
Concepts and Design Innovations
Addressing the Digital Transformation

of Data Spaces and Marketplaces
i3-MARKET Book Series - Part I: A Vision to the

Future of Data-Driven Economy

RIVER PUBLISHERS SERIES IN COMPUTING AND INFORMATION
SCIENCE AND TECHNOLOGY

Series Editors:

K.C. CHEN
National Taiwan University, Taipei, Taiwan
University of South Florida, USA

SANDEEP SHUKLA
Virginia Tech, USA
Indian Institute of Technology Kanpur, India

The “River Publishers Series in Computing and Information Science and Technology” covers
research which ushers the 21st Century into an Internet and multimedia era. Networking suggests
transportation of such multimedia contents among nodes in communication and/or computer
networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and implemen-
tation of wired/wireless networking are all within the scope of this series. Based on network
and communication science, we further extend the scope for 21st Century life through the
knowledge in machine learning, embedded systems, cognitive science, pattern recognition, quan-
tum/biological/molecular computation and information processing, user behaviors and interface,
and applications across healthcare and society.

Books published in the series include research monographs, edited volumes, handbooks and
textbooks. The books provide professionals, researchers, educators, and advanced students in the
field with an invaluable insight into the latest research and developments.

Topics included in the series are as follows:-

• Artificial intelligence
• Cognitive Science and Brian Science
• Communication/Computer Networking Technologies and Applications
• Computation and Information Processing
• Computer Architectures
• Computer networks
• Computer Science
• Embedded Systems
• Evolutionary computation
• Information Modelling
• Information Theory
• Machine Intelligence
• Neural computing and machine learning
• Parallel and Distributed Systems
• Programming Languages
• Reconfigurable Computing
• Research Informatics
• Soft computing techniques
• Software Development
• Software Engineering
• Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

Concepts and Design Innovations
Addressing the Digital Transformation

of Data Spaces and Marketplaces
i3-MARKET Book Series - Part I: A Vision to the

Future of Data-Driven Economy

Editors

Martín Serrano
Achille Zappa

Waheed Ashraf
Pedro Maló

Márcio Mateus
Edgar Friess

Iván Martínez
Alessandro Amicone
Justina Bieliauskaite

Marina Cugurra

River Publishers

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

www.riverpublishers.com

ISBN: 978-87-7004-169-0 (Hardback)
978-87-7004-168-3 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2024. This book is published open
access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, a link is provided to the Creative Commons license
and any changes made are indicated. The images or other third party material in
this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publica-
tion. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper.

Contents

Preface ix

Who Should Read this Book? xi

What is Addressed in the i3-MARKET Book Series? xiii

What is Covered in this i3-MARKET Part I Book? xv

Acknowledgements xvii

List of Figures xix

List of Tables xxi

List of Contributors xxiii

List of Abbreviations xxvii

1 i3-MARKET Overview 1

2 Architecture Overview Specification 3
2.1 Architecture . 3

2.1.1 The 4 + 1 architectural view 3
2.2 Context View . 4
2.3 Logical View . 6
2.4 i3-MARKET Microservice-based Architecture 8
2.5 i3-MARKET Core Functionality 13

v

vi Contents

2.6 i3-MARKET Basic Workflows 15
2.7 Process View . 16
2.8 Development View . 16

2.8.1 Approach . 17

3 i3-MARKET Trustworthy Design 21
3.1 Objectives . 21

3.1.1 Context . 23
3.1.2 Building block big picture 23

3.2 Technical Requirements . 24
3.2.1 Actors . 24
3.2.2 User-centric authentication 25

3.2.2.1 Epics . 25
3.2.2.2 User stories 26

3.2.3 Service-centric authentication 27
3.2.3.1 Epics . 28
3.2.3.2 User stories 28

3.3 Solution Design . 28
3.3.1 User-centric authentication 28

3.4 Diagrams . 42
3.4.1 Identity authentication 43
3.4.2 User registration 44
3.4.3 OIDC authorization (authentication code + PKCE) . 45

3.5 Interfaces . 46
3.6 Background Technologies 47

3.6.1 JSON Web Token (JWT) 47
3.6.2 OpenID Connect (OIDC) 49
3.6.3 Decentralized identity (DID) 49
3.6.4 Self-sovereign identity and blockchain 49
3.6.5 Verifiable Credentials (VC) 50

4 i3-MARKET Semantic Models 53
4.1 i3-MARKET Model Specifications 54
4.2 i3-MARKET Semantic Core Models 58
4.3 Data Marketplace and Data Space Actors 60
4.4 Data Offering . 62

4.4.1 Controlled vocabularies suggested to be used for
particular annotations 73

4.4.2 Pricing model . 75

Contents vii

4.4.3 Domain categorization/taxonomies for domain-specific
annotations of datasets 78

4.4.4 W3C Verifiable Credentials data model 80
4.4.5 Smart contracts for data sharing agreements 81

4.5 Online i3-MARKET Semantic Model Repository and Com-
munity Management . 82

4.6 Data Offerings Description–Schema Definitions in the API
Template . 83

4.7 Extended Version of Structure for DatasetInformation 115

5 Distributed Data Storage System Considerations 119
5.1 Objectives . 119
5.2 Solution Design/Blocks . 120

5.2.1 Service availability 122
5.2.1.1 Distributed storage 122
5.2.1.2 Decentralized storage 123

5.2.2 Verifiable database integrity 123
5.2.3 Federated query engine index management 126

5.3 Diagrams . 127
5.4 Interfaces . 129
5.5 Background Technologies 130

6 Data Access and Transfer – Design System Principles 131
6.1 Objectives . 131
6.2 Technical Requirements . 132
6.3 Solution Design/Blocks . 136
6.4 Diagrams . 139

7 Open-source Strategy 145

8 Conclusions 149

References 151

Index 157

About the Editors 159

Preface

Data is the oil in today’s global economy. The vision in the i3-MARKET
book series is that the fast-growing data marketplaces sector will mature,
with a large number of data-driven opportunities for commercialization and
activating new innovation channels for the data.

A new data-as-a-service paradigm where the data can be traded and com-
mercialized securely and transparently and with total liberty at the local and
global scale directly from the data producer is necessary. This new paradigm
is the result of an evolution process where data producers are more active
owners of the collected data while at the same time catapulting disruptive
data-centric applications and services. i3-MARKET takes a step forward and
provides support tools for this maturity vision/process.

i3-MARKET is a fully open source backplane platform that can be used
as a set of support tools or a standalone platform implementation of data
economy support services. i3-MARKET is the result of shared perspectives
from a representative global group of experts, providing a common vision
in data economy and identifying impacts and business opportunities in the
different areas where data is produced.

Data economy is commonly referring to the diversity in the use of data
to provide social benefits and have a direct impact in people’s life. From a
technological point of view, data economy implies technological services to
underpin the delivery of data applications that bring value and address the
diverse demands on selling, buying, and trading data assets. The demand
and the supply side in the data is increasing exponentially, and it is being
demonstrated that the value that the data has today is as relevant as any other
tangible and intangible assets in the global economy.

ix

x Preface

This publication is supported with EU research funds under grant agree-
ment i3-MARKET-871754. Intelligent, Interoperable, Integrative and deploy-
able open source MARKETplace with trusted and secure software tools
for incentivising the industry data economy and the Science Foundation
Ireland research funds under grant agreement SFI/12/RC/2289_P2. Insight
SFI Research Centre for Data Analytics. The European Commission and
the SFI support for the production of this publication does not constitute an
endorsement of the contents, which reflect the views only of the authors, and
the Commission, the SFI or its authors cannot be held responsible for any use
which may be made of the information contained therein.

Dr. J. Martin Serrano O.
i3-MARKET Scientific Manager and Data Scientist
Adjunct Lecturer and Senior SFI Research Fellow at University of Galway
Data Science Institute - Insight SFI Research Centre for Data Analytics
Unit Head of Internet of Things, Stream Processing and Intelligent Systems
Research Group
University of Galway, www.universityofgalway.ie | Ollscoil na Gaillimh
<jamiemartin.serranoorozco@universityofgalway.ie>
<martin.serrano@insight-centre.org>
<martin.serrano@nuigalway.ie>

Who Should Read this Book?

General Public and Students

This Book is a unique opportunity for understanding the future of data spaces
and marketplace assets, their services, and their ability to identify different
methodology indicators and the data-driven economy from a human-centric
perspective supports the digital transformation.

Entrepreneurs and SMEs

This Book is a unique opportunity for understanding the most updated
software tools to innovate, increase opportunities, and increase the power of
innovation into small and entrepreneurs to meet its full potential promoting
participation across the data economy values and evolution of society towards
a single digital strategy.

Technical Experts and Software Developers

This book is a guide for technolgy experts and open source enthusiast that
includes the most recent experiences in Europe towards innovating software
technology for the financial and banking sectors.

Data Spaces & Data Markeplaces Policy Makers

This Book represent a unique offering for non-technical experts but that
participates in the data economy process and the core data economy services
to enable the sharing of innovation and new services across data spaces and
marketplaces such as policy makers and standardisation organisatiosna and
groups.

xi

What is Addressed in the i3-MARKET Book
Series?

“Concepts and Design Innovations for the Digital Transformation of Data
Spaces and Data Marketplaces”

In the first part of the i3-MARKET book series, we begin by discussing
the principles of the modern data economy that lead to make the society more
aware about the value of the data that is produced everyday by themselves
but also in a collective manner, i.e., in an industrial manufacturing plant, a
smart city full of sensors generating data about the behaviours of the city
and their inhabitants, and/or the wellbeing and healthcare levels of a region
or specific locations. Data business is one of the most disruptive areas in
today’s global economy, particularly with the value that large corporates have
embedded in their solutions and products as a result of the use of data from
every individual.

“Systems and Implemented Technologies for Data-driven Innovation,
Addressing Data Spaces and Marketplaces Semantic Interoperability Needs”

In the second i3-MARKET series book, we start reviewing the basic
technological principles and software best practices and standards for imple-
menting and deploying data spaces and data marketplaces. The book provides
a definition for data-driven society as: The process to transform data produc-
tion into data economy for the people using the emerging technologies and
scientific advances in data science to underpin the delivery of data economic
models and services. This book further discusses why data spaces and data
marketplaces are the focus in today’s data-driven society as the trend to

xiii

xiv What is Addressed in the i3-MARKET Book Series?

rapidly transforming the data perception in every aspect of our activities. In
this book, technology assets that are designed and implemented following the
i3-MARKET backplane reference implementation (WebRI) that uses open
data, big data, IoT, and AI design principles are introduced. Moreover, the
series of software assets grouped as sub-systems and composed by software
artefacts are included and explained in full. Further, we describe i3-MARKET
backplane tools and how these can be used for supporting marketplaces and
its components including details of available data assets. Next, we provide
a description of solutions developed in i3-MARKET as an overview of
the potential for being the reference open source solution to improve data
economy across different data marketplaces.

