves the
information regarding the token transaction. At this point, the data mar-
ketplace proceeds with the payment in fiat money to the user IBAN and
publishes the transaction identifier (TRN) in the blockchain to securely store
the transaction in case of future conflicts.

e Clearing request:

» coce grant +

[Authentication

OIDC Authigzation Access
-

Figure 8.19 Clearing request process.

114 i3-MARKET Crypto Token and Data Monetization

During the clearing phase, the data marketplace that wants to leave the
i13-MARKET network should return the tokens in its balance to the corre-
sponding data marketplace owners — see Figure 8.20. The clearing method
should be called for every token type present in the data marketplace balance
aside from the token type the data marketplace has created.

o Clearing execution:

i

from requesting DM wale!

]

ab MAT0a Change Clear
ding paymentid and trans

Smart Contract
i3M Treasury

evecuteCisarngRequest

Backplane API
Tokenizer

|

[
o
E
-+
-
g
&
;
£
g
i
L&
3
i
g
g
E:

Fpiane AFT
User-cantric
Aufmgrtcation
GET iearings
reburn
POST clearing idjiexecute {paymentld, smcunt)
et

ey
Backplane SO

et ciearing request !
retun
et

o chearng

Client App
SET o Data Marketpiace IBAN
[

Data Marketplace

allet app |
legin oy Data Mastatglacs admn

R R -
QInc

reteve eanng requests
returm

Figure 8.20 Clearing execution process.

8.7 Interfaces 115

In the clearing execution phase, the data marketplaces that receive a
clearing request from a data marketplace must pay the corresponding value
in fiat money of the tokens received.

8.7 Interfaces

The interfaces of the library of the Non-repudiation Protocol for standard
payment of the treasury smart contract for tokenization and pricing manager
microservices are presented below — see Figures 8.21 and 8.22.

Tokenization:

Marketplace management wa ~
S /wisvirtressury/marketplaces Fagiwr a makassince v o
S /2011 itreasury/marketplaces/ {address] Getthe ndex ofa mgitered marketptace v @
Operations Fayment mangement 471 for the negration of Masketplaces -~
BESEl /wisvifoperations Getis of cpermsons v o
S /20i/viroperations jexchangs _in Ratseve the vansscson timct 1 pasoem exchangai v o
m Jfapifvifoperations/exchange-out Fsrew e Tansaction object io perform a exchangeCut v o
IEEEll /owisvisoperations/clearing Fsveve te saesaction obect i siar e Martersiace cewing operation v o
B /20iivasoperations/set-paid Senwa ihe payman ransacin stjses v @
ISl /017 v1/operations /fee-payment Generste the s payment ransactin object v
Balances &
EEIl /eoisvistreasury/balances,/{address) Getthe Baiance fora soechc scooust v o
Transfers =
Sl /01 /treasury/ token-transfers/ {transferTd} Geithe Toi Transhe ghan a Transterd ~
Transactions)
Il /201 itreasury/ transact ions/deploy-signed-transaction Desioya sgned sansaston ~ @
BESEl /wisvastreasury/transactions/{transactionkash] Ges fe Recst: of a vansacion gven a Transaciona v
Community management ~
m Japifviftreasury/ commnity-wallet Aberfe communiy walet addwss and the related communicy fee v m

Figure 8.21 Tokenization API.

116 i3-MARKET Crypto Token and Data Monetization

Pricing manager:

price-controller ~

cost-controller ~

Figure 8.22 Pricing manager APL

8.8 Background Technologies

To implement the solution for tokenization, the ERC-1155 multi-token
standard has been chosen and customized.

The ERC-1155 standard was used to implement the i3-MARKET treasury
contract, which outlines a smart contract interface that can represent any
number of fungible and non-fungible token types. More specifically, the
ERC-1155 multi-token standard allows each token ID to represent a new
configurable token type, which can have its own metadata, supply, and other
attributes.

Adapted to our solution, this token standard has been used to collect the
token for the different marketplaces that adhere to the platform, where a new
fungible token has to be created for every new marketplace that joins the
consortium. This solution allows us to track at any time which token type
and therefore which marketplace the tokens in the balance sheet for any
participant in the network belong to.

This is particularly important because, for example, during a clearing
operation, a marketplace should know to which different marketplaces its
tokens in the balance sheet belong; therefore, it can send to each one the
right amount of tokens to be converted and returned in fiat money.

It is also important to underline the advantages that the 1155 standard
brings because in token standards like ERC-20 and ERC-721, a new separate

8.8 Background Technologies 117

contract has to be deployed for each token type or collection. This places
a lot of redundant bytecodes on the Ethereum blockchain and limits certain
functionalities by the nature of separating each token contract into its own
permissioned address. With this new design, it is possible to transfer multiple
token types at once, saving on transaction costs and removing the need to
“approve” individual token contracts separately.

9

iI3-MARKET Semantic Model Repository and
Community

The results are shared not only with project partners but also with stakehold-
ers and community in open-source repositories. As part of open-source assets,
the data models, documentations, and files used in the i3-MARKET project
are made available, such as the following:

* The i3-MARKET data pack is the set of files, schemas, and metadata
model diagrams that represent the way the i3-MARKET semantics is
organized and structured; it also contains the metadata in two different
formats, e.g., ttl and Jason-1d. owl.

* The i3-MARKET semantic model info is the documentation that
describes in detail all the taxonomies and vocabularies from needed
domains used in i3-MARKET and that describes and represents all
the relationships between them to build the graph representation of
the i3-MARKET semantic model.

* The support repo is the mechanism for how the data model is maintained

following the interoperability requirements in i3-MARKET. If you want

to contribute or have any suggestion for improving the semantic models,
visit the open-source repositories and contact authors and members.

The model files are shared in i3-MARKET GitHub/Gitlab repositories

with release versions where each section contains the online machine-

readable files in OWL and other formats for online accessibility. The
files are maintained and updated regularly to keep the latest version of
the model files up to date.

The code as well the models and vocabularies are available open-source
via the establishment of the i3-MARKET spaces on Gitlab available at:
https://gitlab.com/i3-MARKET-V3-public-repository/ and GitHub available
at: https://github.com/i3-MARKET-V3-public-repository/.

119

120 i3-MARKET Semantic Model Repository and Community

i3-MARKET semantic model governance process, which is defined as
the support and evaluation process to include semantic improvements, is as
follows:

* Request for changes or updates: Identify any changes prior to a major
release, which should be considered private and usually is on testing and
pre-consensus/staging.

* The evaluation of any type of update request: A review from edi-
tors and community, approves participation, and updates. In particular
terms, vocabularies, ontologies or initiate a model extension in the
i3-MARKET OSS project.

* The communication of the results from technical experts: A tagging
version using alpha, beta, and gamma versions and then tagged as major
is used here.

» Evaluation of contributions for new commits: Technical experts, PM,
TM, TPMs, WPLs, and TaskLs assess and evaluate the contribution,
including documentation at the initiated project in i3-MARKET OSS.

* Reports and changes report: The technical board issues a short report,
explaining the rational on the rejection in exceptional cases; this step can
include rejecting/cancelling project participation.

It is possible to find a more complete definition of the attributes used in
the data offering description schema template as used in the semantic engine
API in Appendix A.

9.1 Semantic Engine (SEED)

The semantic engine and framework solution is available and integrated
into the i3-MARKET Backplane. Another concept is the metadata semantic
registry stored in a registry database (like MongoDB). With this feature, the
Backplane can rely on the metadata registry storage capacity to collect the
semantic information about the assets and information for the marketplaces
and stakeholders that can be created, searched, retrieved, and manipulated for
external and internal operations.

Semantic engine framework:

From an operational perspective, i3-MARKET envisages semantic engine
components (e.g., SEED) to manage query mechanisms on top of the
registry catalogues, including complex discovery and retrieve checks that

9.2 Technical Requirements 121

make sure, e.g., that the necessary information is retrieved by the actors
and services. Also very important are the functionalities related to the
creation and registration of the data offering descriptions and the management
of local and federated registries. The data offerings can be shared by
providers/marketplaces in the i3-MARKET network and the engine can
search, discover, and retrieve the data offerings, which are authorized, from
all the nodes/marketplaces.

The engine also has functionalities and interfaces that are used in
conjunction with other Backplane components/systems to compile and fill
information and details for the functionalities, for example, for notification
manager, smart contract manager, data access & transfer, and BESU.

Semantic engine and metadata framework:

Data offering creation

Data offering discovery

Data offering registry

Federated discovery on different instances

Management of data sharing agreement and service agreement parame-
ters to comply with contract manager operations

f. Alignment with entities and IDs in Backplane information models

o R0 o

We developed and implemented dedicated software components for
semantic engine system as SEED, which is in charge of managing the
semantic metadata, descriptions, queries, discoveries, retrieving, creating,
and mapping descriptions and manipulating registries, federated queries, and
component interactions and interfaces. To make easier the interface and use
of functionalities, we present the external operations via APIs that are more
agnostic and easier to use also for non-semantic experts.

9.2 Technical Requirements

For the semantic storage, the following high-level capabilities have been
defined:

1. Semantic metadata management:
The semantic engine (SEED) relies on a local MongoDb and
Hyperledger-BESU. All the information, for instance, data provider,
data offerings, consumer, and querying offering, are stored as semantic
data.

122

Metadata
storage
(MongoDb)

i3-MARKET Semantic Model Repository and Community

Description
The registry storage (MongoDDb) is responsible
to store semantic data and process the queries.
The storage should provide either the REST
endpoint or client connector so that other com-
ponents can access to the data

Labels
Epic

Spatial and
text data
storage

To support spatial and full-text search queries,
the semantic data manager should be able to
index spatial and full-text data

Save seman-
tic data

Description
As a subject, I want to save my semantic meta-
data so that I can query and update it later
Subject: Data Consumer, Data Provider

Labels
Epic

2. Offering registration:
The semantic engine exposes APIs to register, query, and update offer-
ing. A data provider can regist er offering, for instance, datasets and the
price for data, etc.

Offering
registration

Description
Offering registration is a component that
allows the user to manage their data offer-
ing. More specifically, it provides the follow-
ing functionalities: Register the data offering
— Retrieve all the offerings — Update/delete
offerings — Subscribe to an offering

Labels
Epic

3. Offering discovery:
The semantic engine exposes APIs to query the existing offerings in
i3-MARKET Backplane. A data consumer can query datasets, prices
for any dataset, offering, etc.