“Technical Innovation, Solving the Data Spaces and Marketplaces
Interoperability Problems for the Global Data-driven Economy”

In the third i3-MARKET series book, we focus on including the best
practices and simplest software methods and mechanisms that allow the i3-
MARKET backplane reference implementation to be instantiated, tested, and
validated even before the technical experts and developers community decide
to integrate the i3-MARKET as a reference implementation or adopted open
source software tools. In this book, the purpose of offering a guide book for
technical experts and developers is addressed. This book addresses the so-
called industrial deployment or pilots that need to have a clear understanding
of the technological components and also the software infrastructures, thus
it is important to provide the easy-to-follow steps to avoid overwhelm the
deployment process.

i3-MARKET has three industrial pilots defined in terms of data resources
used to deploy data-driven applications that use the most of the i3-MARKET
backplane services and functionalities. The different software technologies
developed, including the use of open source frameworks, within the context
of the i3-MARKET are considered as a bill of software artefacts of the
resources needed to perform demonstrators, proof of concepts, and prototype
solutions. The i3-MARKET handbook provided can actually be used as input
for configurators and developers to set up and pre-test testbeds, and, therefore,
it is extremely valuable to organizations to be used properly.

What is Covered in this i3-MARKET Part I
Book?

“Concepts and Design Innovations addressing the Digital Transformation of
Data Spaces and Marketplaces”

In this first part of the i3-MARKET Book series we begin by discussing
the principles of the modern data economy that lead to make the society more
aware about the value of the data that is produced everyday by themselves
but also in a collective manner, i.e. in an industrial manufacturing plant, a
smart city full of sensors generating data about the behaviours of the city
and their inhabitants and/or the wellbeing and healthcare levels of a region
or specific locations, etc. Data Business is one of the most disruptive areas
in today’s global economy, particularly with the value that large corporates
have embedded in their solutions and products as result of the use of data
from every individual.

i3-MARKET envision a large number of data-driven opportunities emerg-
ing for activating new channels of innovation named as Data Marketplaces
where the data can be trade and commercialize transparently and with full
liberty at the local and global scale while at the same time catapulting
data-driven business opportunities for more disruptive datacentric services.
i3-MARKET is at the same time a backplane platform that can serve as a
set of support tools or a standalone implementation of marketplace services
as result of a sharing vision from a representative global group of experts,
providing a common vision and identifying impacts in the different sectors
where data is produced.

xv

Acknowledgements

Immense thanks to our families for their incomparable affection, jollity, and
constant understanding that scientific career is not a work but a lifestyle,
for encouraging us to be creative, for their enormous patience during the
time away from them, invested in our scientific endeavours and responsi-
bilities, and for their understanding about our deep love to our professional
life and its consequences − we love you!

To all our friends and relatives for their comprehension when we had no
time to spend with them and when we were not able to join in time because we
were in a conference or attending yet another meeting and for their attention
and the interest they have been showing all this time to keep our friendship
alive; be sure, our sacrifices are well rewarded.

To all our colleagues, staff members, and students at our respective insti-
tutions, organizations, and companies for patiently listening with apparent
attention to the descriptions and progress of our work and for the great
experiences and the great time spent while working together with us and
the contributions provided to culminate this book series project. In partic-
ular, thanks to the support and confidence from all people who believed this
series of books would be finished in time and also to those who did not trust
on it, because, thanks to them, we were more motivated to culminate the
project.

To the scientific community, who is our family when we are away and
working far from our loved ones, for their incomparable affection, loyalty,
and constant encouragement to be creative, and for their enormous patience
during the time invested in understanding, presenting, and providing feedback
to new concepts and ideas − sincerely to you all, thanks a million!

xvii

xviii Acknowledgements

This publication is supported with EU research funds under grant agree-
ment i3-MARKET-871754. Intelligent, Interoperable, Integrative and deploy-
able open source MARKETplace with trusted and secure software tools
for incentivising the industry data economy. The European Commission’s
support for the production of this publication does not constitute an endorse-
ment of the contents, which reflect the views only of the authors, and the
Commission or its authors cannot be held responsible for any use which may
be made of the information contained therein.

Martín Serrano on Behalf of All Authors

List of Figures

Figure 2.1 4 + 1 Architectural view model. 4
Figure 2.2 Context view with i3-MARKET as a blackbox. . . 5
Figure 2.3 Logical view with i3-MARKET. 7
Figure 2.4 i3-MARKET microservice layout. 9
Figure 2.5 High-level view of the i3-MARKET Backplane

architecture and blocks for systems and artefacts. . 12
Figure 2.6 Building block hierarchy [3]. 18
Figure 3.1 Backplane architecture. 22
Figure 3.2 SSI and IAM components. 23
Figure 3.3 OIDC SSI Auth Service architecture. 29
Figure 3.4 Example of a DID document resolved. 31
Figure 3.5 User registration flow. 32
Figure 3.6 OTP request to start the “pairing” process. 33
Figure 3.7 i3-MARKET Smart Wallet request to disclose the

DID. 34
Figure 3.8 Verifiable Credential acceptance. 35
Figure 3.9 Credentials list. 35
Figure 3.10 Revoke Verifiable Credential flow. 36
Figure 3.11 Verify Verifiable Credential flow. 39
Figure 3.12 Authorization flow. 40
Figure 3.13 Disclosure of the data provider credential. 42
Figure 3.14 Identity authentication process. 43
Figure 3.15 User registration process. 44
Figure 3.16 OIDC authorization process. 45
Figure 3.17 Verifiable Credential micro service specification. . 46
Figure 3.18 OIDC SSI Auth micro service specification. . . . 47

xix

xx List of Figures

Figure 3.19 Verifiable Credentials model. 51
Figure 4.1 i3-MARKET data model and the data lifecycle

process. 57
Figure 4.2 High-level semantic model structure of main mod-

ules. 58
Figure 4.3 Main classes’ block diagram of the i3-MARKET

semantic model. 59
Figure 4.4 Overview of the i3-MARKET semantic model. . . 60
Figure 4.5 Data pricing-value model. 78
Figure 4.6 Data pricing-value model parameters. 78
Figure 5.1 Decentralized storage subsystem. 121
Figure 5.2 Distributed storage subsystem. 121
Figure 5.3 VDI integration with auditable accounting. 124
Figure 5.4 Federated query engine index management. 128
Figure 5.5 Verifiable data integrity. 129
Figure 6.1 Authentication and authorization. 140
Figure 6.2 Data transfer transparency. 141
Figure 6.3 Data management. 142
Figure 6.4 Secure. 143
Figure 7.1 i3-MARKET open-source strategy. 147

List of Tables

Table 2.1 Views of the adapted 4 + 1 architectural view model. 4
Table 3.1 Actors of the system. 24
Table 3.2 Epics of user-centric authentication. 25
Table 3.3 User stories of user-centric authentication. 26
Table 3.4 Epics of service-centric authentication. 28
Table 3.5 User stories of service-centric authentication. 28
Table 4.1 Provider properties. 61
Table 4.2 Organization properties. 61
Table 4.3 Consumer properties. 62
Table 4.4 Owner properties 62
Table 4.5 Market module. 62
Table 4.6 Data Offering properties. 64
Table 4.7 DCAT dataset main properties. 66
Table 4.8 Main properties of the DatasetInformation class. . . 67
Table 4.9 DCAT distribution main properties. 67
Table 4.10 DataService properties. 68
Table 4.11 DataService properties. 68
Table 4.12 LicenseGrant properties. 69
Table 4.13 IntededUse properties. 70
Table 4.14 DataExchange properties. 70
Table 4.15 Preliminary example for a metadata description. . . 71
Table 4.16 Preliminary example for a DataOffering description. 71
Table 4.17 Preliminary example for annotations. 74
Table 4.18 PricingModel basic properties. 75
Table 4.19 PaymentOnPlan basic properties. 76
Table 4.20 PaymentOnAPI basic properties. 76

xxi

xxii List of Tables

Table 4.21 PaymentOnUnit basic properties. 76
Table 4.22 PaymentOnSize basic properties. 77
Table 4.23 PaymentOnSubscription basic properties. 77
Table 4.24 FreePrice basic properties. 77
Table 6.1 Authentication and authorization – epics. 132
Table 6.2 Authentication and authorization – user stories. . . . 133
Table 6.3 Data transfer transparency – epics. 133
Table 6.4 Data transfer transparency – user stories. 134
Table 6.5 secure data transfer & anonymization – epics. 134
Table 6.6 Secure data transfer and anonymization – user stories. 134
Table 6.7 Data management – epics. 135
Table 6.8 Data management – user stories. 135
Table 6.9 Data access SDK – epics. 135
Table 6.10 Data access SDK – user stories. 136

List of Contributors

Achille, Zappa, NUIG, Ireland

Alessandro, Amicone, GFT, Italy

Andrei, Coman, Siemens SRL, Romania

Andres, Ojamaa, Guardtime, Estonia

Angel, Cataron, Siemens SRL, Romania

Antonio,Jara, Libellium/HOPU, Spain

Birthe, Boehm, Siemens AG (Erlangen), Germany

Borja, Ruiz, Atos, Spain

Bruno, Almeida, UNPARALLEL, Portugal

Bruno, Michel, IBM, Switzerland

Carlos Miguel, Pina Vaz Gomes, IBM, Switzerland

Carmen, Pereira, Atos, Spain

Chi, Hung Le, NUIG, Ireland

Deborah, Goll Digital SME, Belgium

Dimitris, Drakoulis, Telesto, Greece

Edgar, Fries, Siemens AG (Erlangen), Germany

Fernando, Román García, UPC, Spain

Filia, Filippou, Telesto, Greece

xxiii

xxiv List of Contributors

George, Benos, Telesto, Greece

German, Molina, Libellium/HOPU, Spain

Hoan, Quoc, NUIG, Ireland

Iosif, Furtuna, Siemens SRL, Romania

Isabelle, Landreau, IDEMIA, France

Ivan, Martinez, Atos, Spain

James, Philpot, Digital SME, Belgium

Jean Loup, Depinay, IDEMIA, France

Joao, Oliveira, UNPARALLEL, Portugal

Jose, Luis Muñoz Tapia, UPC, Spain

Juan Eleazar, Escudero, Libellium/HOPU, Spain

Juan, Hernández Serrano, UPC, Spain

Juan , Salmerón, UPC, Spain

Justina, Bieliauskaite Digital SME, Belgium

Kaarel, Hanson, Guardtime, Estonia

Lauren, Del Giudice, IDEMIA, France

Luca, Marangoni, GFT, Italy

Lucas, Asmelash, Digital SME, Belgium

Lukas, Zimmerli, IBM, Switzerland

Márcio, Mateus, UNPARALLEL, Portugal

Marc, Catrisse, UPC, Spain

Mari, Paz Linares, UPC, Spain

Maria, Angeles Sanguino Gonzalez, Atos, Spain

Maria, Smyth, NUIG, Ireland

Marina, Cugurra, ETA Consulting

Marquart, Franz, Siemens AG (Erlangen), Germany

Martin, Serrano, NUIG, Ireland

List of Contributors xxv

Mirza, Fardeen Baig, NUIG, Ireland

Oxana, Matruglio, Siemens AG (Erlangen), Germany

Pascal, Duville, IDEMIA, France

Pedro, Ferreira, UNPARALLEL, Portugal

Pedro, Malo, UNPARALLEL, Portugal

Philippe, Hercelin, IDEMIA, France

Qaiser, Mehmood, NUIG, Ireland

Rafael, Genés, UPC, Spain

Raul, Santos, Atos, Spain

Rishabh, Chandaliya, NUIG, Ireland

Rupert, Gobber, GFT, Italy

Stefanie, Wolf, Siemens AG (Erlangen), Germany

Stratos, Baloutsos,AUEB,Greece

Susanne, Stahnke, Siemens AG (Erlangen), Germany

Tanel, Ojalill, Guardtime, Estonia

Timoleon, Farmakis, AUEB, Greece

Tomas, Pariente Lobo, Atos, Spain

Toufik, Ailane, Siemens AG (Erlangen), Germany

Víctor, Diví, UPC, Spain

Vasiliki, Koniakou, AUEB, Greece

Yvonne, Kovacs, Siemens SRL, Romania

List of Abbreviations

AI Artificial intelligence
API Application program interface
APP Mobile application/web application
CA Certificate authority
CSMT Compact sparse merkle tree
DB Data base
DCAT Data catalog vocabulary
DID Decentralized identifier
DLT Distributed ledger technology
DSA Data sharing agreement
ECDSA Elliptic curve digital signature algorithm
HMAC Hash-based message authentication code
IAM Identity and access management
IDM Identity management
IoT Internet of things
IRI Information reuse and integration
JWT JSON web token
KOS Knowledge organization system
NAL Nexus authorization logic
O-CASUS Ontology for control, access, save, use and

security
OIDC OpenID connect
OSS Open source software
PAV Privacy, anonymity, and verifiability
PDU Protocol data unit
PoO Proof of origin

xxvii

xxviii List of Abbreviations

PoP Proof of publication
PoR Proof of reception
QoS Quality of Service
RP Relying party
RSA RivestâĂŞShamirâĂŞAdleman cryptosystem
SDA Secure data access
SDK Software development kit
SKOS Simple knowledge organization system
SLA Service level agreement
SLS Service level specification
SME Small and medium-sized enterprises
SQL Structured query language
SSI Self-sovereign identity
TLS Transport layer security
URI Uniform resource identifier
VC Verifiable credentials
VDI Verifiable database integrity
VoID Vocabulary of interlinked datasets

1
i3-MARKET Overview

The i3-MARKET Project (www.i3-market.eu) provides solutions in the form
of software artifacts implemented as open-source tools and the reference
pilots deployed as industrial applications, both developed addressing the
growing demand for a European Single Digital Data Market and aiming to
incentivise the growing demand for a new paradigm in Data Economy.

A new paradigm in Data Economy that promotes economic growth will
only be possible by creating innovative solutions that can be implemented as
industrial deployments, which focuses on demonstrating that the value of the
data can be distributed to all stakeholders participating in the data lifecycle.
The i3-MARKET solutions aim at providing technologies for trustworthy
(secure and reliable), data-driven collaboration, and federation of existing
and new future marketplace platforms, with special attention to industrial
data. The i3-MARKET architecture is designed to enable secure and privacy-
preserving data sharing across data spaces and marketplaces, through the
deployment of a backplane across operational data marketplaces.

In i3-MARKET, we are not trying to create another new marketplace,
but we are implementing the backplane solutions that allow other data
marketplace and data space to expand their market, facilitate the registra-
tion and discovery of data assets, facilitate the trading and sharing of data
assets among providers, consumers, and owners, and provide tools to add
functionalities they lack for better data sharing and trading processes.

The i3-MARKET project has built a blueprint open-source soft-
ware architecture called “i3-MARKET Backplane” (www.open-source.i3-
MARKET.eu) that addresses the growing demand for connecting multiple
data spaces and marketplaces in a secure and federated manner.

i3-MARKET consortium is contributing with the developed software
tools to build the European data market economy by innovating marketplace
platforms, demonstrating with three industrial reference implementations
(pilots) that a decentralized data economy and more fair growth are possible.

1

2
Architecture Overview Specification

The overall architecture defines all required components and subsystems,
their basic functionality and behaviour, as well as their interfaces and inter-
action patterns in accordance with the user stories and the requirements
specified in the project. The detailed specification of the i3-MARKET
components and interfaces are reported in the chapters below.

In particular, the high-level architecture covers:

a) the i3-MARKET Backplane solutions with its core functionalities;
b) the interaction of existing data spaces and marketplaces with the i3-

MARKET Backplane and each other (for secure data access) based on
open interfaces;

c) the engagement of data providers, consumers, owners via smart wallets
and applications, and the interactions with the i3-MARKET Backplane
for the sake of privacy preservation and access control to their personal
or industrial data assets.

2.1 Architecture

We describe the architecture in the 4 + 1 architectural view model. This is a
standard model, commonly used for documenting software architectures.

The complete architecture is available on the i3-MARKETWiki pages. It
is available to all partners to be viewed or modified. The drawing tool used is
either Gliffy or Draw.io.

2.1.1 The 4 + 1 architectural view

The 4 + 1 architectural view model contains different views [1] as depicted
in Figure 2.1.

The 4 + 1 architectural view model was adapted to fit our purposes.
To make sure the different interfaces and the communication between our
proposed system and the external systems are analysed, the so-called context
view is added to the view model.

Table 2.1 describes the different views of the adapted 4 + 1 architectural
view model.

3

4 Architecture Overview Specification

Figure 2.1 4 + 1 Architectural view model.

Table 2.1 Views of the adapted 4 + 1 architectural view model.
Architectural view Description Diagrams to use

Context view • System as a blackbox
• Interfaces and communication
between blackbox and external
systems

Context diagrams

Logical view • Functionality that the system pro-
vides to end-users

Class and state dia-
grams

Process view • Dynamic aspects of the system
• System processes
• Runtime behaviour of the system

Sequence, commu-
nication, and activ-
ity diagrams

Development/
implementation
view

• System from a programmer’s per-
spective

• Software management

Component
diagrams

Physical/deployment
view

• System from a system engineer’s
point of view

• Topology of software components
on the physical layer (and their
communication)

Deployment
diagrams

Scenarios/use case view • Sequence of interactions between
objects and between processes

• To identify architectural elements
and to illustrate and validate the
architecture design.

• Starting point for tests

Use case diagrams

2.2 Context View

The context view shows a system as a whole and its interfaces to external
factors. System context diagrams represent all external entities that may

2.2 Context View 5

interact with a system; such a diagram pictures the system at the centre, with
no details of its interior structure, surrounded by all its interacting systems,
environments, and activities. The objective of the system context diagram is
to focus attention on external factors and events that should be considered in
developing a complete set of system requirements and constraints.

System context views are used early in a project to get agreement on the
scope of the system. Context diagrams are typically included in a require-
ments document. These diagrams must be agreed on by all project stakehold-
ers and thus should be written in plain language so that the stakeholders can
understand items within the document.

The so-called system of interest, the i3-MARKET Backplane, is the
centre of this diagram but is considered as a grey-box, showing only little
internal details of the system.

The focus of this view is the external actors that have interfaces to sys-
tems. In this case, the external actors are the three pilots of the i3-MARKET
project:

Figure 2.2 Context view with i3-MARKET as a blackbox.

6 Architecture Overview Specification

• i3-MARKET automotive pilot
• i3-MARKET wellbeing pilot
• i3-MARKET industrial pilot

Figure 2.2 shows how data consumer and data provider exchange data
via the data access API. The marketplace interacts with the i3-MARKET
Backplane via an SDK. Both the API and the SDK were developed in the
project.

The three pilot boxes also show some internal elements of the pilots. Each
pilot has their own internal structure, but they share the same interface to the
i3-MARKET Backplane. This enables seamless data exchange between all
marketplaces.

2.3 Logical View

The logical view represented in Figure 2.3 shows the functionality that the
system provides to end-users.

The objective of the logical view is twofold. On one hand, this view shows
the i3-MARKET system (green box) and the link between the stakeholders
and the marketplaces. On the other hand, the logical view pursues showing the
internal decomposition of i3-MARKET system into the logical subsystems
and components, which implement the i3-MARKET Backplane API and
secure data access API (SDA API).

In general terms, i3-MARKET supports actors with the i3-MARKET
Backplane functionality by means of the two following main entry points:

- The Backplane API and SDA API (depicted as green lines in the picture),
or in other words, the direct access to the i3-MARKETBackplane. These
two APIs enable access to all integrated building blocks. This is the use
case of these actors which follow a more ad-hoc integration with i3-
MARKET.

- The i3-MARKET SDK (i3M SDK) (depicted as pink boxes in the
picture), to support the end-users’ developers with the integration of
Backplane API and SDA API. This product is intended for these actors
that pursue a more “assisted” support.

Regarding the link with the stakeholder and marketplaces, in the case of
the data marketplace actors, i3-MARKET assists them with a full version
of the Backplane API and the i3M SDK (Backplane module), which gives
support for interacting with the Backplane API.

2.3 Logical View 7

Figure 2.3 Logical view with i3-MARKET.

In the case of the data owners, data providers, and data consumers, the
normal operating mode is the access to i3-MARKET Backplane through their
own data marketplace. However, for some particular data marketplace cases,
data owners, data providers, and data consumers will have the possibility to
directly interface with i3-MARKET system through the available SDKs and
APIs. More specifically, i3-MARKET will allow direct communication with
the stakeholder by means of the following components:

- Data owner, through the i3M SDK (Backplane module), which gives
support for interacting with the Backplane API (light green lines in the
picture).

- Data provider, through the i3M SDK-Backplane module which gives
support for interacting with the Backplane API (light green lines in the
picture) and the i3M SDK-secure data access API, which gives support

8 Architecture Overview Specification

for interacting with the secure data access API (dark green lines in the
picture).

- Data consumer, through the i3M SDK-Backplane module, which gives
support for interacting with the Backplane API and the i3M SDK-secure
data access API, which gives support for interacting with the secure data
access API.

In order to guarantee the authentication mechanisms proposed by i3-
MARKET, a Wallet Client should be installed into the end-user side in order
to store the user private keys.

2.4 i3-MARKET Microservice-based Architecture

i3-MARKET Backplane is mostly a set of semi-independent subsystems with
self-contained functionalities such as the identity and access management
system, the semantic engine subsystem, data access subsystem, etc. Most
of these subsystems have broken down their functionalities into atomic and
loosely coupled sub-components exposing their functionality through a REST
API, which yields a microservice-based nature to the i3-MARKET system.

This microservice-based architecture brings i3-MARKET a set of very
well-known benefits such as:

- facilitating the communication between the components in a system;
- have been independently developed and deployed into a more efficient
management;

- facilitating the identification of dependencies between the components;
- modular architecture allows each application to use only those function-
alities that are needed;

- helps to manage the complexity of the overall system.

Figure 2.4 shows a detailed landscape of the current set of microser-
vices (cubes), APIs (little yellow rectangles), components (blue rectangles),
and storages (white rectangles) on i3-MARKET. Each arrow in the picture
denotes a dependency between the subject and object involved in the arrow.
Finally, for linking each of the service/microservices/library depicted in the
diagramwith the component diagrams in section development view “develop-
ment view”, we have categorized each service/microservice/library according
to the system (green dashed boxes) and subsystems (brown dashed boxes)
they belong. Finally, remark that the RPC distributed ledger is one and single
instance, but it has been put as several instances for picture legibility.

2.4 i3-MARKET Microservice-based Architecture 9

Figure 2.4 i3-MARKET microservice layout.