Name
Offering
discovery

9.2 Technical Requirements

Description

Offering discovery is a component that allows
the data consumers to search the offering data
available on the marketplace. The data con-
sumer has to specify the characteristics of the
data they are looking for. The offering discov-
ery module will then process the data request
and returns a list of available offering data
that meet their requirements. More specifically,
the offering discovery should provide the fol-
lowing functionalities: Register the consumer
data request — Retrieve all the data request
of a consumer — Process a data request —
Update/delete a data request — Subscribe to a
data request

4. Vocabulary management:

Vocabulary
manage-
ment:
Semantic
model man-
agement

Description
Vocabulary management is a component that
is used to manage the i3-MARKET seman-
tic data model. More specifically, the vocabu-
lary management should provide the following
functionalities: View and search the concepts
of i3-MARKET — Allow the user to propose
a new concept — Allow the administrator to
add a new concept — Allow the administrator
to update/delete an existing concept

Backlog release — features:

Semantic
data
manager:
registry
storage

Description
The registry/semantic storage is responsi-
ble for storing semantic data and processing
the queries. The storage should provide
either the REST endpoint or client connec-
tor so that other components can access the
data

123

Labels
Epic

Labels
Semantic
Data
Storage
Offerings

124 i3-MARKET Semantic Model Repository and Community

Features:

Description Labels
Save seman- | As a subject, I want to save my semantic | D559 11047
tic data metadata so that I can query and update it

later
Subject: Data Consumer, Data Provider

Description Labels
Define a | Asadata provider, [want to create a seman- | L5917 0
semantic tic description of my offering data so that I
description | can register it to i3-MARKET. It would be
template desirable that the semantic engine should
provide a semantic description template so
that the data provider can easily fill in to
register the offering data

9.3 Solution Design/Blocks

Figure 9.1 shows the final version, which is defined as:

— Components and functionalities of semantic engine and framework
— New versions of i3-MARKET semantic models

Backplane AFI Secure Data Access APl
.
i3Market Framework E
Backplane System E Data Access System E

Gatoway $:| Data Access gj
Managemnt
Subsytem I .
Subsytem Trust, Security and Privacy System E
SSIZIAM $:| Smart Wallet $j
T) Subsytem Subsytem

Semantic Engine System E

Data Storage System Smart Contracts E Data Monetization $j
Semantic Subsytem Subsytem
Distributed Data 3 | - Ve Yt
lorage
Storage i Metadata $:|
Subsystem
Subsytem
Decentralized Data 3 | Semantic |
Storage Orchestration
Subsytem Subsystem
L O)

Figure 9.1 High-level Backplane block diagram.

9.4 Building Block High-level Picture 125

— Semantic vocabulary management environments

Figure 9.1 shows that we use BESU SEED-INDEX library in order to
retrieve all registered nodes addressed in the network and hence enabling the
federated query search.

BESU-HYPERLEDGER

BACKPLANE SEMANTIC-ENGINE MongoDB

Figure 9.2 High-level Backplane block diagram.

9.4 Building Block High-level Picture

The specific component diagrams are shown in Figures 9.3-9.6.

Semantic Engine System E
Semantic Data Storage E Metadata Management Subsystem E
Semantic E Vocabulary E
Querying E Mapping Management

Offering Discovery E

Offering Registration E

Semantic Orchestrator E

Figure 9.3 High-level operations of the semantic engine system.

For the semantic subsystems in charge of dealing with “semantic data
management”, we can highlight the following parts:

126 i3-MARKET Semantic Model Repository and Community

SSI & IAM SubSystems
dataMarketPlace(s)

User Centric
Authentication

Backplane AP| Gateway Data Transfer-Access APl

1

]
Service-Centric L
Authentication

Creation — registration, search,
discovery and retrieve
Of Data Offerings

SEMANTIC ¥ ¥ _____
ENGINE & - o o ot i
META-DATA |iiesomteasr o 23

REGISTRY

S

Sharing of “Index” for connection
details to make federated queries on
different registries in other nodes

13-Market (sub-JSystems

Create, search, discovery and retrieve . .
- o N Create, seajih, discovery and retrieve
f Data D'f=rflngs from 1 (ocal) registries andfor Of Data Offefligs from 1 (loca) regisries
or all nodes registered and/or il all nodes registered

Create, search, discovery and retrieve
Of Data Offerings from 1 (local)
registries and/or for all nodes
registered

Aceess other Access other | Metadata Registry - Storage SubS

Engines/Nodes - < Engines/Nodes Database - MongoDB
for federated query for federated query (Registry cmmr‘m

" Semantics System

Semantics System J

»

-

Access/Sharing of “Index” for connection details
tomake federated queries on different registries.
in other registered nodes

Access/Sharing of “Index” for connection details
to make federated queries on different registries
in other registered nodes

Figure 9.5 Main operations and interactions for the federated functionalities of the semantic
engine system.

— Semantic data storage: This component on receiving JSON pushes
the data to MongoDb database. MongoDb is a NoSql document-based
database.

9.5 Diagrams 127

— Semantic mapping: This component does semantic mappings and trans-
forms data received from API endpoints.

— Vocabulary management: This environment keeps and manages all of
the vocabularies, defined as i3-MARKET semantic model, used in dif-
ferent operations of the semantic engine. The i3-MARKET Semantic
Model is available using the GitHub and Gitlab repositories where
the models/files are stored, shared, managed, and described, and the
documentations is available in the developer portal.

— Offering registration: This component is basically REST APIs exposed
as endpoints. Semantic engine exposes different endpoints for offering
registration. Examples are:

o register data provider;

o register data offering of a data provider;
o update data offerings;

o deleting a data offering;

o query existing offerings, etc.

— Offering discovery: This component is basically REST APIs exposed
as endpoints. Semantic engine exposes different endpoints for offering
discoveries and retrieving. Examples are:

o retrieve a list of data offerings;

o discover data offerings by providers;

o discover data offerings by parameters;

o discover data offerings by category;

o discover data offerings by active state;

o discover data offerings by shared state;

o discover data offerings by text;

o discover data offerings by keywords/text;

o discover data offerings in federated search by category;

o discover data offerings in federated search by active state;
o discover data offerings in federated search by shared state;
o discover data offerings in federated search by text;

o discover data offerings in federated search by category;

o search for particular metadata, etc.

Figure 9.6 shows a detailed landscape of the current set of microservices
(cubes), APT’s (little yellow rectangles), components (blue rectangles), and
storages (white rectangles) on i3-MARKET.

128 i3-MARKET Semantic Model Repository and Community

2 Auditable
Accounting
Registry DB
DSA/SLA
DB .
C

Revokation
Registry
L] o
' Verifiable|
Credentials

DataOffering
Registry DB

0IDC Providef Backplane
APL
e
Semantic
System

Data Access L N;:ﬁ:“:r" =
System 9
AASC: AuditableAccounting Smart Contract
RRSC: Revocation Registry Smart Contract D
TSC: Treasury Smart Contract

AMSC: Agreement Manager Smart Contract

__ Distributed

Storage

Distributed
DB
E

Figure 9.6 i3-MARKET services layout.

9.5 Diagrams
Data offering registration:

The diagram in Figure 9.7 shows that a data provider first must have
to authenticate with i3-MARKET Backplane through a gateway. Once a
provider is successfully authenticated, the provider can see all the APIs
exposed by the semantic engine — called (SEED) — in the Backplane swagger
interface. A provider can register an offering using registration endpoint
using the template for data offering description. The Backplane internally
communicates with SEED and dispatches create request to it. The engine,
on receiving requests from Backplane, maps the incoming data into RDF
according to the semantic data model and stores data into local registry
catalogue database and sends back the response to the Backplane that offering
is registered. The Backplane notifies the client/provider that offering has been
successfully registered as represented in Figure 9.7.

Data offering discovery/deletion/update sequence diagram:

When a data provider interacts with i3-MARKET Backplane and has suc-
cessful been authenticated, s/he can perform the following tasks:

* retrieve offering by providing offering ID;

9.5 Diagrams 129

semantic engine local
engine triple store

{ i3-market] [Semantic }

Data
market/Platform
Provider (User /

Developer)

13-marke . .
i3-market i3-market
Q bckplane {Dackp\ane APL] [backp\ane IdM
i i i
| H :

—equest authentication—> [
—fequest authentication

create offering create offering
offering desc; — |
{ q) (offering desc)
[———save—
[= = =return = = -
+(return status: OK)- = -
T e (return: offering registered)

Figure 9.7 Sequence diagram for registering a data provider.

retrieve a list of all offerings registered by a data provider using its
provider ID;

retrieve a list of all offerings filtered by category, which are registered
not only in local instance of SEED (semantic engine) but also other
instances of SEEDs running in the i3-Market cluster;

* update an offering;

* delete a particular data offering by providing its ID;

* the user can also download the data offering template.

The figure shows the sequence of messages used to perform different
tasks. For instance, when a user wants to retrieve a particular offering s/he
provides the offering ID and the Backplane sends this offering ID towards
the SEED. On receiving an offering ID, the SEED executes a query on
MongoDB. If the offering with the given ID is registered in the local storage,
the SEED constructs the results (i.e., the requested offering) and sends back
towards Backplane, where results are presented to the user. Similarly, if the
user is interested to find all the offering registered by a data provider, s/he
provides the provider ID and SEED looks all the offerings registered in local
repository and sends back the results towards Backplane where results (list of
all offerings registered by a data provider) are presented to users.

The SEED, by interacting with BESU, also can distribute the queries
towards all other instances of SEEDs running on the i3-MARKET cluster.
For example, if a user is interested to find offerings not only locally but also
those that are registered on other instances in the i3-MARKET cluster. The

130 i3-MARKET Semantic Model Repository and Community

SEED engine transparently finds the offerings, filtered by category, from all
the i3-MARKET instances.

Figure 9.8 shows that user can also update an offering by giving the
description of an offering s/he queried by either offering by ID or data
Provider ID. User has to copy the retrieved offering to the endpoint, where
s/he can update any field. On receiving the updated offering, the SEED
updates all the data against that particular data offering in the local storage. A
data provider can also delete an offering by giving offering ID in the endpoint.
Upon receiving the delete request from Backplane, the SEED executes a
delete query on the local storage and the particular offering is permanently
deleted from it.

To retrieve a query template, the user has to use the endpoint shown in
Figure 9.8. On receiving template request, the SEED generates the offering
template fully compliant with the semantic data model.

i3-market i3-market ‘Semantic engine Distributed
Beckpians] [] [J it] \] [
Data : H H
i

————request authentication
a------ acoess token- - - - - - - -

—(oMoring)3
retrieve offering] —query by offering id>
(offring) E—— — <= = retum = = ==
s S e Sl L e =~ =retum offering= = - { Lot
retrieve all ofterings. "
orovier i froder). " | —query by provider it
listesrcisisaiaassunas |_|-retum st of afforings | /== === == =tetun== === = = 4 | %"~ 7EUM -7 -

retrieve all offerings] [osrtuied query sequence)
eaosery) 3 i

~—query by category > | |
‘ get list of other nodes ins this catogor
: = = retun: list of endpoints filtered by category - =
i o i it engin ils in
] ———————distributed query by category——————*| "™ e wene endpoins
= ~retum: offerings from diflerent endpaints filered by category = =
retum list o offerings | L ___ _____ R e]]
T e |- fitered by category { T T
updateoffering | | |
{oerng descrotn) g descrpor—————]
——update offering-
‘ <= - = rowm- - - -
fetum: offering updated ™ = = = = = = = =1 o = = = = = = =~

deete offerin
offring)
—delete offering by i

J - === rowm - - - |

e ccmacccenceneananed | retu: otfering doteted | == =< = == = retum == = === - = o
get template H

fofisiog) et tempiste—————»|
_____________________ | fotum: ofring tempiate 1= = === == ~fetum - - - === == -

Figure 9.8 Sequence diagram for querying, deleting, and updating data offerings.