Figure 2.5 shows the identified dependencies between i3-MARKET
components:

- SDK system: For a more grounded view of this subsystem, refer to
Chapter 17 on i3-MARKET SDK and marketplace reference implemen-
tation.

◦ SDK-core libraries for making easier the development of applica-
tions that make use of the Backplane API. It interfaces with the
Backplane gateway.

◦ SDK-RI future common pilots-driven complex workflows based on
the Backplane services. It interfaces with the SDK-core library.

- Trust, security, and privacy system:

◦ SSI and IAM subsystem (label A). For a more grounded picture
of this subsystem, see “SSI and IAM subsystem” in Chapter 3 on
“i3-MARKET identity and access management”.

• “User-centric authentication” component, responsible of pro-
viding the management of self-sovereign identity based on
DID and VC and the compatibility with OIDC standard.
Microservices:

• Verifiable Credential microservice, which provides DID,
Verifiable Credential management, and compatibility

10 Architecture Overview Specification

with OIDC standard. It interfaces with the wallet because
the Verifiable Credential assumes that the user created and
controls with his crypto wallet their identities and with
the RPC ledger storage for updating the revocation of
credential.

• “Service-centric authentication” component, responsible for
providing authentication and authorization of users and client
with standard OIDC/OAuth flows, integrating the user-centric
authentication component. Microservices:

• OIDC provider microservice, which implements the
OIDC compatibility (based on Verifiable Credential). It
interfaces with the Verifiable Credential for allowing the
token creation based on the Verifiable Credentials and
with the wallet for sending the credentials.

◦ Smart Wallet subsystem (label B). For a more grounded picture of
this subsystem, see “Smart Wallet subsystem” in Chapters 4 and 5.

• Wallet APP for storing user private keys. It interfaces on the
RPC ledger storage.

◦ Smart contract subsystem (label C). For a more grounded picture
of this subsystem, see “smart contract subsystem” in Chapter 4 and
Chapter 7 in Book Series Part II.

• Smart contract manager component/microservice responsible
for providing a gateway to access the smart contracts. It was
conceived mainly for managing the SLA and DSA smart
contract (business smart contracts), and the extension of its
purpose for other smart contracts is still under discussion. It
interfaces with the RPC ledger storage for storing the data
sharing agreement object and the semantic engine for creating
data purchase.

• Auditable accounting component/microservice component
responsible for logging and auditing interactions between
components and recording the registries in the blockchain.
It interfaces with the RPC ledger storage for registering
auditable data and in the future might be connected with the
distributed storage for storing proofs.

2.5 i3-MARKET Core Functionality 11

◦ Data monetization subsystem (label D). For a more grounded
picture of this subsystem, see “data monetization subsystem” in
Text on “i3-MARKET Crypto token and data monetization”.

◦ Non-repudiation protocol library. It interfaces with the Backplane
API for interacting with auditable accounting.

- Semantic system:

◦ Semantic system service responsible for managing the offer-
ings/discovery and semantic data model in the i3-MARKET. It
interfaces with contract manager managing contractual parame-
ters, and it depends on the registry DB store and the distributed DB
service’s API. It might interact with ledger for Verifiable Creden-
tials and DID IDs. And it interacts with the notification manager
service for reporting new data offerings. For a more grounded
picture of this component, see Chapter 4 “i3-MARKET Seman-
tic Models” and Chapter 9 in Book Series Part II “i3-MARKET
Semantic Model Repository and Community.”

- Data access system:

◦ Data access service in charge of providing the means for allowing
the transfer of data between data provider and the data consumer. It
interacts with the non-repudiation protocol library and Backplane
(API) for enforcing smart contract. For a more grounded picture of
this system, see Chapter 6 on data access & transfer – system.

- Storage system:

◦ Distributed storage subsystem (label D):

1. Distributed storage component/microservice responsible of
storing i3-MARKET offerings index. Other uses of the dis-
tributed storage are still under discussion. Its interaction with
the RPC ledger storage for storing proof for reliability of data
is still under discussion.

- Backplane gateway component responsible for providing a gateway for
all the internal services conforming to the Backplane. This gateway is
the single-entry point for all clients. For more details about this compo-
nent, see Chapter 3 in Book Series Part III Backplane API gateway. It
depends on the availability of all the services masked behind it.

12 Architecture Overview Specification

F
ig
ur
e
2.
5

H
ig
h-
le
ve
lv

ie
w
of

th
e
i3
-M

A
R
K
E
T
B
ac
kp

la
ne

ar
ch
ite

ct
ur
e
an
d
bl
oc
ks

fo
r
sy
st
em

s
an
d
ar
te
fa
ct
s.

2.5 i3-MARKET Core Functionality 13

2.5 i3-MARKET Core Functionality

i3-MARKET provides a set of core components in charge of providing the
following capabilities:

1. Authentication-identity/authorization-access: i3-MARKET should
allow users to authenticate themselves and get authorization to access
the blockchain, secure and centralized data storage, and secured services
on i3-MARKET.

2. User management: i3-MARKET should allow data providers and
consumers to register, update, or delete from the system. In particular, i3-
MARKET assists the data marketplaces and stakeholders with following
functionalities: identity creation, user registration, identity update, and
user deletion (which ensures that his identity on the blockchain can-
not be mapped to his real identity anymore. → automatically consent
termination/cancellation).

3. Offering registration: i3-MARKET must provide mechanisms for
data providers to publish their datasets on i3-MARKET. i3-MARKET
provides semantic data models to describe data offerings and data
subscriptions/demands.

4. Offering discovery: i3-MARKET must provide mechanisms to allow
data consumers to perform data queries based on the provided seman-
tic models. It will have two variants: discover and retrieve locally
or discover and retrieve in federated i3-MARKET data marketplaces
network.

5. Data subscription: i3-MARKET must provide mechanisms to allow
data consumers to express the intention of buying data and to request an
SLA/SLS between the data consumer and a data provider, after a match
was encountered.

6. Consent: i3-MARKET has to provide the mechanisms in order for
the data owner to consent access for enabling the trading of data
assets across domains and stakeholder boundaries, without the need
for developers of an application (data consumer) to learn about the
meaning of the data from the data provider or through manual analysis
or experimentation with the data.

a. Explicit consent: i3-MARKET must provide mechanisms to allow
the data owner to give his consent before his data is transferred
(data owner). When a user is deleted, all the data and metadata
related to the user should be removed from any platform.

14 Architecture Overview Specification

b. Consent termination/cancellation: i3-MARKET must provide the
mechanisms for ending the commercialization between involved
parties on a smart contract. i3-MARKET provides the mechanisms
to end running smart contracts at any time.

7. Contracting: i3-MARKET has to provide mechanisms that allow to
complete data sharing agreements (SLA/SLS) between the data provider
and the data consumer. The smart contracts are then generated from the
SLA/SLS, which the participants agreed upon (data provider and data
consumer).

8. Data access: i3-MARKET provides a data access API enabling an
authorization of the data provider and the data consumer to allow a
secure data transfer (peer-to-peer or i3-MARKET-channel subscription).
The data access API provides a mechanism to monitor the data transfer
and is tightly coupled with the signed smart contracts. This functionality
was broken down into the following modules:

i. Authentication and authorization
ii. Data transfer transparency
iii. Data management
iv. Secure data transfer and anonymization

On the other hand, i3-MARKET supports the following types of data
transfer:

a. On-demand→ Data stream (see common vocabulary below).
b. Subscription → Data batch transfer (see common vocabulary

below).

9. Data monetization/payment: i3-MARKET provides functionality for
data monetization, which aligns based on the pricing model defined in
the offering description and amount consumed.

These capabilities have been validated in the i3-MARKET basic work-
flows (described in the following section). In concrete:

- “User management”: For all end-users (data providers and data
consumers), an identity should be created in advance for getting
authentication-identity and authorization-access. Therefore, a user man-
agement activity will take place as pre-requisite for starting any interac-
tion with any i3-MARKET instance.

2.6 i3-MARKET Basic Workflows 15

- “Authentication-identity/authorization-access” is used as starting point
for initiating any connection with i3-MARKET instances. Therefore,
the process of authentication (and authorization) can be reflected at the
beginning of most of the workflows. These are:

◦ “Registering a new offering”: The workflow starts with the authen-
tication of the data provider as described in the diagram “authen-
tication with end-user interaction” in Chapter 4 “i3-MARKET
Semantic Models”.

◦ “Purchase data”, “create and manage search alerts”, and “transfer
operational data”: The workflow starts with the authentication
of the data provider and data consumer, as described in the
diagram “authentication with end-user interaction” in Chapter 4
“i3-MARKET Semantic Models”.

- “Offering registration”, the behaviour of the offering registration capa-
bility is directly shown in the “register a new offering” workflow.

- “Offering discovery”, “data subscription”, and “contracting” capabilities
take place in the “purchase data” workflow.

- “Data access” and “data monetization” are the most significant steps in
the “transfer operational data” workflow.

2.6 i3-MARKET Basic Workflows

i3-MARKET includes the implementation of three pilots to validate the
functionalities of the i3-MARKET network. Even though every pilot has its
own way of how it works and its specific requirements, there are some basic
workflows, which apply to all of them. Those workflows are described for the
five most important scenarios.

The scenarios are:

- Generate data.
- Register new data offerings.
- Search, discover, and retrieve data offerings in local and federated
registry catalogues.

- Purchase data.
- Manage notifications.
- Access and transfer operational data.

16 Architecture Overview Specification

The scenarios are described in detail in i3-MARKET deliverables about
“Use Cases, Requirements and Overall i3-MARKET Architecture Spec-
ifications” available at https://www.i3-market.eu/research-and-technology-
library/.

For each of the scenarios (which are part of the problem space), technical
workflows have been derived. These workflows represent the technical real-
ization in the solution space. They represent the dynamic behaviour of the
system when stakeholders interact with it.

2.7 Process View

According to [2], the process view “takes into account some non-functional
requirements, such as performance and availability. It addresses issues of
concurrency and distribution, of system’s integrity, of fault-tolerance, and
how the main abstractions from the logical view fit within the process
architecture—on which thread of control is an operation for an object actually
executed”.

Following this approach, the i3-MARKET process view should show
the interaction between the process and threads of the system representing,
among others, non-functional characteristics, concurrency, synchronization,
availability, or performance.

From a diagram point of view, Booch stated “. . . the static and dynamic
aspects of this view are captured in the same kinds of diagrams as for the
design view – i.e. class diagrams, interaction diagrams, activity diagrams and
statechart diagrams, but with a focus on the active classes that represent these
threads and processes” [3].

A fine-grained detail is demanded for identifying the active objects
(process and threads), which are instances of active classes, and the way
they communicate between each other (synchronous/asynchronous) which is
needed for this view. Due to that, the i3-MARKET process view definition
was accomplished between the different technical task implementations.

2.8 Development View

According to [2], the development view “focuses on the actual software
module organization. . . The software is packaged in small chunks—program
libraries, or subsystems—that can be developed by one or a small number of

2.8 Development View 17

developers. The subsystems are organized in a hierarchy of layers, each layer
providing a narrow and well-defined interface to the layers above it”.

Therefore, the objective of the development view is twofold:

- Giving a system view from a programmer’s perspective, which might
help in the development process.

- Supporting the software management by monitoring the accomplish-
ment of subsystems and components depicted in the diagrams.

For the process of defining the development view, i3-MARKET has
followed the guidelines proposed by arc42 template [4] for architecture
construction and documentation, which is summarized in the following
section.

2.8.1 Approach

The i3-MARKET “development view” is documented following the “build-
ing block view” as depicted in Figure 2.6 from arc42 template. Following are
the cited instructions provided by the template:

• Content:

The building block view shows the static decomposition of the system
into building blocks (modules, components, subsystems, classes, interfaces,
packages, libraries, frameworks, layers, partitions, tiers, functions, macros,
operations, data structures, etc.) as well as their dependencies (relationships,
associations, etc.).
This view is mandatory for every architecture documentation. In analogy to
a house, this is the floor plan.

• Motivation:

Maintain an overview of your source code by making its structure under-
standable through abstraction.

This allows you to communicate with your stakeholder on an abstract
level without disclosing implementation details.

• Form:

The building block view is a hierarchical collection of black boxes and white
boxes (see Figure 2.6) and their descriptions.

Level 1 is the white box description of the overall system together with black
box descriptions of all contained building blocks.

18 Architecture Overview Specification

Figure 2.6 Building block hierarchy [3].

Level 2 zooms into some building blocks of level 1. Thus, it contains the white
box description of selected building blocks of level 1, together with black box
descriptions of their internal building blocks.

Level 3 zooms into selected building blocks of level 2, and so on.

In i3-MARKET, we have the following arc42-based templates for the
documentation of the Level 1 development view.

2.8 Development View 19

Here you describe the decomposition of the overall system using the
following white box template. It contains:

• an overview diagram;
• a motivation for the decomposition;
• black box descriptions of the contained building blocks (use a list of
black box descriptions of the building blocks according to the black box
template (see below). Depending on your choice of tool, this list could
be sub-chapters (in text files), sub-pages (in a Wiki), or nested elements
(in a modelling tool)”.

3
i3-MARKET Trustworthy Design

3.1 Objectives

Today, users’ identities and related data are stored in siloes on centralized
servers across organizations and are vulnerable to hacking. Repetitive account
creation for different applications (e.g., marketplaces) and personal informa-
tion (often outdated) stored in various services are some other drawbacks of
that approach. Distributed/self-sovereign identities supported by decentral-
ized systems come as a solution to those issues and facilitate interoperability,
ensuring security and compliance with the privacy regulation.

Figure 3.1 shows the overall architecture of i3-MARKET. We imple-
mented the reference implementation for the identity and access management
system of i3-MARKET Backplane based on the self-sovereign identity
paradigm.

The idea behind these specifications is to provide self-sovereign identity
capabilities, based on distributed identity and Verifiable Credentials concepts,
maintaining the most used authentication and authorization flows and stan-
dards in this moment, to facilitate the integration of stakeholders’ applications
and incentivize a wide adoption.

The final implementation of the i3-MARKET IAM system is based on
the selected open-source technologies for SSI (Veramo), OIDC (panva/node-
oidc-provider), and standard IAM.

The user-centric authentication is provided by the Verifiable Credentials
micro service and the OIDC SSI Auth micro service developed using the
Veramo framework.

The choice of Veramo as SSI technology has been driven from the
maturity and readiness level of the uPort technology with respect to the other
state-of-the-art technologies evaluated (Hyperledger Aries, Sidetree) and for
the compatibility to the blockchain chosen for i3-MARKET (Hyperledger
BESU), and then, after the uPort company announced the launch of this
new technology (which makes uPort deprecated), we evaluated it as a very
promising framework and decided to adopt it for the final implementation.

21

22 i3-MARKET Trustworthy Design

F
ig
ur
e
3.
1

B
ac
kp

la
ne

ar
ch
ite

ct
ur
e.

3.1 Objectives 23

Finally, the user-centric authentication components were integrated with
the i3-MARKET Smart Wallet, implementing the pairing flow and modifying
the issuing and request of Verifiable Credentials in the registration and login
flows.

The following are the high-level capabilities provided by the SSI and IAM
subsystems:

1. User-centric authentication: authentication of users based on the self-
sovereign identity paradigm.

2. Service-centric authentication: authentication of clients and users based
on a standard OIDC/OAuth identity and access management system.

3.1.1 Context

The SSI and IAM subsystem block interacts with the following three building
blocks:

- Data storage system: The SSI and IAM subsystem uses the data stor-
age system, in particular the decentralized data storage component, for
recording a DID document.

- Backplane system: The SSI and IAM subsystem is used from the
Backplane system for authenticating and authorizing users and clients.

- Data access system: The SSI and IAM subsystem is used from the data
access system for authenticating and authorizing users and clients.

3.1.2 Building block big picture

The specific SSI and IAM component diagram is shown in Figure 3.2.

Figure 3.2 SSI and IAM components.

24 i3-MARKET Trustworthy Design

The SSI and IAM subsystem is in charge of providing both “user-centric
authentication” and “service-centric authentication” capabilities.

Inside, we can find the following:

- A “user-centric authentication” component, responsible for providing
the management of self-sovereign identity based on DID and VC and
the compatibility with the OIDC standard.

- A “service-centric authentication” component, responsible for provid-
ing authentication and authorization of users and client with standard
OIDC/OAuth flows, integrating the user-centric authentication compo-
nent.

3.2 Technical Requirements

The list of technical requirements was not within an elicitation process
to ensure the collection of not only technical needs but also service and
application needs from the different stakeholders (actors) as it is described
in each table from Table 3.1.

3.2.1 Actors

Table 3.1 Actors of the system.
Name Description Labels

Data provider Actor who receives raw data from data
owners and push it to the marketplace

Data provider

Data owner Actor who generates the data and therefore
the ultimate owner of the data. Data own-
ers have to accept data requests to generate
contracts, which leads to share the data
with data consumers

Data owner

Data consumer Consumer data shared from data owners
has to create data requests through the
data discovery in order for data owners to
accept them. Data consumers receive only
the data they want

Data consumer

Administrator Manages the marketplace and its users Administrator

3.2 Technical Requirements 25

3.2.2 User-centric authentication

The human in the loop, also known as the human-centric approach, is a design
consideration that is considered in i3-MARKET. The design consideration
and requirements are described in Tables 3.2 and 3.3.

3.2.2.1 Epics

Table 3.2 Epics of user-centric authentication.
Name Description Labels

DID management A decentralized system that enables
several key actions by three distinct
entities: the controller, the relying
party, and the subject. Controllers
create and control DIDs, while rely-
ing parties rely on DIDs as an
identifier for interactions related to
the DID subject. The subject is the
entity referred to by the DID, which
can be anything: a person, an organi-
zation, a device, a location, or even
a concept. Typically, the subject is
also the controller.

Data Consumer
Data Marketplace
Data Provider
Data Owner

Verifiable Creden-
tials management

Verifiable Credential is a tamper-
evident credential that has author-
ship that can be cryptographically
verified though a proof. It can be
used to share and prove something
about the identity of a user.

Data Marketplace
Data Consumer
Data Provider
Data Owner

OIDC client com-
patibility

• Staying backward compatible
with existing OIDC clients and
OPs that implement the OIDC
specification to reach a broader
community.

• Adding scopes and validation
rules based on VC for OIDC
clients to make full use of DIDs.

• Not relying on any intermediary
such as a traditional centralized
public or private OP while still
being OIDC-compliant.

Data Marketplace

26 i3-MARKET Trustworthy Design

3.2.2.2 User stories

Table 3.3 User stories of user-centric authentication.
Name Description Labels

Create DID As a subject, I want to create a DID so that I can
manage my identity
Subject: Data Consumer, Data Provider, and
Data Owner

User Story
Data Consumer
Data Provider
Data Owner

Present DID As a user, I want to present my DID to a relying
party so that I can identify myself
User: Data Consumer, Data Provider, Data
Owner
Relying party: Data Marketplace, Data Provider

Data Consumer
Data Owner
Data Provider
User Story

Rotate DID As a user, I want to change the ownership of
my DID so that I can maintain my identity if I
change the identity provider

User Story
Data Consumer
Data Provider
Data Owner

Delegate DID As a user, I want to delegate my DID so that I
can make other DIDs able to act on behalf of me

User Story
Data Consumer
Data Provider
Data Owner

Recover DID As a user, I want to recover my DID so that I can
maintain my identity even if I lose my proof of
control
User: Data Consumer, Data Provider, Data
Owner

User Story
Data Consumer
Data Provider
Data Owner

Sign assets As a user, I want to sign my assets so that I can
demonstrate the authenticity of the asset
User: Data Consumer, Data Provider, Data
Owner

User Story
Data Consumer
Data Provider
Data Owner

Verify asset sig-
nature

As a user, I want to verify asset signature so that
I can authenticate the asset
User: Data Consumer

User Story
Data Consumer

Deactivate DID As a user, I want to deactivate my DID so that I
can delete my identity
User: Data Consumer, Data Provider, Data
Owner

User Story
Data Consumer
Data Provider
Data Owner

Resolve DID As a data marketplace, I want to resolve DID
so that I can retrieve from a DID document the
information to authenticate a DID subject and
verify data asset signature

Data
Marketplace
Data Provider
User Story

Authenticate
DID

As a relying party, I want to authenticate DID so
that I can verify the DID ownership
Relying Party: Data Marketplace/Data Provider

User Story
Data
Marketplace
Data Provider

3.2 Technical Requirements 27

Table 3.3 Continued.
Name Description Labels

Create Verifiable
Credential

As a data marketplace, I want to create a Veri-
fiable Credential so that I can provide a user an
attestation of his/her role

User Story
Data
Marketplace

Issue Verifiable
Credential

As a data marketplace, I want to issue a Veri-
fiable Credential so that I can attest something
about my users

User Story
Data
Marketplace

Receive
Verifiable
Credential

As a user, I want to receive a Verifiable Creden-
tial so that I can access the data marketplace

User Story
Data
Marketplace
Data Provider

Store Verifiable
Credential

As user, I want to store a Verifiable Credential so
that I can use and keep it and use it towards any
relying party

User Story
Data Consumer
Data Provider
Data Owner

Request
Verifiable
Credential

As a data marketplace/data provider, I want to
request Verifiable Credentials for the authenti-
cated user so that I can give the right access to
my resources

User Story
Data Consumer
Data Provider
Data Owner

Share Verifiable
Credential

As a user, I want to share a Verifiable Credential
so that I can attest something towards a relying
party

User Story
Data Consumer
Data Provider
Data Owner

Verify Verifiable
Credential

As a user, I want to receive a Verifiable Creden-
tial so that I can access a data marketplace

User Story
Data
Marketplace
Data Provider

Keep track of
issued Verifiable
Credentials

As an issuer, I want to keep track of issued
Verifiable Credentials so that I can monitor and
revoke them

User Story
Data
Marketplace

Revoke
Verifiable
Credential

As an issuer, I want to revoke a Verifiable Cre-
dential so that it cannot be used

User Story
Data
Marketplace

OIDC authenti-
cation

As a relying party (RP), I want to authenticate
users based on OIDC standards so that I do not
have to change my OIDC clients
RP: Data Marketplace, Data Provider

User Story
Data
Marketplace
Data Provider

3.2.3 Service-centric authentication

The design of i3-MARKET also includes service-centric consideration;
today, micro services are a trend, but this may change. Thus, the design
principles are described in Tables 3.4 and 3.5.