9.6 Interfaces 131

9.6 Interfaces

The semantic engine currently has many functionalities via APIs, which
include: registration, searching, retrieving, updating, and deletion of different
data offerings and delivery of info to other components.

Register data provider:

A data provider, when for the first-time interacts with the system, can register
its information in the i3-MARKET. Following is the endpoint address and the
request for registration of data provider in the semantic repository. The user
must provide a “providerID” field, the ID which was provided to user at the
authentication process.

\9b4\LoR}2ELoE 00 Lo e buonge

{

"address": B
"contactPoint": "string"

Listing 9.1 Data provider template.

Register data offering:

When a user is registered as data provider, the next step would be to create
and register data offerings (semantic descriptions) for the data assets that they
want to share/sell. Below is the API pointer and the request template the user
can use to register data offerings. It is important to note that the value of
“provider” in the offering template should be the “ID” of the data provider.

fapi [registration/data-offering describe data offering

{
"context": {
"core": "http://i3-MARKET.eu/Backplane/core/",
"dcat": "http://www.w3.org/ns/dcat#",
"pricingModel"”: "http://i3-MARKET.eu/Backplane/pricingmodel”

3
"dataOfferingId": "string"

132 i3-MARKET Semantic Model Repository and Community

"provider": "string",

"marketId": "string",

"owner": "string",

"providerDid": "string",

"marketDid": "string",

"ownerDid": "string",

"active": true,

"ownerConsentForm": "string",

"inSharedNetwork": true,

"personalData": true,

"dataOfferingTitle": "string",

"dataOfferingDescription"”: "string",

"category": "string",

"status": "string",

"dataOfferingExpirationTime": "string",

"version": 0,

"createdAt": "2022-12-19T15:20:56.8162",

"updatedAt": "2022-12-19T15:20:56.8162Z2",

"contractParameters": {
"interestOfProvider": "string",
"interestDescription": "string",
"hasGoverningJurisdiction": "string",
"purpose": "string",
"purposeDescription”: "string",
"hasIntendedUse": {

"processData": true,
"shareDataWithThirdParty": true,
"editData": true

1,

"hasLicenseGrant": {
"transferable": true,
"exclusiveness": true,

"paidUp": true,
"revocable": true,
"processing": true,
"modifying": true,
"analyzing": true,
"storingData": true,
"storingCopy": true,
"reproducing”: true,
"distributing": true,
"loaning": true,
"selling": true,
"renting": true,
"furtherLicensing": true,
"leasing": true

}

1,

"hasPricingModel"”: {
"pricingModelName": "string",
"basicPrice": 0,

"currency": "string",

"hasPaymentOnSubscription”: {
"paymentOnSubscriptionName": "string",
"paymentType": "string",
"timeDuration": "string",
"description": "string",
"repeat": "string",
"hasSubscriptionPrice":

s

"hasPaymentOnApi": {
"paymentOnApiName": "string",
"description": "string",
"numberOfObject": o,
"hasApiPrice":

9.6 Interfaces 133

"hasPaymentOnUnit": {
"paymentOnUnitName": "string",
"description": “"string",
"datauUnit": o,

"hasUnitPrice":

1,

"hasPaymentOnSize": {
"paymentOnSizeName": "string",
"description": "string",
"dataSize": "string",
"hasSizePrice":

1,

"hasFreePrice": {
"hasPriceFree": true

}

1,
"hasDataset": {

"title": “"string",

"keyword": "string",

"dataset": "string",

"description": “"string",

"issued": "

"modified":

“temporal™

"language":

"spatial": "string",

"accrualPeriodicity": "string",

"temporalResolution": "string",

"theme": [

"string"

]’

"distribution": [
{

"title": "string",

"description": "string",

"license": "string",

"accessRights": "string",

"downloadType": "string",

"conformsTo": "string",

"mediaType": "string",

"packageFormat"”: "string",

"dataStream": true,

"accessService": {
"conformsTo": “"string",
"endpointDescription": "string",
"endpointURL": “"string",
"servesDataset": "string",
"serviceSpecs": "string"

))

"dataExchangeSpec": {
"encAlg": "string",
"signingAlg": "string",
"hashAlg": "string",
"ledgerContractAddress": "string",
"ledgerSignerAddress": "string",
"pooToPorDelay" :
"pooToPopDelay": @,
"pooToSecretDelay":

}

}

]’

"datasetInformation": [
{

"measurementType": "string"”,

"measurementChannelType": "string",

"sensorId": "string",

134 i3-MARKET Semantic Model Repository and Community

"cppType":
"sensorType": "string"

Listing 9.2 Data offering template.

(When the data offering template is created, the system can use the above
JSON request and store it, but the system can be updated in case to manage
the data offerings as Json-1d in the registry storage.)

OR “http://i3-MARKET.org/resource/##i - #itHi - i -

"provider": it - HEHHHEHE- HHEHEHE- $HHE
"marketId" : "#iHt#H - HHEHEHE- SHEHEHE- S,
owner": - HEHHEE - - Y,
"dataOfferingTitle": "_field",
"dataofferingDescription": "string",
"category": "Other",

"status": "e.g. Activated, InActivated, ToBeDeleted, Deleted",

"dataoOfferingExpirationTime": "NA",

"contractParameters":

{

"contractParametersId": "string",
"interestOfProvider": "NA",
"interestDescription": "NA",
"hasGoverningJurisdiction": "NA",
"purpose": "NA",
"purposeDescription”: "NA",
"hasIntendedUse":

{

9.6 Interfaces

"intendedUseId": "string",
"processData": "true OR false",
"shareDataWithThirdParty": "true OR false",
"editData": "true OR false"
} s
"hasLicenseGrant":

{

"licenseGrantId": "string",
"copyData": "true OR false",
"transferable": "true OR false",
"exclusiveness": "true OR false",

"revocable": "true OR false"

"hasDataset":

{

"datasetId": "string",
"title": "_field",

"keyword": "_field",
"dataset": "_field",
"description": "_field",
"issued": "date-time",
"modified": "date-time",
“temporal": "_field",
"language": "_field",
"spatial": "_field",
"accrualPeriodicity”: "_field",
“temporalResolution"”: "_field",
"distribution": [

{

"distributionId": "string",

"title": "_field",

136 i3-MARKET Semantic Model Repository and Community

"description": "_field",
"license": "_field",
"accessRights": "_field",
"downloadType": "_field",
"conformsTo": "_field",
"mediaType": "_field",
"packageFormat": "_field",
"accessService":

{

"dataserviceId": "string",
"conformsTo": "_field",
"endpointDescription": "_field",
"endpointURL": "_field",
"servesDataset": "_field",

"serviceSpecs": "_field"

}
1,
"datasetInformation": [

{

"datasetInformationId": "string",
"measurementType": "_field",
"measurementChannelType": "_field",
"sensorId": "_field",
"deviceId": "_field",
"cppType": "_field",
"sensorType": "_field"
}
1,
"theme": [
" _field"
"_field"

"_field"

9.6 Interfaces 137

Query a registered data offering by offering ID:

Figure 9.9 shows the endpoint to fetch a particular offering registered in store.
A data provider must provide the “offering ID”. This offering can further
be used in other endpoint (i.e., /semantic-engine/api/registration/update-
offering) if the user wants to update this offering.

/semantic-engine/api/registration/offering/{id}/offeringId geta registered data offering by offering id

Name Description
ide s
string id

(path)
G0001_dataoffering1

page

iateger (sints2) PAgE nUmber of the requested page

(query)
page - Page number of the requested page

size
integer (sint3z) Size Of a page
(query)

size - Size of a page

sort
array[string; SOMiNg criteria in the format: property(.ascldesc). Default sort order is ascending. Multiple sort criteria are supported.

o

Figure 9.9 Get offering by offering ID.

Query a list of all registered data offerings by provider ID:

The following endpoint is used to fetch all the offerings registered by a
data provider — see Figure 9.10. In this endpoint, the user must provide the

| cer | api/ {id}. geta p

Parameters
Name Description

e

string i

(paen)

G001
page

integer (s1nt32) Page number of the requested page
(query)
page - Page number of the requested page
size
integer (sine3z) Size of a page
(quesy)

size - Size of a page

sort
array(string; SOring criteria in the format: property(,ascidesc). Default sort order is ascending. Multiple sort criteria are supported.
o e)

. 0000 e]
Figure 9.10 Get a list of offerings by provider ID.

138 i3-MARKET Semantic Model Repository and Community

“Provider ID”. The current release includes retrieval of list of offerings with
complete data offering. This might affect the query performance if the data in
the storage is increased.

Query a list of all registered data offerings by category:

In the i3-MARKET project, we use different nodes in the cluster and each
node has its own semantic engine instance running on it. Furthermore, each
instance of semantic engine may have its own data by categories from
different pilots (e.g., manufacturing, automotive, wellbeing, etc.) or multiple.
Consider a use-case where someone is looking for data offerings registered
in i3-MARKET on different nodes. This endpoint allows the user to transpar-
ently fetch all the data offerings based on the “category” from i3-MARKET
cluster. In summary, this endpoint performs federated query in a distributed
nature and brings back the results from different instances in i3-MARKET;
see Figure 9.11.

{category}

Parameters Cancel

...... category

Manufacturing

nnnnnnnnnn w32y Page number of the requested page

page - Page number of the requested page

sinszy Sizeofapage

Sorting crteria in the format: property(ascldesc). Default sort order is ascending. Multile sort citeria are supported.

=
Figure 9.11 Get a list of offerings by category.

Update a data offering:

The following endpoint is used to update an already registered data offering.

\eewsuF1C-6uaTUE\SbT\K6ATEFESFTON\, nbasie

For example, if a specific user can update any field which s/he wants to
update, it is important that the user do not change/update the fields with -id
attributes, e.g., dataOfferingld, pricingModelld, etc., because such attributes
are used internally by the semantic engine to link the data.

9.6 Interfaces 139

Delete a data offering:

This endpoint can be used to permanently remove an offering from the
repository. The user must provide the “Offering ID” of the data offerings
they want to delete; see Figure 9.12.

m /semantic-engine/api/registration/delete-offering/{id} delete a data offering

Parameters Try it out

Name Description

i * reauirea

string id

(path)

id - id

Responses

Code Description Links

200 No links
OK

204 No links
No Content

400 No links
failed to delete an offerings by id

Figure 9.12 Delete offering by ID.

Download data offering template:

Figure 9.13 shows that endpoint is used to download the offering template.

/semantic-engine/api/registration/offering/offering-template download offering template

Parameters Cancel

No parameters

Figure 9.13 Get data offering template.

Query list of offerings by active state:

Figure 9.14 shows an endpoint used to search data offerings that are “active”
and so made available to be seen and searched by their providers.

140 i3-MARKET Semantic Model Repository and Community

fapi/reg ferings-1i GET a kst of all offering on active state A

Parameters |

Name Baseription
page
snteger(intsz) U
size
5

Anteger(sintaz

T S]

Responses

Serverresponse

Code Details

200
Rasponse body

Figure 9.14 Query list of offerings by active state.