28 i3-MARKET Trustworthy Design

3.2.3.1 Epics

Table 3.4 Epics of service-centric authentication.
Name Description Labels

Existing identity
provider
integration

Run a standard OpenID Connect relaying party
(or OAuth2 client) on the Backplane API

Epic
Data
Marketplace

3.2.3.2 User stories

Table 3.5 User stories of service-centric authentication.
Name Description Labels

Existing identity
provider authen-
tication

As a data marketplace, I want to authenticate my
users using approved external identity providers

User Story
Data
Marketplace

3.3 Solution Design

3.3.1 User-centric authentication

In order to provide authentication and authorization with distributed identity
and Verifiable Credentials, we implemented two Node.js micro services. The
Verifiable Credential micro service provides the APIs that implement the core
functions to manage Verifiable Credentials, namely issuing, verifying, and
revoking Verifiable Credentials, and a utility function. The OIDC SSI Auth
micro service provides the API to perform the authorization code flow with
PKCE using Verifiable Credentials as a proof method.

To implement the solution, we have chosen Veramo (https://veramo.io/),
a framework that replaces the previous implementation of the uPort library,
which is deprecated.

Both components (OIDC SSI Auth and Verifiable Credential micro ser-
vice) integrate the Veramo framework and take advantage of its features to
manage DID and Verifiable Credentials in Figure 3.3.

The i3-MARKET network is composed of different data marketplaces
running an instance of the i3-MARKET Backplane connector. Each of them
has its own OIDC SSI Auth Service and its own Verifiable Credential

3.3 Solution Design 29

F
ig
ur
e
3.
3

O
ID

C
SS

I
A
ut
h
Se

rv
ic
e
ar
ch
ite

ct
ur
e.

30 i3-MARKET Trustworthy Design

micro service to generate, verify, and revoke Verifiable Credentials. In rela-
tion to the roles of the W3C Recommendations on verifiable credentials
(https://www.w3.org/TR/vc-data-model/), the OIDC SSI Auth Service is the
verifier, the Verifiable Credential micro service is the issuer (with some extra
features), and the user is clearly the holder of his Verifiable Credentials.
Each instance of the Verifiable Credential micro service has its own DID
(https://www.w3.org/TR/did-core/) and private key used to sign Verifiable
Credentials. In this way, each Verifiable Credential has as its issuer the DID
of the micro service that generated it. Similarly, for revocation, only the micro
service that generated a credential has the privilege to revoke it.

The user saves the Verifiable Credentials in his wallet and gives an explicit
consent to share them with the OIDC SSI Auth Service when requested
during the authentication phase.

The modules and detailed workflows are presented in the following
subsections.

• DID management:

DID management is provided by Hyperledger BESU blockchain and the
Veramo Ethr-DID library.

This library conforms to ERC-1056 and is intended to use Ethereum
addresses as fully self-managed decentralized identifiers (DIDs).

Ethr-DID provides a scalable identity method for Ethereum addresses,
which gives any Ethereum address the ability to collect on-chain and off-
chain data.

This particular DID method relies on the Ethr-Did-Registry. The Ethr-
DID-Registry is a smart contract that facilitates public key resolution for off-
chain (and on-chain) authentication. It also facilitates key rotation, delegate
assignment, and revocation to allow third-party signers on a key’s behalf, as
well as setting and revoking off-chain attribute data. These interactions and
events are used in aggregate to form a DID document using the Ethr-Did-
Resolver as shown in Figure 3.4.

DID management supports the proposed decentralized identifiers spec
from the W3C Credentials Community Group.

This library has been integrated both in OIDC SSI Auth and Verifiable
Credentials micro services to resolve and authenticate DID interacting with
the user’s wallet.

3.3 Solution Design 31

Figure 3.4 Example of a DID document resolved.

The library has been used by the Verifiable Credentials micro service to
create and manage the distributed identity issuing the credentials while the
distributed identities of the users must be created and managed by the user’s
wallet.

• Verifiable Credential management:

For the Verifiable Credential management, the Verifiable Credentials
micro service uses the Veramo framework to generate the credentials and
call the i3-MARKET Wallet API to provide the credential to the user.

• Issue a Verifiable Credential:

The first scenario in which a data marketplace issues a Verifiable Creden-
tial to a user is the registration process. In this scenario, the micro service has
to authenticate the DID of the user and then issue for this DID a Verifiable
Credential that certifies the role of the user, which can be a data consumer, a
data provider, or both. The workflow for the registration process is described
in Figure 3.5. The entities involved are the following:

◦ the identity holder, which is the i3-MARKET user;
◦ the user agent, which is also the client of the OIDC (i3-MARKET data
marketplace website);

◦ the i3-MARKET wallet, which is the wallet in which credentials are
stored;

◦ the Verifiable Credential micro service (i3-MARKET data marketplace
instance);

32 i3-MARKET Trustworthy Design

Figure 3.5 User registration flow.

◦ the i3-MARKET data marketplace backend.

The user registration flow is shown in Figure 3.5. At the beginning, the
user enters his registration data, relating to a data consumer user or a data
provider. When a user is registered as a data consumer or data provider, he
is registered for all the sites of the i3-MARKET network. For this reason,
these two Verifiable Credentials are issued exclusively by the i3-MARKET
data marketplace entity. These data are entered on registration forms in a
dedicated section of the i3-MARKET powered data marketplace.

In order to know for which DID the Verifiable Credential should be
issued, the i3-MARKET data marketplace must obtain the DID of the user.
This part of the flow involves the wallet-protocol session API, which is

3.3 Solution Design 33

specifically designed to open a secure connection (“paring”) with the wallet
(see deliverables in “Trust, Security and Privacy Solutions for Securing Data
Marketplaces” at https://www.i3-market.eu/research-and-technology-library/
for more details), using a generated OTP, to retrieve the DID of the user. In
particular, the i3-MARKET data marketplace performs a GET to the issue
API of the Verifiable Credentials micro service passing as parameters a
callbackUrl (which indicates the URL where to redirect the user after the
issue of the credential) and the credential formatted as JSON encoded object.

The i3-MARKET data marketplace initiates this API call, and the Veri-
fiable Credential micro service uses the “pairing” protocol to connect to the
wallet and asks for an OTP to connect to the i3-MARKET Smart Wallet.

The user generates a new OTP, using the related wallet function and
presents it to the Verifiable Credential to start a secure session (Figure 3.6).
Then the Verifiable Credential sends a share request to retrieve user DID.

At this point, the user receives the disclosure request through the wallet
and decides whether to accept or not to share the requested identity (DID)

Figure 3.6 OTP request to start the “pairing” process.

34 i3-MARKET Trustworthy Design

Figure 3.7 i3-MARKET Smart Wallet request to disclose the DID.

(Figure 3.7). If the user agrees to share the DID, the i3-MARKET Smart
Wallet sends the following access token to the Verifiable Credentials micro
service via callback. At this point, the Verifiable Credentials service decodes
the access token to extract the DID of the user who has authenticated.

The second part of the flow relates to the issue of a Verifiable Credential
to certify that the user is a data consumer. At a high level, issuing a Verifiable
Credential involves two steps:

• Cryptographically signing the credential data.
• Sending the signed credential as a JWT (https://datatracker.ietf.org/doc
/html/rfc7519) to the i3-MARKET Smart Wallet.

In order to create a Verifiable Credential, the Verifiable Credential micro
service performs an internal API call to the POST/credential/issue/{DID}
endpoint, communicating the user’s DID just retrieved and the credential as
form-data in the following format:

{
"data_consumer": true
}
The i3-MARKET data marketplace may request the issuance of creden-

tials only relating to the registration process, i.e., data consumer and data
provider. All other credentials, relating to the purchase of assets or services,
can be requested by Data Providers. When the API is called, the Verifiable
Credential micro service performs the Veramo createVerifiableCredential
function, provided by the DID agent of the Veramo Core library as shown
in Figure 3.8.

When the i3-MARKET Smart Wallet receives the credential, it verifies
its signature. Each signed message has an “iss” attribute that contains a DID
of the issuer. To resolve the public key of the message, a DID-resolver is
used. The Veramo DID agent currently supports many DID methods, such as

3.3 Solution Design 35

Figure 3.8 Verifiable Credential acceptance.

“did:ethr” (based on ERC-1056), “did:web” (in conjunction with blockchain-
based DID, it can bootstrap trust using a web domain’s existing reputation),
and “did:key” (self-certifying DID method, which does not require any exter-
nal utility such as blockchain). More details about supported DID methods
can be found in Veramo documentation.

Being Hyperledger Besu the reference blockchain, the users’ DID is
“did:ethr”.

After the signature verification, the wallet asks the user to accept the
credential. When the user accepts the credential, it will be saved in his wallet
and then be present and visible in the resources tab, which contains the list of
the credentials registered in the app as shown in Figure 3.9.

At this point, the user will be redirected to the callbackUrl, previously
specified.

Figure 3.9 Credentials list.

36 i3-MARKET Trustworthy Design

Once a user has saved some credentials in his wallet, he can disclose them
in authentication requests, in order to certify that he holds the credentials
needed to access resources or services.

• Revoke a Verifiable Credential:

As part of the process of working with Verifiable Credentials, it is not only
necessary to issue credentials, but sometimes it is also necessary to revoke
them. The ability to revoke a credential when it is no longer valid is a core
function in a Verifiable Credential ecosystem. For example, suppose an i3-
MARKET data provider issues a credential to access a service, and a data
consumer violates the terms of use. The data provider determines that the
user has violated the terms of use and, consequently, wants to suspend access
to the service. In this way, the status of the Verifiable Credential needs to
be changed and the next time a relying party checks the status, they will be
able to see that the user is no longer valid and consequently not authorized
to access the service. In order to satisfy this requirement, an API to revoke
credentials has been implemented and the workflow to revoke a credential is
described with Figure 3.10.

At the beginning of the flow, the data provider calls the API of the Veri-
fiable Credentials micro service (1) communicating that a specific credential
belonging to a user must be marked as revoked. The Verifiable Credential
to be revoked is passed through the body parameter in the form {“JWT”:
“eyJhbGc ...”}.

As an implementation choice, it was decided that only those who issued
a credential are allowed to revoke it. To satisfy this requirement, a check

Figure 3.10 Revoke Verifiable Credential flow.

3.3 Solution Design 37

is made, if the issuer of the credential is the address of the issuer, then it
proceeds; otherwise, it immediately blocks the flow. When the Verifiable
Credentials micro service receives the API call, it writes the credential
hash through a transaction in a smart contract named RevocationRegistry
(2), in order to keep track of the action performed. Since the i3-MARKET
blockchain is an Ethereum-type blockchain, the smart contract is written in
solidity and its code is the following:

The smart contract RevocationRegistry provides two functions:

• a public function to revoke a credential;
• a public function to check if a credential is in the revocation list, i.e., it
has been revoked.

The revoke function takes as input a string of 32 characters and writes
a record associating it with the sender of the transaction, i.e., the address
commits the line. In order to always have 32 characters, the credential before
being marked on the smart contract is processed by a SHA-3 cryptographic
hash algorithm and the 32-character digest is written on the smart contract.