Query list of offerings by shared state:

Figure 9.15 shows the endpoint to look for data offerings that are set or not
available to be shared in the network by the data marketplaces.

fapi/regs 1 ngs-1ist, GET st of al offering on Shared Network i

Parameters Tryitout |

Nama Deseription

page
Integer(sintaz) Defautt vaiue : 0

size
Anteger(santsz) DefaUlt value . 5

Responses

Code Oeserption Links

200 o finks
oK

Example Vaius | Schema

Figure 9.15 Query list of offerings by shared state.

9.6 Interfaces 141

Query offerings based on text/keyword:

Figure 9.16 shows an endpoint can be used for text searches.

/api/registration/getActive0fferingByText/{text}/text Soachailacive oferings by lextkeyword P

Figure 9.16 Query offerings based on text/keyword.

Query offerings in federated network:

The semantic engine is able to search, discover, and retrieve data offerings not
only in single instance of a marketplace but also throughout the entire nodes
of marketplace belonging to the i3-MARKET network via federated queries.
This is possible using the information that each semantic engine manages via
SEED-INDEX in the shared BESU blockchains, where there is info about
each node/engine. With such details, each semantic engine can search and
retrieve the “shared, active” data offerings from the other data marketplace to
be consulted by consumers and expanding the availability of offered assets
from one marketplace to the entire network.

142 i3-MARKET Semantic Model Repository and Community

Following are some of the endpoints:

/api/registration/federated-of ferings-list/on-SharedNetwork geiting ofiering List on shared network n federated search v

/api/registration/federated-offarings-1ist/on-Activa geting ofering List on active in foderated search ~

Japi on, fering/{id}/p v

/api/registration/federated-offering/{id}/offeringId v

Japi/reg on -offering, " v

Japi on/ -offering, /text/{text) v

/api on, -offering/g BByText/{text)/text v

/api/regi on, g/ {id}/pr v

To be noted, most of the endpoints work the same as in local node. The
main difference is that now we can search from the cluster or network of
registered marketplaces/endpoints.

SDK(-RI) semantic engine services:

Once the functionalities of the semantic engine from the internal API inter-
faces are mapped and reflected in the Backplane API gateway, they are
available to be used via the i3-MARKET development kits in languages like
Java and JavaScript (among the others) using directly the SDK-Core and/or
the SDK-RI services.

9.7 Background Technologies

Data Catalogue Vocabulary (DCAT) — Version 3:

W3C (World Wide Web Consortium) recommendation:

DCAT is an RDF vocabulary designed to facilitate interoperability
between data catalogues published on the Web. This document defines the
schema and provides examples for its use.

DCAT enables a publisher to describe datasets and data services in a cata-
logue using a standard model and vocabulary that facilitates the consumption
and aggregation of metadata from multiple catalogues. This can increase the
discoverability of datasets and data services. It also makes it possible to have
a decentralized approach to publishing data catalogues and makes federated

9.7 Background Technologies 143

search for datasets across catalogues in multiple sites possible using the same
query mechanism and structure.
https://www.w3.org/TR/vocab-dcat-3/

Also, its extension DCAT-AP:

The DCAT Application Profile for data portals in Europe (DCAT-AP) is a
specification based on the Data Catalogue Vocabulary (DCAT) developed by
W3C.

This application profile is a specification for metadata records to meet the
specific application needs of data portals in Europe while providing semantic
interoperability with other applications on the basis of reuse of established
controlled vocabularies (e.g., EuroVoc) and mappings to existing metadata
vocabularies (e.g., Dublin Core, SDMX, INSPIRE metadata, etc.).

DCAT-AP provides a common specification for describing public sector
datasets in Europe to enable the exchange of descriptions of datasets among
data portals. DCAT-AP allows:

e Data catalogues to describe their dataset collections using a standard-
ized description, while keeping their own system for documenting and
storing them.

e Content aggregators, such as the European Data Portal, to aggregate
such descriptions into a single point of access.

e Data consumers to find datasets more easily through a single point of
access.

DCAT-AP has an extension GeoDCAT-AP for describing geospatial
datasets, dataset series and services. Another extension, StatDCAT-AP, pro-
vides specifications and tools that enhance interoperability between descrip-
tions of statistical datasets within the statistical domain and between statisti-
cal data and open data portals.

https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-
europe/release/200

RDF Store

As part of the marketplace persistence framework back-end layer, we need to
use and deploy a database that is able to store our semantic (meta)data in the
best way. This database represents the main registry and repository where all
the semantically annotated (meta)data are uploaded and saved.

In the persistent database, it is needed to store all the (meta)data descrip-
tions created and collected by marketplace stakeholders, e.g., with the

https://www.w3.org/TR/vocab-dcat-3/

144 i3-MARKET Semantic Model Repository and Community

information about providers, consumers, offering descriptions, and recipes.
In our research for a semantic interoperability in i3-MARKET, we decided to
model our providers, consumers, data offering descriptions, and parameters
following an RDF schema model, annotated with our i3-MARKET Semantic
Core Model and represent and exchange data in JSON serialization format.

So due to the nature of such kind of (meta)data, we need to choose the
best solution for storing, managing, accessing, and retrieving information.

RDF triple-store is a type of graph database that stores semantic facts.
Being a graph database, triple-store stores data as a network of objects
with materialized links between them. This makes RDF triple-store a pre-
ferred choice for managing highly interconnected data. Triple-stores are more
flexible and less costly than a relational database, for example.

The RDF database, often called a semantic graph database, is also capable
of handling powerful semantic queries and of using inference for uncovering
new information out of the existing relations. In contrast to other types of
graph databases, RDF triple-store engines support the concurrent storage of
data, metadata, and schema models (e.g., the so-called ontologies). Mod-
els/ontologies allow for the formal description of the data. They specify both
object classes and relationship properties, and their hierarchical order as we
use our i3-MARKET models to describe our resources.

This allows creating a unified knowledge base grounded in common
semantic models that allow combining all metadata coming from different
sources, making them semantically interoperable to:

e create coherent queries independently from the source, format, date,
time, provider, etc.;

e cnable the implementation of more efficient semantic querying features;

e enrich the data and make it more complete, more reliable, and more
accessible;

e enable to perform inference as triple materialization from some of the
relations.

In the following paragraphs, we are going to give some more information
and examples about the semantic data formalization, query interface, and the
interface of the semantic framework backend layer within the Backplane.

MongoDB

MongoDB is a source-available cross-platform document-oriented database
program. Classified as a NoSQL database program, MongoDB uses

9.7 Background Technologies 145

JSON-like documents with optional schemas. MongoDB is developed by
MongoDB Inc. (https://www.mongodb.com/).

Main features:
- Ad-hoc queries:

MongoDB supports field, range query, and regular-expression searches.
Queries can return specific fields of documents and also include user-defined
JavaScript functions. Queries can also be configured to return a random
sample of results of a given size.

- Indexing:

Fields in a MongoDB document can be indexed with primary and
secondary indices or index.

- Replication:

MongoDB provides high availability with replica sets. A replica set con-
sists of two or more copies of the data. Each replica set member may act in the
role of primary or secondary replica at any time. All writes and reads are done
on the primary replica by default. Secondary replicas maintain a copy of the
data of the primary using built-in replication. When a primary replica fails,
the replica set automatically conducts an election process to determine which
secondary should become the primary. Secondaries can optionally serve read
operations, but that data is only eventually consistent by default.

- Load balancing:

MongoDB scales horizontally using sharding. The user chooses a shard
key, which determines how the data in a collection will be distributed. The
data is split into ranges (based on the shard key) and distributed across
multiple shards. (A shard is a master with one or more replicas.) Alternatively,
the shard key can be hashed to map to a shard — enabling an even data
distribution.

Semantic data model and serialization formats:

Linked data is based around describing real-world things using the resource
description framework (RDF). The following paragraphs introduce the basic
data model and then outline existing formats to serialize semantic data
models.

146 i3-MARKET Semantic Model Repository and Community

The semantic descriptions are generated following the i3-MARKET Core
Model, annotated with the i3-MARKET Domain Models, and mapped with the
i3-MARKET Application Model vocabularies and then loaded into a registry-
store.

Semantic data model:

Figure 9.17 represents an RDF triple. RDF is very simple, flexible, and
schema-less to express and process a series of simple assertions. Consider
the following example: “Sensor A measures 21C”. Each statement, i.e., piece
of information, is represented in the form of triples (RDF triples) that link
a subject (“Sensor A”), a predicate (“measures”), and an object (‘21C”).
The subject is the thing that is described, i.e., the resource in question. The
predicate is a term used to describe or modify some aspect of the subject. It
is used to denote relationships between the subject and the object. The object
is, in RDF, the “target” or “value” of the triple. It can be another resource or
just a literal value such as a number or word.

an:h‘ww.er:ample.nrg-‘Sensnr_D— ex.observes — 21.8C

Figure 9.17 RDF triple in graph representation describing “Sensor A measures 21.8°C”.

Since objects can also be a resource with predicates and objects on
their own, single triples are connected to a so-called RDF graph. In terms
of graph theory, the RDF graph is a labelled and directed graph. As the
illustration, we extend the previous example, replacing the literal “21.8C” by
aresource “measurement” for the object in the RDF triple in Figure 9.18. The
resource itself has two predicates assigning a unit and the actual value to the

(http:/fwww e xample.org/Sensor_ A >— ex.observes —)(hnp:a';'\-w\wexample. orgMea surementj23>

ex:hasUnit

ex:hasValue

Figure 9.18 Simple RDF graph including the example RDF triple.

9.7 Background Technologies 147

measurement — see Figure 9.18. The unit is again represented by a resource
and the value is numerical literal. The resulting RDF graph looks as follows:

Serialization formats:

The RDF data model itself does not describe the format in which the data,
i.e., the RDF graph structure, is stored, processed, or transferred. Several
formats exist that serialize RDF data; the following overview lists the most
popular formats, including a short description of their main characteristics
and examples. Figure 9.18 shows a simple RDF graph to serve as the basis.

RDF/XML.:

The RDF/XML syntax is standardized by the W3C and is widely used to
publish linked data on the Web. On the downside, however, the XML syntax
is also viewed as difficult for humans to read and write. This recommends
consideration of:

a) other serialization formats in data management and control workflows
that involve human intervention;

b) the provision of alternative serializations for consumers who may wish
to examine the raw RDF data.

The RDF/XML syntax is described in detail as part of the W3C RDF
Primer. The MIME type that should be used for RDF/ XML within HTTP
content negotiation is application/rdf+xml. The listing below shows the
RDF/XML serialization for the RDF graph.

RDF/XML serialization example:

<?xml version="1.0"?>

<rdf:RDF xmlns:ex="http://www.example.org/"

<rdf:Description rdf:about=" http://www.example.org/Sensor A">
<ex:title>21.8°C</ex:title>

</rdf:Description>

</rdf :RDF>

Turtle: Turtle (Terse RDF Triple Language) is a plain text format for serial-
izing RDF data. It has support for namespace prefixes and other shorthands,
making Turtle typically the serialization format of choice for reading RDF

148 i3-MARKET Semantic Model Repository and Community

triples or writing them by hand. A detailed introduction to Turtle is given
in the W3C Team Submission document Turtle. It was accepted as a first
working draft by the World Wide Web Consortium (W3C) RDF Working
Group in August 2011, and parsing and serializing RDF data is supported by
a large number of RDF toolkits. The following listing shows the serialization
listing for the example RDF graph in Turtle syntax.

Turtle serialization example:

@prefix : <http://www.example.org/> .
:Sensor A :measures “21.8°C”

N-Triples: The N-Triples syntax is a subset of Turtle, excluding features
such as namespace prefixes and shorthands. Since all URIs must be specified
in full in each triple, this serialization format involves a lot of redundancy,
typically resulting in large N-Triples particularly compared to Turtle, but also
to RDF/XML. This redundancy, however, enables N-Triples files to be parsed
one line at a time, benefitting the loading and processing of large data files that
will not fit into main memory. The redundancy also allows compressing N-
Triples files with a high compression ratio, thus reducing network traffic when
exchanging files. These two factors make N-Triples the de facto standard for
exchanging large dumps of linked data. The complete definition of the N-
Triples syntax is given as part of the W3C RDF test cases recommendation.
The following listing in Table 7.1 represents the N-Triples serialization of the
example RDF graph.

N-Triples serialization example:

<http://www.example.org/Sensor A> <http://www.example.org/measures> “21.8°C”@en-UK

JSON-LD: Used as main data model for the metadata in i3-MARKET.

Jason-LD (https://json-1d.org/) — Many developers have little or no expe-
rience with linked data, RDF, or common RDF serialization formats such
as N-Triples and Turtle. This produces extra overhead in the form of a
steeper learning curve when integrating new systems to consume linked
data. To counter this, the project consortium decided to use a format based
on a common serialization format such as XML or JSON. Thus, the two
remaining options are RDF/XML and JSON-LD. JSON-LD was chosen over

9.7 Background Technologies 149

RDF/XML as the data format for all linked data items in BigloT. JSON-LD
is a JSON-based serialization for linked data with the following design goals:

e Simplicity: There is no need for extra processors or software libraries,
just the knowledge of some basic keywords.

e Compatibility: JSON-LD documents are always valid JSON docu-
ments; so the standard libraries from JSON can be used.

o Expressiveness: Real-world data models can be expressed because the
syntax serializes a directed graph.

o Terseness: The syntax is readable for humans and developers need little
effort to use it.

e Zero edits: Most of the time JSON-LD can be devolved easily from
JSON-based systems.

e Usable as RDF: JSON-LD can be mapped to/from RDF and can be used
as RDF without having any knowledge about RDF.

From the above, terseness and simplicity are the main reasons that JSON-
LD was chosen over RDF/XML. JSON-LD also allows for referencing
external files to provide context. This means contextual information can be
requested on demand and makes JSON-LD better suited to situations with
high response times or low bandwidth usage requirements. More information
can be found in http://json-1d.org/.

The data model underlying JSON-LD is a labelled, directed graph. There
are a few important keywords, such as @context, @id, @value, and @type.
These keywords are the core part of JSON-LD. Four basic concepts should
be considered:

e Context: A context in JSON-LD allows using shortcut terms to make
the JSON-LD file shorter and easier to read (as well as increasing
its resemblance with pure JSON). The context maps terms to IRIs. A
context can also be externalized and reused for multiple JSON-LD files
by referencing its URL

o IRIs: Internationalized resource identifiers (IRIs) are used to identify
nodes and properties in linked data. In JSON-LD, two kinds of IRIs are
used: absolute IRIs and relative IRIs. JSON-LD also allows defining a
common prefix for relative IRIs using the keyword @vocab.

e Node identifiers: Node identifiers (using the keyword @id) reference
nodes externally. As a result of using @id, any RDF triples produced
for this node would use the given IRI as their subject. If an application
follows this IRI, it should be able to find some more information about

150 i3-MARKET Semantic Model Repository and Community

the node. If no node identifier is specified, the RDF mapping will use
blank nodes.

o Specifying the type: It is possible to specify the type of a distinct node
with the keyword @type. When mapping to RDF, this creates a new
triple with the node as the subject, a property rdf:type and the given type
as the object (given as an IRI).

JSON-LD example:

[{"@id":"http://www.example.org/Sensor A", "http://www.example.org/measures": [{"@val
ue":"21.8C"}11}]

SPARQL:

SPARQL (SPARQL protocol and RDF query language, https://www.w3.0
rg/TR/sparql11-query/) is the most popular query language to retrieve and
manipulate data stored in RDF and became an official W3C recommendation
in 2008. Depending on the purpose, SPARQL distinguishes the following for
query variations:

e SELECT query: Extraction of (raw) information from the data.

e CONSTRUCT query: Extraction of information and transformation
into RDF.

e ASK query: Extraction of information resulting a true/false answer.

e DESCRIBE query: Extraction of RDF graph that describes the
resources found.

Given that RDF forms a directed, labelled graph for representing informa-
tion, the most basic construct of a SPARQL query is a so-called basic graph
pattern. Such a pattern is very similar to an RDF triple with the exception
that the subject, predicate, or object may be a variable. A basic graph pattern
matches a subgraph of the RDF data when RDF terms from that subgraph
may be substituted for the variables and the result is RDF graph equivalent
to the subgraph. Using the same identifier for variables also allow combining
multiple graph patterns. Besides aforementioned graph patterns, the SPARQL
1.1 standard also supports the sorting (ORDER BY), and the limitation of
result sets (LIMIT, OFFSET), the elimination of duplicates (DISTINCT),
the formulation of conditions over the value of variables (FILTER), and the
possibility to declare a constraint as OPTIONAL. The SPARQL 1.1 standard
significantly extended the expressiveness of SPARQL. In more detail, the new
features include:

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

9.7 Background Technologies 151

e Grouping (GROUP BY) and conditions on groups (HAVING).

o Aggregates (CONT, SUM, MIN, MAX, AVG, etc.).

e Subqueries to embed SPARQL queries directly within other queries.

e Negation to, e.g., check for the absence of data triples.

e Project expression, e.g., to use numerical result values in the SELECT
clause within mathematical formulas and assign new variable names to
the result.

e Update statements to add, change, or delete statements.

e Variable assignments to bind expressions to variables in a graph pattern.

e New built-in functions and operators, including string functions (e.g.,
CONCAT, CONTAINS, etc.), string digest functions (e.g., MD5, SHAI,
etc.), numeric functions (e.g., ABS, ROUND, etc.), or date/time func-
tions (e.g., NOW, DAY, HOURS, etc.).

As mentioned previously, RDF graph data is represented as triples, i.e.,
“subject”, “predicate”, and “object”. A very basic SPARQL, which brings
back 100 triples from the RDF graph, can be written as follows.

SPARQL example:
SELECT * WHERE {2s ?p 20} LIMIT 100

10

Interfaces

10.1 Data Access API

The data access API is the interface via which data consumers gain access

to the data offered by a data provider or data space. Since this open

interface enables direct interactions among stakeholders of different data

spaces/marketplaces, we need not only an open interface specification that

can be implemented by all but also a high level of security, as the data

exchange might involve sensitive data, e.g., personal data or commercial data.
The endpoints documented below were grouped by modules.

Batch controller:

Get /batch/listDataSourceFiles/{ offeringld }
(batchController.listDataSourceFiles)
Returns a list of datasets that are available for consumption.

post /batch/{data}/{agreementld}
(batchController.getBatch)
Requests data from a provider in the form of batch.
* Request — First Block
* Request — Intermediate Block
* Request — Last Block

Get /batch/listDataSourceFiles/{ offeringld }
(batchController.listDataSourceFiles)
Returns a list of data sets that are available for consumption.

post /batch/{data}/{agreementId}
(batchController.getBatch)
Requests data from a provider in the form of batch.

153

154 Interfaces

* Request - First Block
* Request — Intermediate Block
* Request — Last Block

post /batch/pop

Stream controller:

post /newdata/{ offeringld }
(streamController.newData)
Endpoint for the data soure to send data to the mqtt broker.

Agreement controller:

post /agreement/payMarketFee/{agreementID }
(agreementController.payMarketFee)
Endpoint the consumer can use to pay the market fee.

post /agreement/deployRawPaymentTransaction/{agreementId }
(agreementController.deployRawPaymentTransaction)

Endpoint for the consumer to deploy a transaction obtained by signing a
transaction object that resulted by paying the market fee.

get /agreement/getAgreementld /{exchangeld }
(agreementController.getAgreementld)
Endpoint to retrieve the agreementld.

post /agreement/dataExchangeA greementInfo
(agreementController.dataExchangeA greementInfo)
Endpoint for the provider to post information relevant for the data transfer.

Connector registration controller:

post /regds
(connectorRegistrationController.regds)
Endpoint used by the provider to register the batch or stream data connectors.

Stream auth controller:
post /stream/auth/user

10.1 Data Access API 155

(streamAuthController.authStreamUser)
Endpoint to authenticate data transfer stream user.

post /stream/auth/acl

(streamAuthController.authStreamAcl)

Endpoint to check if the topic subscribed by the consumer matches a pre-set
description standard.

OIDC auth controller:

get /oidc/login/provider
(oidcAuthController.oidcLoginProvider)
Endpoint to retrieve a bearer token as provider.

get /oidc/login/consumer
(oidcAuthController.oidcLoginConsumer)
Endpoint to retrieve a bearer token as consumer.

get /oidc/cb

(oidcAuthController.oidcCb)

Endpoint that will be called after a successful authentication as either a
consumer or a provider.

Data transfer report controller:

post /report/nrpCompletnessCheck
(dataTransferReportController.nrpCompletenessCheck)

Endpoint to check if the Non-repudiable Protocol was completed for a block
of data.

get /report/getListOf VerificationRequests/{ agreementId }
(dataTransferReportController.getListOf VerificationRequests)
Endpoint to get all the verification requests for an agreement.

get /report/getSubld/{ consumerDid }/{ offeringId }
(dataTransferReportController.getSubld)
Endpoint to get the subscription ID.

get /report/streamingAccountReport/{subld }
(dataTransferReportController.streamingA ccountReport)
Endpoint for a consumer to get information about a subscription.

get /report/getAccountSummary /{consumerDid }

156 Interfaces

(dataTransferReportController.getAccountSummary)
Endpoint to get information about the amount of data transferred for a
consumer.

10.2 Background Technologies

Loopback:
Loopback is an open-source solution developed by Strongl.oop, an IBM
company. It is a framework that enables you to create dynamic end-to-end
APIs (RESTful and GraphQL). It is for Node.js and developed in TypeScript,
a typed superset of JavaScript. Due to its modular connectors, it can (indeed
does) support any DB as well as custom data integrations like blockchains.
This is the technology that was selected for the implementation of the data
access APL

10.3 Notifications Manager

The notification manager is the service responsible for allowing the creation
and emission of notifications both for users and between services; it also
integrates the functionality to allow users to subscribe to topics (categories)
of the offers, with the objective of receiving notifications when new offers are
created that coincide with those subscribed by the user.