The data structure of the smart contract is a private array of digest-address
associations, named revocations (line 5). Whenever a credential is added
to the register, it is mapped via the credential digest and the issuer of the
transaction, i.e., the message sender. On that mapping, the block number is
written, i.e., the transaction counter ID.

As an implementation choice, it was decided that only the service that
issued a Verifiable Credential can revoke it. This is to prevent third parties
from revoking Verifiable Credentials that they have not issued. In fact, it

38 i3-MARKET Trustworthy Design

is reasonable that only the provider who grants access to the service can
eventually revoke it.

As it is possible to notice from the smart contract code, another require-
ment to be able to add a Verifiable Credential in the smart contract is the fact
that it is not already present in the register (line 8), i.e., in the corresponding
mapping, there is not a block number indicating which transaction added the
credential. If it has not already been added, then it is possible to write it (line
9). When the transaction is successfully added, an event is emitted (line 11),
which communicates the issuer of the transaction and the digest of the newly
added credential in the register (line 17).

A possible problem is the fact that this smart contract trusts that what
is written to the registry is actually a valid digest of a credential in JWT
format. In this implementation, there is no kind of access control list that
allows only some addresses to write in the smart contract. In fact, once a
smart contract is deployed in blockchain, its public methods can be called
from any valid address. It is therefore possible that any address can call these
methods and write non-consistent information to the register. This problem
can be solved with a list of trusted issuers of transactions. In fact, it is possible
to consider an issuer as trusted if it also implements the correct cryptographic
hash algorithms on the Verifiable Credential before writing it to the register.

• Verify a Verifiable Credential:

The verification is the process of evaluation of a Verifiable Credential, in
order to determine whether it is authentic and timely valid for the issuer or
the presenter. This process includes the following checks:

• the credential conforms to the specification;
• the proof method is satisfied, i.e., the cryptographic mechanism used to
prove that the information in a Verifiable Credential was not tampered;

• the credential is not marked as revoked in the smart contract registry.

The Veramo credential library provides the methods for the first two
checks, while for the third it is necessary to implement a call to the
smart contract registry. The flow for verifying a credential is described in
Figure 3.11.

In the implemented solution, in step (1) the data provider calls the Veri-
fiable Credentials micro service, specifying the credential in JWT format to
be verified in the request body. Since verifying the presence of a Verifiable
Credential on the registry is an operation that does not change the status of
the credential, this can be done by any instance of the micro service. In step

3.3 Solution Design 39

Figure 3.11 Verify Verifiable Credential flow.

(2), the Verifiable Credentials micro service checks that the issuer is valid
and that the credential is in a format that complies with the data provider’s
specifications. If there is no problem with the credential, then it computes the
hash of the credential using a SHA-3 cryptographic hash algorithms, which
produces a 32-character digest. Then, in step (3), the Verifiable Credential
micro service calls the “revoked” method of the smart contract registry,
specifying the issuer of the Verifiable Credential and the 32-character digest.

The credential issuer is specified in the JWT and since only the issuer
of a credential has the permissions to revoke it, it is sufficient to check that
only his address, associated with the credential, is not present in the register.
As it is possible to see in the solidity code of the smart contract, detailed
in the previous section, this method returns the block number when it was
revoked by the “issuer”, or 0 if it was not. In this way, it is possible to know
if the credential has been revoked or not. This information is then returned
as a response to the data provider, who will decide for himself what the next
steps will be, for example requesting the issuance of a new valid credential or
informing the user that he can no longer request access to that data or service.
This API is used in the integration of the OIDC identity provider. In fact, to
authenticate a user on the basis of the revealed credentials, a further check on
the registry is necessary to ensure that the credential is not revoked.

• OIDC compatibility:

The use of Verifiable Credentials allows the distributed and decentralized
management of users. In particular, users can use Verifiable Credentials
issued as a certificate to obtain a token necessary to access specific services

40 i3-MARKET Trustworthy Design

or protected resources within the marketplace. In order to retrieve the Ver-
ifiable Credentials and use them in an authorization process, a certified
open-source Open ID Connect provider (https://github.com/panva/node-oidc-
provider) has been enhanced with wallet API library. In this way, users can
be authenticated and authorized based on the Verifiable Credentials they hold
as shown in Figure 3.12.

In step (1), the user wants to access a resource or service in the mar-
ketplace. The resources and services are made available by data providers,
who expect to receive a valid access token and ID token, with the necessary
scope to access the resource or service. So, the first thing a data provider
website does is to initialize the authentication flow (2). The authentica-
tion with authorization code flow + PKCE is done through an OAuth 2.0
SDK (https://github.com/IdentityModel/oidc-client-js), which first generates

Figure 3.12 Authorization flow.

3.3 Solution Design 41

a code verifier and a code challenge. Specifically, the OAuth 2.0 SDK creates
a cryptographically random code verifier and from this generates a code
challenge. After that, the authorization code + PKCE flow is initialized with
the first call/authorize. The main difference of this Open ID Connect provider
compared to traditional ones is that it requires the disclosure of Verifiable
Credentials. To specify the credentials to be revealed, the scope field is used.

The Open ID Connect provider has the following static scopes:

• openid: Mandatory for the Open ID Connect standard. It returns the sub-
field of the ID token, and its value is the user DID.

• profile: It adds information about the user profile into the ID token.
• vc: It adds the field verifiable claims into the ID token. Useful when the
relying party wants to check any information about the verifiable claims
asked.

Compared to the standard scope of Open ID Connect, the scopes added
are vc and vce. On the other hand, the standard email scope, which returns
the user’s email, is not present.

There are two different types of scopes:

• vc:vc name: It asks the user for the specific verifiable claim vc name.
It is optional; so the user can decide whether to append it or not. If the
issuer of the verifiable claim is not trusted, it will be added into untrusted
verifiable claims array of the ID token. These arrays are described at the
end of this section.

• vce:vc name: It asks the user for the essential verifiable claim with name:
vc name. It is mandatory; so if the user does not provide it or the issuer
is untrusted, the login and consent process will be cancelled.

After specifying in the scope field which credentials need to be disclosed,
the OAuth SDK initializes the authentication process, performing the call to
the /authorize endpoint (3).

The Open ID Connect provider performs a selective disclosure request
(5), using the Veramo libraries, ask to pair i3-MARKET Smart Wallet, using
“pairing” protocol (4).

At this point, a notification will appear on the wallet with the authenti-
cation request (Figure 3.13), specifying the credentials that must be revealed
(6).

After the disclosure of the required credentials, a callback to the Open
ID Connect provider (9) follows. The Open ID Connect checks if all the

42 i3-MARKET Trustworthy Design

Figure 3.13 Disclosure of the data provider credential.

required Verifiable Credentials are present and if the Verifiable Credential
issuer is trusted (10). Subsequently, it remains to check that the credentials
are valid and not revoked. In particular, the credentials are sent in JWT
format through the verify (11) API, which checks that they have not expired,
calculates the hash, and checks if they are present in the Revocation Registry
(12). It then returns the array of revoked or invalid credentials as a response.
If the response array is empty, then all credentials are valid. If all credentials
are valid, the Open ID Connect provider returns the authorization code to
the OAuth SDK of the i3-MARKET Data Provider Client (13). The Data
Provider SDK performs POST /token (14). The code verifier and code chal-
lenge are checked (15) and the ID token and the access token are returned
to the Data Provider website (16). Now that the Data Provider website has a
valid access token, it can get the resource (17). When the authorization and
authentication process finishes, two tokens are returned: access token and ID
token. Through the ID token, it is possible to know which of the revealed
Verifiable Credentials are verified (trusted) or not (untrusted).

3.4 Diagrams

The following diagrams describe the processes involving the components of
the SSI and IAM subsystem.

The diagrams assume that the user created and controlled with his crypto
wallet a distributed identity using Ethereum DID management.

3.4 Diagrams 43

3.4.1 Identity authentication

The process in Figure 3.14 describes how a self-sovereign identity is authen-
ticated as managed by a crypto wallet using Ethereum DID management.

The user-centric authentication component create a challengeRequest
to retrieve the user’s DID and then check the challengeResponse (signed
by user’s wallet) to verify if the user controls the DID retrieving the
corresponding DID document.

Figure 3.14 Identity authentication process.

44 i3-MARKET Trustworthy Design

3.4.2 User registration

The process illustrated in Figure 3.15 describes how a client application can
register a self-sovereign identity as i3-MARKET user issuing a Verifiable
Credential attesting his role.

Figure 3.15 User registration process.

3.4 Diagrams 45

After DID authentication and the verification of additional information
disclosed by the user, the client app issues a Verifiable Credential for that
DID, which attest the role of the user (data consumer, data provider, or both).
User’s wallet stores the credential locally and update the DID document.

3.4.3 OIDC authorization (authentication code + PKCE)

The following process (Figure 3.16) represents how a client application can
be authorized by an i3-MARKET user to access a protected API and obtain
information about the user using a standard OpenID Connect Authentication
code flow with PKCE.

User-centric authentication component is integrated in a standard OIDC
IAM as federated identity provider.

Figure 3.16 OIDC authorization process.

46 i3-MARKET Trustworthy Design

When the client application tries to call a protected resource without a
valid access_token, it is redirected to the OIDC IAM authorization endpoint
and then to user-centric authentication authorization endpoint showing the
login page.

When the user logs in with a wallet, an id_token is created with the
DID and the VC associated to the requested scopes and an authentication
code is provided to the client to call the token endpoint and receive a valid
access_token, a refresh token, and the id_token.

3.5 Interfaces

The interfaces of the final version of Verifiable Credential micro service and
OIDC SSI Auth micro service, composing the user-centric authentication
component, are presented in Figures 3.17 and 3.18.

Figure 3.17 Verifiable Credential micro service specification.

3.6 Background Technologies 47

Figure 3.18 OIDC SSI Auth micro service specification.

3.6 Background Technologies

3.6.1 JSON Web Token (JWT)

The JSON Web Token (JWT) is an open standard (RFC 7519) that defines
a schema in JSON format for exchanging information between various ser-
vices. The generated token can be signed (with a secret key that only those
who generate the token know) using the HMAC algorithm or using a pair of
keys (public/private) using the RSA or ECDSA standards. JWTs are widely
used to authenticate requests in Web Services and OAuth 2.0 authentication
mechanisms where the client sends an authentication request to the server and
the server generates a signed token and returns it to the client who, from that
moment on, will use to authenticate subsequent requests. The structure of the
token consists of three fundamental parts:

48 i3-MARKET Trustworthy Design

• Header
• Payload
• Signature

The header contains two main information: the type of token (in this case
valued to JWT because it is a JSON Web Token) and the type of encryption
algorithm used.

{
"alg": "HS256",
"typ": "JWT"
}
The payload contains the interchange information. It is possible to

categorize them into three blocks:

• Registered parameters: They are predefined properties that indicate
information about the token (issuer, audience, expiration, issued at, and
subject).

• Private parameters: Here, it is possible to enter new fields, such as
verifiable claims, having full extensibility, thanks to the JSON structure.

• Public parameters: They refer to parameters defined in the IANA JSON
Web Token Registry, and they can be compiled at will by paying atten-
tion to the content that is entered to avoid conflicts with the registered
and private parameters.