On the other hand, it is possible to create notifications for a certain user
and store them, access the stored notifications, mark a notification as read,
delete it, etc.

10.4 Notifications as a Service

It allows you to send notifications to other services that are not directly
connected to our service, and we do not necessarily know who they are. This
happens when, for example, a new offer is created, and a request is sent to cre-
ate a notification to the service and notify the rest of the services/marketplaces
that have subscribed to the queue.

This section can be understood from two points of view:

» The first is that of a service that wishes to send a notification to others
for a certain event.

* The second is that of a service that expects to receive notifications to
perform some action, such as indexing this event within the service.

10.4 Notifications as a Service 157

For the first case, we only need to follow the section “Create Service
Notification”.

For the second case, we must follow the section “Services and Queues” in
order to register our service within the notification manager and need to have
an endpoint in our service to receive the notifications.

Services and queues:

In this section, we explain the concepts of service and queue and indicate the
methods to work with them.

A service is determined by a name, to identify our service within the
system, a generic endpoint where to receive notifications and a list of queues
to which it is subscribed.

A queue has a name that indicates what type of event it handles, and it
is possible to indicate a specific endpoint where it will send the notifications;
this specific endpoint can be null and, in that case, it will use the generic
endpoint of the service.

Types of queues:

The following queues have been implemented within the notification man-
ager:
* offering.new
* offering.update
* agreement.accepted
* agreement.rejected
agreement.update
agreement.pending
agreement.termination
agreement.claim

Service management:

This section provides methods to perform the following actions:

* list all registered services;

* get the information of a service through its identifier;
* register a service;

* delete a service.

158 Interfaces

Listing registered services:
GET /services

Get the information of a service through its identifier:
GET /services/{service_id}

Registering a new service:
POST /services

Deleting a service:
DELETE /services/{service_id}

Queue management:

This section indicates the methods to carry out the following actions: * Reg-
ister a queue * Get the service queues by identifier * Get the information
of a specific queue by identifier * Activate-or-deactivate-a-queue * Delete a
queue.

Register a queue:
Can also be called subscribe service to queue.
POST /services/{service_id }/queues

Get the service queues by identifier:
GET /services/{service_id}/queues

Obtain the information of a specific queue by identifier:
GET /services/{service_id}/queues/{queue_id}

Activate or deactivate a queue:
PATCH /services/{service_id}/queues/{queue_id}/activate
PATCH /services/{service_id}/queues/{queue_id }/deactivate

Deleting a queue:
DELETE /services/{service_id}/queues/{queue_id}

Create a service notification:

POST /notification/service

The system will search among all the registered services, those that are
subscribed to the queue indicated by the receiver_id, then it will create and
send a notification to its registered endpoint.

Create a service notification for a single marketplace
POST /notification/service

10.5 Notifications to Users 159

The system will search among all the registered services, those that are
subscribed to the queue indicated by the receiver_id, and then it will create
and send a notification to its registered endpoint.

10.5 Notifications to Users

User notifications are messages that are created and stored to be read by the
target users. The purpose of these messages is to notify users that an event
relevant to them has occurred.

This section indicates the methods to perform the following actions:

e create a user notification.
* access to notifications.
* modification of the notifications.

Create a user notification:
User notifications are created using a POST method.
POST /notification

Access to notifications:

Once a user notification has been created, it can be accessed using one of the
following access methods.

Getting all stored notifications:

This method allows access to all notifications stored in the system, including
their identifiers and the information contained within the message field.
GET /notification

Get all users unread notifications
GET /notification/unread

Get the notifications of a user (by user ID):
GET /notification/user/{user_id}

Get an unread user notification:
GET /notification/user/{user_id }/unread

Get a notification by ID:
GET /notification/{notification_id}

Modification of the notifications:
The following methods are used to make changes to notifications, such as
marking them as read/unread and deleting notifications.

160 Interfaces

Mark notification as read:
PATCH /notification/{notification_id }/read

Mark notification as unread:
PATCH /notification/{notification_id }/unread

Delete notifications:
The following method is used to delete a notification:
DELETE /notification/{notification_id}

10.6 User Subscriptions

A user can subscribe to categories; these categories are the ones to which the

offers registered in the semantic engine belong in order to be notified when a

new offer related to the category to which the user is subscribed appears.
This indicates the methods to perform the following actions:

* Create a user-subscription.

o To create a subscription, it is only necessary to have the identifier of
the user who wants to subscribe and the category to which he/she
wants to subscribe.

* Access the subscriptions.

o Once a subscription has been created, it is possible to access it by
the following methods.

* Modify subscriptions.

o Itis possible to activate/deactivate a subscription and delete it from
the system.

11

Conclusions

Data Economy is commonly referring to the diversity in The use of data
to provide social benefits and have a direct impact in people’s life, from
a technological point of view data economy implies technological services
to underpin the delivery of data applications that bring value and addressed
the diverse demands on selling, buying and trading data assets. The demand
and the supply side in the data is increasing exponentially and it is being
demonstrated that the value that the data has today is as relevant as any other
tangible and intangible assets in the global economy.

In this second i3-MARKET series book, we further discussed why data is
the focus of current technological developments towards digital markets and
the meaning of data being the next asset to appear evolved in trading markets.
At the same time, it focused on introducing the i3-MARKET technology and
the proposed solutions.

In this second i3-MARKET series book, we reviewed the basic techno-
logical principles and software best practices and standards for implementing
and deploying data spaces and data marketplaces. The book provides a defini-
tion for data-driven society as: The process to transform data production into
data economy for the people using the emerging technologies and scientific
advances in data science to underpin the delivery of data economic models
and services.

In this book, we discussed the technology assets that are designed and
implemented following the i3-MARKET Backplane reference architecture
(RA) that uses open data, big data, IoT, and Al design principles to help
data spaces and data marketplaces to focus on today’s data-driven society
as the trend to rapidly transforming the data perception in every aspect of
our activities. Moreover, the series of software assets grouped as subsystems
and composed by software artefacts are included and explained in full.

161

162 Conclusions

Further, we described i3-MARKET Backplane tools and how these can be
used for supporting marketplaces and its components. Next, we provided
a description of solutions developed in i3-MARKET as an overview of
the potential for being the reference open-source solution to improve data
economy across different data marketplaces.

= @
i3-MARKET

References

[1] “https://en.wikipedia.org/wiki/System_context_diagram,” [Online].

[2] P. Kruchten, “Architectural Blueprints — The “4+1” View Model of
Software Architecture,” IEEE Software 12, November 1995, pp. 42-50.

[3] J. R. a. I. J. G. Booch, UML User Guide, Addison-Wesley Longman,
1998.

[4] “https://leanpub.com/arc42inpractice/read,” [Online].

[5] 13-MARKET, “i3M-Wallet monorepo,” [Online]. Available: https://gith
ub.com/i3-Market- V3-Public-Repository/SP3-SCGBSSW-13mWalle
tMonorepo.

[6] Consensys, “MetaMask,” [Online]. Available: https://metamask.io/.

[7] “Trust Wallet,” [Online]. Available: https://trustwallet.com/.

[8] Exodus, “Exodus Bitcoin & Crypto Wallet,” [Online]. Available: https:
/I'www.exodus.com/.

[9] T. Voegtlin, “Electrum Bitcoin Wallet,” [Online]. Available: https://elec
trum.org/.

[10] Validated ID, “VIDChain,” [Online]. Available: https://www.validatedi
d.com/vidchain.

[11] Evernym, “Connect.Me Wallet,” [Online]. Available: https://www.conn
ect.me/.

[12] IdRamp, “IdRamp,” [Online]. Available: https://idramp.com/.

[13] trinsic, “Identity Wallets,” [Online]. Available: https://trinsic.id/identit
y-wallets/.

[14] ConsenSys, “uPort,” [Online]. Available: https://www.uport.me/.

[15] “Twala,” [Online]. Available: https://www.twala.io/.

[16] ConsenSys, “Serto,” [Online]. Available: https://www.serto.id/.

163

https://en.wikipedia.org/wiki/System_context_diagram
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo
https://metamask.io/
https://trustwallet.com/
https://www.exodus.com/
https://www.exodus.com/
https://electrum.org/
https://electrum.org/
https://www.validatedid.com/vidchain
https://www.validatedid.com/vidchain
https://www.connect.me/
https://www.connect.me/
https://idramp.com/
https://trinsic.id/identity-wallets/
https://trinsic.id/identity-wallets/
https://www.uport.me/
https://www.twala.io/
https://www.serto.id/

164 References

[17] “Veramo - A JavaScript Framework for Verifiable Data | Performant and
modular APIs for Verifiable Data and SSI,” [Online]. Available: https:
//veramo.io/.

[18] “OpenTimeStamps, a timestamping proof standard,” [Online]. Avail-
able: https://opentimestamps.org/.

[19] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au and Q. Wang, “Enabling
Secure and Efficient Decentralized Storage Auditing with Blockchain,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[20] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au and Q. Wang, “Towards
Privacy-assured and Lightweight On-chain Auditing of Decentralized
Storage,” 2020 IEEE 40th International Conference on Distributed, pp.
201-211, 2020.

[21] H. Yu and Z. Yang, “Decentralized and Smart Public Auditing for Cloud
Storage,” IEEE 9th International Conference on Software, pp. 491-494,
2018.

[22] J. Shu, X. Zou, X. Jia, W. Zhang and R. Xie, “Blockchain-Based
Decentralized Public Auditing for Cloud Storage,” IEEE Transactions
on Cloud Computing, 2021.

[23] K. Liu, H. Desai, L. Kagal and M. Kantarcioglu, “Enforceable Data
Sharing Agreements Using Smart Contracts,” 27 04 2018. [Online].
Available: https://arxiv.org/abs/1804.10645.

[24] E. J. Scheid, B. B. Rodrigues, L. Z. Granville and B. Stiller, “Enabling
Dynamic SLA Compensation Using Blockchain-based Smart Con-
tracts,” in IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2019.

[25] Ocean Protocol Foundation with BigchainDB GmbH and Newton Cir-
cus (DEX Pte. Ltd.), “Ocean Protocol: A Decentralized Substrate for Al
Data and Services,” 2019.

[26] The European Parliament and the Council of the European Union,
“General Data Protection Regulation (GDPR). Directive 95/46/EC,” 27
04 2016. [Online]. Available: https://gdpr-info.eu/.

[27] K. Jensen and L. M. Kristensen, Coloured Petri nets: modelling and
validation of concurrent systems, Springer Science & Business Media,
2009.

[28] Digital Asset Holdings, “Digital Asset Modelling Language (DAML),”
[Online]. Available: https://daml.com/.

[29] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies, O’Reilly Media, Inc., 2014.

[30] I. Bashir, Mastering blockchain, Packt Publishing Ltd, 2017.

https://veramo.io/
https://veramo.io/
https://opentimestamps.org/
https://arxiv.org/abs/1804.10645
https://gdpr-info.eu/
https://daml.com/

References 165

[31] D. Yaga, P. Mell, N. Roby and K. Scarfone, “Blockchain technology
overview,” arXiv preprint arXiv:1906.11078, 2019.

[32] S. Rouhani and R. Deters, “Security, performance, and applications of
smart contracts: A systematic survey,” IEEE Access, vol. 7, pp. 50759-
50779, 2019.

[33] L. Jing and L. Zhentian, “A survey on security verification of blockchain
smart contracts,” IEEE Access, vol. 7, pp. 77894-77904, 2019.

[34] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project White Paper, vol. 151, no. 2014, pp. 1-32,
2014.

[35] H. Chen, M. Pendleton, L. Njilla and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1-43, 2020.

[36] “Hyperledger Besu,” [Online]. Available: https://github.com/hyperledg
er/besu.

[37] “Solidity,” [Online]. Available: https://solidity-es.readthedocs.io/.

[38] “BIP-39,” 2021. [Online]. Available: https://github.com/bitcoin/bips/bl
ob/master/bip-0039.mediawiki.

[39] i3-MARKET, “i3M-Wallet OpenApi Specification,” 2022. [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP
3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desk
top-openapi/openapi.json.

[40] W3C, “Decentralized Identifiers (DIDs) v1.0. Core architecture, data
model, and representations,” W3C Recommendation, 19 07 2022.
[Online]. Available: https://www.w3.org/TR/did-core/.

[41] W3C, “Verifiable Credentials Data Model v1.1.,” W3C Recommenda-
tion, 03 03 2022. [Online]. Available: https://www.w3.org/TR/vc-data-
model/.

[42] F. Roman Garcia and J. Herndndez Serrano, “i3M-Wallet Base Wallet,”
[Online]. Available: https://github.com/i3-Market- V3-Public-Repositor
y/SP3-SCGBSSW-13mWalletMonorepo/tree/public/packages/base-wa
llet.

[43] F. Roman Garcia and J. Herndndez Serrano, “SW Wallet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP
3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet.

[44] F. Roman Garcia and J. Hernandez Serrano, “BOK Wallet,” [Online].
Available: https://github.com/i3-Market- V3-Public-Repository/SP3-
SCGBSSW-13mWalletMonorepo/tree/public/packages/bok-wallet.

https://github.com/hyperledger/besu
https://github.com/hyperledger/besu
https://solidity-es.readthedocs.io/
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet

166 References

[45] F. Roman Garcia and J. Herndndez Serrano, “Wallet Desktop,” [Online].
Available: https://github.com/i3-Market- V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop.

[46] J. Hernandez Serrano and F. Roman Garcia, “Server Walllet,” [Online].
Available: https://github.com/i3-Market- V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet.

[47] J. Hernandez Serrano and F. Roman Garcia, “Wallet Desktop OpenAPIL,”
[Online]. Available: https://github.com/i3-Market- V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-
desktop-openapi.

[48] F. Roman Garcia and J. Hernandez Serrano, “Wallet Protocol,” [Online].
Available:https://github.com/i3-Market- V3-Public-Repository/SP3-SC
GBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol.

[49] F. Roman Garcia and J. Herndndez Serrano, “Wallet Protocol APL”
[Online]. Available:https://github.com/i3-Market- V3-Public-Repos
itory/SP3-SCGBSSW-I13mWalletMonorepo/tree/public/packages/walle
t-protocol-api.

[50] F. Roman Garcia and J. Hernandez Serrano, “Wallet Protocol Utils,”
[Online]. Available:https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-
protocol-utils.

[51] IDEMIA, “Video proving the integration of IDEMIA’s HW Wallet into
the i3-MARKET Wallet Desktop application,” 2022. [Online]. Avail-
able: https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5
kbRO5SNOE/view usp=share_link.

[52] Bluetooth SIG - Core Specification Workgroup, “Bluetooth Core Spec-
ification v2.1 + EDR: Secure Simple Pairing,” 2007.

[53] D. Basin, C. Cremers, J. Dreier, S. Meier, R. Sasse and B. Schmidt,
“Tamarin Prover,” [Online]. Available: http://tamarin-prover.github.io/.

[54] OpenlS Foundation, “Electron,” [Online]. Available: https://www.electr
onjs.org/.

[55] Ethers JS, “The Ethers Project,” [Online]. Available: https://github.com
/ethers-io/ethers.js/.

[56] Veramo, “Veramo - A JavaScript Framework for Verifiable Data,”
[Online]. Available: https://veramo.io/.

[57] OpenAPI, “OpenAPI Initiative,” Linux Foundation, [Online]. Available:
https://www.openapis.org/.

[58] “Express OpenAPI Validator,” [Online]. Available: https://github.com/c
dimascio/express-openapi-validator.

https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop-openapi
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop-openapi
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop-openapi
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5kbR05NOE/view?usp=share_link
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5kbR05NOE/view?usp=share_link
http://tamarin-prover.github.io/
https://www.electronjs.org/
https://www.electronjs.org/
https://github.com/ethers-io/ethers.js/
https://github.com/ethers-io/ethers.js/
https://veramo.io/
https://www.openapis.org/
https://github.com/cdimascio/express-openapi-validator
https://github.com/cdimascio/express-openapi-validator

References 167

[59] TypeDoc, “TypeDoc,” [Online]. Available: https://typedoc.org.

[60] J. Herndndez Serrano, “i3-MARKET Non-Repudiation Library,” 2022.
[Online]. Available: https://github.com/i3-Market- V3-Public-Repositor
y/SP3-SCGBSSW-CR-NonRepudiationLibrary.

[61] J. Hernandez Serrano, “i3-MARKET Conflict Resolver Service,” 2022.
[Online]. Available: https://github.com/i3-Market- V3-Public-Repositor
y/SP3-SCGBSSW-CR-ConflictResolverService.

[62] J. Herndndez Serrano, “API of the i3-MARKET Non-Repudiation
Library,” i3-MARKET, 2022. [Online]. Available:https://github.com
/i3-Market- V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiat
ionLibrary/blob/public/docs/APL.md.

[63] Panva, “JOSE,” [Online]. Available: https://github.com/panva/jose.

[64] Ajv, “Ajv JSON schema validator,” [Online]. Available: https://ajv.js.o
rg/.

[65] OpenlS Foundation, “Express JS,” [Online]. Available: https://express;]
s.com/.

[66] Y. Kovacs, S. Stanhke and J. L. Munoz, “i3-MARKET Smart Contracts,”
[Online]. Available: https://github.com/i3-Market- V3-Public-Repositor
y/SP3-SCGBSSW-I3mSmartContracts.

[67] Hans van der Veer and Anthony Wiles, "Achieving Technical Interoper-
ability - the ETSI Approach," in ETSI, 2008.

[68] Mike Ushold, Christopher Menzel, and Natasha Noy. Semantic Integra-
tion & Interoperability Using RDF and OWL. [Online]. https://www.w3
.org/2001/sw/BestPractices/OEP/SemInt/.

[69] M. Compton et al., "The SSN ontology of the W3C semantic sensor
network incubator group," JWS, 2012.

[70] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Frequency. https://publications.europa.
eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency.

[71] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. File type. https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type.

[72] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Language. https://publications.europa.
eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/.

[73] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Corporate body. https://publications.eur
opa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-
body/.

https://typedoc.org
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md
https://github.com/panva/jose
https://ajv.js.org/
https://ajv.js.org/
https://expressjs.com/
https://expressjs.com/
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mSmartContracts
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mSmartContracts
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/

168 References

[74] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Continent https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent.

[75] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Country. https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country.

[76] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Place. https://publications.europa.eu/en/
web/eu-vocabularies/at-dataset/-/resource/dataset/place.

[77] European Commission. Joinup. Asset Description Metadata Schema
(ADMYS). https://joinup.ec.europa.eu/solution/asset-description-metad
ata-schema-adms.

[78] CI/CD with Ansible Tower and GitHub. Available from: https://keithten
zer.com/2019/06/24/ci-cd-with-ansible-tower-and- github/.

[79] Red Hat Ansible Tower Monitoring: Using Prometheus + Node Exporter
+ Grafana. Available from: https://www.ansible.com/blog/red-hat-ansib
le-tower-monitoring-using-prometheus-node-exporter-grafana.

https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/place
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/place
https://joinup.ec.europa.eu/solution/asset-description-metadata-schema-adms
https://joinup.ec.europa.eu/solution/asset-description-metadata-schema-adms
https://keithtenzer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/
https://keithtenzer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana

- @
I3-MARKET

Index

A
application program interface xxix

D
data consumer xxix, 2, 38, 91, 106
data marketplace 13, 31
data provider xxix, 11, 59, 129
decentralized identifier 165
distributed ledger technology 21

E
European commission x, 168
European union 164

H
hierarchically deterministic 26

I
i3-MARKET 3, 58, 90
Identity and access management 7

J
JSON web algorithms xxix
JSON web key xxix, 56
JSON web signature, xxix, 53, 54
JSON web token 23

P
peer to peer 8, 21, 90
proof of origin 42, 48, 90, 106
proof of publication 97, 106
proof of receipt 90, 97, 106

R
Release x

S
self-sovereign identity 8, 24, 174
service level agreement 21, 22
service level specification 21
smart contract 9, 21, 41, 174
smart contract manager 9, 21,
58, 121
Software development kit xxx

T
transaction reference number xxx

A%
verifiable credentials 7, 17, 55

W
world wide web consortium 142, 148

169

= @
i3-MARKET

About the Editors

Dr. Martin Serrano is a recognized expert on semantic interoperability for
distributed systems due to his scientific contribution(s) to using liked data
and semantic formalisms like ontology web language for the Internet of
Things and thus store the collected sensor’s data in the Cloud. He has also
contributed to define the data interplay in edge computing using the linked
data paradigm; in those works he has received awards recognizing his sci-
entific contributions and publications. Dr. Serrano has advanced the state of
the art on pervasive computing using semantic data modelling and context
awareness methods to extend the “autonomics” paradigm for networking
systems. He has also contributed to the area of information and knowledge
engineering using semantic annotation and ontologies for describing data and
services relations in the computing continuum. Dr. Serrano has defined the
data continuum and published several articles on data science and Internet of
Things science and he is a pioneer and visionary on proposing that semantic
technologies applied to policy-based management systems can be used as an
approach to produce cognitive applications capable of understanding, service
and application events, controlling the pervasive services life cycle. A process
called bringing semantics into the box, as published in one of his academic
books. He has published 5 academic books and more than 100 peer reviewed
articles in IEEE, ACM and Springer conferences and journals.

Dr. Achille Zappa is a Post-Doctoral Researcher at Insight, University of
Galway. He received BSC/MSC degree in Biomedical Engineering and PHD
in Bioengineering from the University of Genoa (Italy), his Ph.D. project
was related to semantic web integration, knowledge engineering and data
management of biomedical and genomic data and his research interests

171

172 About the Editors

include semantic web technologies, semantic data mashup, linked data, big
data management, knowledge engineering, big data integration, semantic
integration in life sciences and health care, workflow management, IoT
semantic interoperability, IoT semantic data and systems integration. Dr.
Zappa is the W3C Advisory Committee representative for Insight Centre at
University of Galway and member of W3C working groups like the HCLS IG,
the Web of Things (WoT) IG and WG, the Spatial Data on the Web WG. He
currently work with the main Insight Linked Data and Semantic Web Groups
and with the UloT (Internet of Things, stream processing and intelligent
systems unit) Research Unit, addressing collaboration with different units and
involvement in various projects where he seeks to develop general-purpose
linked data analytics platform(s), which enables (a) flexible and scalable
data integration mechanisms and (b) flexible use and reuse of data analytics
components such as visualization components and analytics methods. Dr.
Zappa has an extensive expertise of applying semantic web technologies and
linked data principles in health care and life sciences domains.

Mr. Waheed Ashraf is a Senior Software Engineer with extensive experience
in Java programming with Spring Boot and Project Management experience
with a strong background on microservices systems design and is an AWS
Certified person. Mr. Ashraf is a highly skilled senior software engineer,
with 10+ years of project related professional experience in developing and
implementing software systems and developing and maintaining enterprise
applications working for international companies from USA, Australia and
Malaysia. Mr. Ashraf is also proficient in agile software development, scrum
and continuous integration (Jenkins), Amazon Web Services (AWS) and
back-end RDBMS (using SQL in Databases Like Oracle, DB2, MySQL 4.0
and Microsoft SQL Server). He is currently responsible for the design, devel-
opment and implementation of a federated authentication and authorization
infrastructure (AAI) for federated access to data providers in the context
of the Federated Decentralized Trusted Data Marketplace for Embedded
Finance FAME Horizon Europe project.

Dr. Pedro Malo is professor at the Electrotechnical Engineering and Com-
puters Department (DEEC) of the NOVA School of Science and Technol-
ogy (FCT NOVA), Senior Researcher at UNINOVA research institute and
Entrepreneur at UNPARALLEL Innovation research-driven hi-tech SME. He
obtained an M.Sc. in Computer Science and holds a Ph.D. in Computer
Engineering with research interests in interoperability and integrability of

About the Editors 173

(complex) systems with special emphasis on cyber-physical systems/Internet
of Things. Pedro coined novel methods and tools such as the plug’n’play
interoperability (Pnl) solution for large-scale data interoperability and the
NOVAAS (NOVA Asset Administration Shell) that establishes the guide-
lines and methodology for industry digitization by integrating industrial
assets into a Industry 4.0 communication backbone. As an entrepreneur,
Pedro initiated the development of the IoT Catalogue that aims to be
the whole-earth catalogue of the Internet of Things (IoT) — the one-stop-
source for innovations, products, applications, solutions, etc. to help users
(developers/integrators/advisors/end-users) to take the most advantage of
the IoT for the benefit of society, businesses and individuals. Pedro has
20+ years practice in the management, research and technical coordina-
tion/development of RTD and innovation projects in ICT domains especially
addressing data technologies, systems’ interoperability and integration solu-
tions. Pedro is a recognized Project Manager and S&T Coordinator of
European/National RTD and industry projects with skills in the coordination
of both co-localized and geographical dispersed work teams operating in
multidisciplinary and multicultural environments.

Marcio Mateus is project Manager at Unparallel Innovation, Lda Portugal
and a Research engineer holding an M.Sc. in electrotechnical and computer
engineering from the Faculty of Science and Technology of the Universidade
Nova de Lisboa (FCT NOVA). Marcio is an expert in data interoperability
measurement techniques and methodologies for complex heterogeneous envi-
ronments.

Mr. Edgar Friess is Senior System Architect at Siemens AG, Germany. In
his early career he acted as project manager and consultant at SIEMENS AG
consulting in the field of engineering with a focus on engineering tools and
methods for customers in the plant engineering and product business. Friess
is graduated from the Technical computer science in Esslingen University of
Applied Sciences.

Ivan Martinez is project manager and SW architect at Atos, Spain, and a
senior researcher at the ARI department of the company AtoS. He graduated
in computer science from Technical University of Madrid and in the past few
years he has participated in semantic web, cloud, big data and blockchain
related industrial and research projects. He has contributed to national
research projects such as PLATA, and other Cloud, HPC and big data related

174 About the Editors

projects, such as KHRESMOI, VELaSCCo, TOREADOR, DataBench and
BODYPASS mainly leading in the latter’s definition and integration of system
architecture.

Mr. Alessandro Amicone is an experience project manager at GFT, Italy
leading both public funded and commercial market projects. In the first part
of his professional career, he worked mainly in projects focusing on coor-
dinating documents management and business process management systems
for the bank and insurance industry. In recent years he has been working
on Horizon2020 projects and innovative market projects promoting smart
communities and technology for digital transformation for and between com-
panies in the industry sector and research communities. The development
of processes and management systems mainly focuses on advancing the
state of art using software engineering for blockchain, smart contracts and
distributed/self-sovereign identity, ensuring cyber-security solutions.

Justina Bieliauskaite is Innovations Director at the European Digital SME
Alliance with more than 8 years of project lead and management expe-
rience (previously she worked in Lithuanian and Belgian NGOs). Justina
Bieliauskaite leads the preparation and implementation of Horizon Europe,
Digital Europe Programme, Erasmus+ and other tenders/service contracts
for the European Commission. She is experienced in coordinating stake-
holder engagement, policy analysis and recommendations, SME training,
standardization, and communication activities. Justina is currently the main
coordinator of the BlockStand.eu project. Currently, Justina is leading DIGI-
TAL SME’s Projects and Standardisation teams, and coordinates the internal
WG DIGITALIZATION which covers Al, 10T, cloud computing, blockchain
and emerging technologies, as well as coordination among digital innovation
hubs. Justina holds a Master’s degree in Science (cum laude), focusing on
political science and international relations, from the Universities of Leiden
and Vilnius. Besides her mother-tongue Lithuanian, Justina speaks English,
Italian, Russian and German.

Dr. Marina Cugurra is a lawyer specializing in R&I projects, in particular
in legal issues of new technologies and Information Society (e.g. Al, GDPR,
data ownership, etc.), with a Ph.D. degree at the “Telematics and Information
Society” Ph.D. School at University of Florence. She is also an expert in
ethical and societal themes related to ICT research and technological develop-
ments. She is serving as independent Ethical Expert at European Commission

About the Editors 175

and European Defense Agency. Consolidated experience in national projects
and international and European projects. Scientific collaboration with CNIT
(National Inter-University Consortium for Telecommunications) and CNR
— ITTIG (Italian National Research Council, Institute of Legal Information
Theory and Techniques). Legal Advisor in the R&I Division of multinational
companies. She has contributed to the activities of the legal working groups
of Eu-wide initiatives (EU Blockchain Observatory Forum) and is Chair of
the Ethics, Data Protection and Privacy (EDPP) Task Force of the “Citizen’s
Control of Personal Data” Initiative within Smart City Marketplace.

Systems and Implemented Technologies
for Data-Driven Innovation, Addressing
Data Spaces and Marketplaces Semantic
Interoperability Needs

i3-MARKET Series - Part Il
Data Economy, Models, Technologies and Solutions

Editors:

Martin Serrano Edgar Friess

Achille Zappa Ivan Martinez
Waheed Ashraf Alessandro Amicone
Pedro Malo Justina Bieliauskaite
Marcio Mateus Marina Cugurra

Inthe second i3-MARKET series book we review the basic technological
principles, software best practices, and standards for implementing
and deploying data spaces and data marketplaces. The book provides
a definition for data-driven society as: The process to transform data
production into data economy for the people using the emerging
technologies and scientific advances in data science to underpin
the delivery of data economic models and services. This book further
discuss why data spaces and data marketplaces are the focusin today’s
data-driven society as the trend to rapidly transforming the data
perception in every aspect of our activities. In this book technology
assets that are designed and implemented following the i3-MARKET
backplane reference implementation (WebRlI) that uses open data, big
data, loT and Al design principles is introduced. Moreover, the series of
software assets grouped as sub-systems and composed by software
artefacts are included and explained in full. Further, we describe
i3-MARKET backplane tools and how these can be used for supporting
marketplaces and its components including details of available
data assets. Next, we provide description of solutions developed in
i3-MARKET as an overview of the potential for being the reference
open-source solution to improve data economy across different data
marketplaces.

ISBN 978-87-7004-171-3

R

River Publishers

	Front Cover

	Systems and Implemented Technologies for Data-Driven Innovation, Addressing Data Spaces and Marketplaces Semantic Interoperability Needs i3-MARKET Series - Part II: Data Economy, Models, Technologies and Solutions

	Contents
	Preface
	Who Should Read this Book?
	What is Addressed in the i3-MARKET Book Series?
	What is Covered in this i3-MARKET Part II Book? ``Systems and Implemented Technologies for Data-Driven Innovation, Addressing Data Spaces and Marketplaces Semantic Interoperability Needs''
	Acknowledgements
	List of Figures
	List of Tables
	List of Contributors
	List of Abbreviations
	1 Reference Architecture
	1.1 Level 1
	1.2 Level 2

	2 Wallets and Smart Contracts
	2.1 i3-MARKET Wallet
	2.2 Auditable Accounting
	2.3 Conflict Resolution/Non-Repudiation Protocol
	2.4 Explicit Consent
	2.5 Smart Contract Manager

	3 i3-MARKET Wallets
	3.1 Objectives
	3.2 Technical Requirements
	3.3 Solution Design/Blocks
	3.4 Diagrams
	3.5 Interfaces
	3.6 Background Technologies

	4 Auditable Accounting
	4.1 Objectives
	4.2 Technical Requirements
	4.3 Solution Design/Blocks
	4.4 Diagrams
	4.5 Interfaces
	4.6 Background Technologies

	5 Conflict Resolution/Non-repudiation Protocol
	5.1 Objectives
	5.2 Technical Requirements
	5.3 Solution Design/Blocks
	5.4 Diagrams
	5.5 Interfaces
	5.6 Background Technologies

	6 Explicit Consent
	6.1 Objectives
	6.2 Technical Requirements
	6.3 Solution Design/Blocks
	6.3.1 Diagrams

	6.4 Background Technologies

	7 Smart Contract Manager
	7.1 Objectives
	7.2 Technical Requirements
	7.3 Solution Design/Blocks
	7.4 Diagrams
	7.5 Interfaces
	7.6 Background Technologies

	8 i3-MARKET Crypto Token and Data Monetization
	8.1 Objectives
	8.2 Technical Requirements
	8.3 Solution Design/Blocks
	8.4 Standard Payment
	8.5 Tokenization
	8.6 Diagrams
	8.7 Interfaces
	8.8 Background Technologies

	9 i3-MARKET Semantic Model Repository and Community
	9.1 Semantic Engine (SEED)
	9.2 Technical Requirements
	9.3 Solution Design/Blocks
	9.4 Building Block High-level Picture
	9.5 Diagrams
	9.6 Interfaces
	9.7 Background Technologies

	10 Interfaces
	10.1 Data Access API
	10.2 Background Technologies
	10.3 Notifications Manager
	10.4 Notifications as a Service
	10.5 Notifications to Users
	10.6 User Subscriptions

	11 Conclusions
	References
	Index
	About the Editors
	Back Cover