{
"iss": "app_name",
"name": "Mario Rossi",
"iat": 1540890704,
exp": 1540918800,
"user": {
"profile": "editor"
}
}
The token is generated by encoding the header and payload in base 64 and

joining the two results by separating them by a “.”, and then the algorithm
indicated in the header is applied to the string obtained using a secret key. It
is possible to verify and unpack a JWT online using the official website.

Fortunately, it is not necessary to re-implement the encryption logic; there
are many libraries to generate JWT depending on the programming language.
Security is guaranteed by the fact that the token is signed with a server-side

3.6 Background Technologies 49

secret key; so if it is corrupted or modified by an external agent, it will not
pass validation.

3.6.2 OpenID Connect (OIDC)

OpenID Connect 1.0 (https://openid.net/connect/) is a simple identity layer
on top of the OAuth 2.0 protocol. It allows clients to verify the identity
of the end-user based on the authentication performed by an authorization
server, as well as to obtain basic profile information about the end-user in an
interoperable and REST-like manner.

OpenID Connect allows clients of all types, includingWeb-based, mobile,
and JavaScript clients, to request and receive information about authenticated
sessions and end-users. The specification suite is extensible, allowing partici-
pants to use optional features such as encryption of identity data, discovery of
OpenID providers, and session management, when it makes sense for them.

3.6.3 Decentralized identity (DID)

Decentralized identifiers (DIDs) are a new type of identifier that enables
verifiable, decentralized digital identity. A DID identifies any subject (e.g.,
a person, organization, thing, data model, abstract entity, etc.) that the con-
troller of the DID decides that it identifies. In contrast to typical, federated
identifiers, DIDs have been designed so that they may be decoupled from cen-
tralized registries, identity providers, and certificate authorities. Specifically,
while other parties might be used to help enable the discovery of information
related to a DID, the design enables the controller of a DID to prove control
over it without requiring permission from any other party. DIDs are URIs that
associate a DID subject with a DID document allowing trustable interactions
associated with that subject.

3.6.4 Self-sovereign identity and blockchain

Today, users’ identities and related data are stored in siloes on centralized
servers across organizations and are vulnerable to hacking. Repetitive account
creation for different applications (e.g., marketplaces), and personal informa-
tion (often outdated) stored in various services are the disadvantages of that
approach.

Self-sovereign identities supported by decentralized systems come as a
solution for the following issues:

50 i3-MARKET Trustworthy Design

• Identity and personal data are stored with the user.
• Claims and attestations can be issued and verified between users and
trusted parties.

• Users selectively grants access to data.
• Data only needs to be verified a single time.

Blockchain technology, proving decentralization, immutability, and cryp-
tographic security allow the creation of credentials that could be issued
and verified without the need of a central certification authority and could
be owned by the end-users and directly shared with third parties without
involving the credential issuer.

3.6.5 Verifiable Credentials (VC)

As in the physical world, a credential is a set of information that identifies an
entity. In particular, the information represents:

• Information related to identifying the subject of the credential (for
example, a photo, name, or identification number).

• Information related to the issuing authority (for example, a city govern-
ment, national agency, or certification body).

• Information related to the type of credential this is (for example, a Dutch
passport, an American driving license, or a health insurance card).

• Information related to specific attributes or properties being asserted
by the issuing authority about the subject (for example, nationality, the
classes of vehicle entitled to drive, or date of birth).

• Evidence related to how the credential was derived.
• Information related to constraints on the credential (for example, expi-
ration date or terms of use).

A Verifiable Credential can represent all of the same information that a
physical credential represents (Figure 3.19). The addition of technologies,
such as digital signatures, makes Verifiable Credentials more tamper-evident
and more trustworthy than their physical counterparts.

Holders of Verifiable Credentials can generate verifiable presentations
and then share these verifiable presentations with verifiers to prove they
possess Verifiable Credentials with certain characteristics.

Both Verifiable Credentials and verifiable presentations can be transmit-
ted rapidly, making them more convenient than their physical counterparts
when trying to establish trust at a distance.

3.6 Background Technologies 51

Figure 3.19 Verifiable Credentials model.

Verifiable Credentials are useful in a self-sovereign identity ecosystem
because they assert information about the user to whom a credential is issued
and can be directly verified by any third-party by involving the issuer. In
the context of the project, users are asked to disclose Verifiable Credentials,
which attest particular attributes issued by a specific data marketplace. The
certified attributes and permissions are used to obtain an OAuth access token
that allows the use of Backplane services or access to resources in the
marketplace. Verifiable Credentials are therefore used as a proof method
in the authorization flow. If a credential is valid, it means that the user is
authorized to access a resource or service that requires the holding of that
credential. For this reason, a service that generates Verifiable Credentials is
necessary. Once a Verifiable Credential is saved by users in their wallets,
anyone who receives the Verifiable Credential and has access to the DID of
the users can then confirm that the Verifiable Credential has been issued by a
trusted server and has not been revoked for some reason.

To implement the solution, we have chosen to use Veramo, a framework
that replaces the previous implementation of the uPort library, which is
deprecated.

Both components (OIDC SSI Auth and Verifiable Credential micro ser-
vice) integrate the Veramo framework and take advantage of its features to
manage DID and Verifiable Credentials.

4
i3-MARKET Semantic Models

Taking into consideration the nature of the project, we worked on the
following:

A. The definition, creation, and collection of semantic data models that
allow to share a common description of the data assets (as per the case
of shared data offering description model), operations, services, data
details, credentials, contracts, pricing, and actors.

B. Development and implementation of semantic engine system and stor-
age for the management of such information, creation of data offering
description, management of controlled registries, mapping of informa-
tion, interfaces among components, links of data and actors, discovery
and retrieval of necessary information, compiling of smart contracts, and
other operations.

C. Share the semantic models with the community to make use of them and
work with people to improve and maintain the models for the present
and future.

The use of standardized semantic metadata models and interaction pat-
terns is important to enabling interoperability between nodes, user-friendly
services, exchangeability of data assets, representation of actors (market-
places, providers, consumers, and owners), and data exchange between
different instances in the infrastructure ecosystem. A variety of standards
already exist for sub-specific topics and domains; the most suitable ones
to set up a common information model are selected and integrated into a
high-level collection of vocabularies and ontologies. On top of these models,
we created i3-MARKET core models to define the missing parts and for the
main operational interactions and links among entities. Within i3-MARKET
Backplane, the information ecosystem and the infrastructure ecosystem have
to be combined to enable a seamless exchange of information and operations
in a federated distributed architecture.

53

54 i3-MARKET Semantic Models

From a meta-modelling perspective, the i3-MARKET has raised cer-
tain requirements that go beyond the simple main description of datasets,
adding information models to define other entities, operations actors, sharing
agreements, and data details. While the existing semantic models cover only
partially the requirements for the Backplane scopes, we imported, linked,
and just in case extended common vocabularies and created the i3-MARKET
semantic core model, pricing model, and contractual model for data sharing
agreements and service agreements for contracts to compile a collection of
semantic information models in O-CASUS models to cover the needs.

i3-MARKET Semantic Models

This section introduces the implementation of i3-MARKET semantic models
that comprise the definition, creation, and collection of data models that allow
to share a common description of the data assets (as per the case of dynamic
data offering descriptions, operations, services, data details, credentials, con-
tracts, pricing, actors, etc.). This section also deals with the definition and
implementation of (meta)data management systems and registries catalogues
to manage information and meta data descriptions. The main objective of
the i3-MARKET Semantic Models is to share the data models with the
community to make use of them and work with people on improving and
maintaining the models for the present and future.

The i3-MARKET semantic models allow and facilitate the creation of
data offering descriptions, management of controlled registries, mapping of
information, and distribution of info and details among other components.
The models and descriptions provide the links of data assets, metadata, and
actors for discovering and retrieving of necessary information, compiling of
smart contracts, and other operations.

4.1 i3-MARKET Model Specifications

Specifications for i3-MARKET semantic model solutions comprise the
following:

• The definition, creation, and collection of data models that allow to share
a common description of the data assets (as per the case of dynamic
data offering descriptions, operations, services, data details, credentials,
contracts, pricing, actors, etc.).

4.1 i3-MARKET Model Specifications 55

• The development and implementation of (meta)data management
systems and registry catalogues to manage information and metadata
descriptions.

• Share the data models with the community to make use of them and work
with people on improving and maintaining the models for the present
and future.

• The creation of data offering descriptions, management of controlled
registries, mapping of information, and interfaces among other compo-
nents.

• Provide the links of data and actors for discovering and retrieving
of necessary information, compiling of smart contracts, and other
operations.

We propose the i3-MARKET semantic core model and the semantic
models imported and extended that create the collection of O-CASUS models
based on the terminologies, definitions, and vocabularies needed to represent
the i3-MARKET domain entities and operations. These concepts and their
relationships are explained in more detail, including additional sub-concepts.

The O-CASUS semantic models comprise a collection of ontologies
and vocabularies to cover the concepts used in the Backplane to define the
following:

• i3-MARKET semantic core model
• W3c Data Catalog Vocabulary (DCAT and DCAT-AP)
• W3c Vocabulary of Interlinked Datasets (VoID)
• W3c Verifiable Credentials and DID
• SKOS Simple Knowledge Organization System
• IT Service Ontology
• EU Vocabularies Frequency Named Authority List
• EU Vocabularies File Type Named Authority List
• EU Vocabularies Languages Named Authority List
• EU Vocabularies Continents Named Authority List
• ADMS licence type vocabulary
• Distribution availability vocabulary
• Domain annotations

One of the key aspects when designing a semantic model is the reuse
of knowledge. Once a semantic model is created for a domain, it should be
(at least to some degree) reusable for other applications in the same domain.
To simplify both semantic model development and reuse, a modular design

56 i3-MARKET Semantic Models

is beneficial. Based on the project specification and the domain environ-
ment, the semantic models can be modularized according to their scope, as
follows:

• Organization module
• Market module
• Provider module
• Consumer module
• Owner model
• Query module
• Data offering module
• Contractual parameters module
• Data exchange module
• Dataset information module
• Links to pricing module and the other vocabularies and ontologies
to cover the various parts of the i3-MARKET O-CASUS sematic
information models

A data marketplace is an online transactional location or store that facil-
itates the buying and selling of data. As many businesses seek to augment
or enrich internal datasets with external data, cloud-based data marketplaces
are appearing at a growing rate to match data consumers with the right data
sellers.

Typical data types for sale in a data marketplace can range from business
intelligence and research, demographic, firmographic, and market data to
business intelligence and public data. A data marketplace is a more public
(and sometimes commercial or monetized) form of data sharing. Data sharing
has a long history in academic, research, and public policy circles but in
recent years has made enormous inroads into private enterprises, from big
business to analyst, consulting, and market intelligence firms. Data con-
sumers include government, analyst, big business, and market intelligence
firms. As data volumes continue to explode and machine learning and AI
become more important in decision-making, data marketplaces are helping
organizations reduce the effort and cost involved in locating required datasets
and helping data providers extend their market reach.

However, big data is supported by continuous heterogeneity of underlying
data sources (e.g., in IoT spaces), devices and communication technologies,
and interoperability in different layers, from communication and seamless
integration of platforms to interoperability of data to a global scale.

4.1 i3-MARKET Model Specifications 57

In a white paper on interoperability [67], it is discussed that many layers
of interoperability exist:

• Technical interoperability
• Syntactical interoperability
• Semantic interoperability
• Organizational interoperability
• Dynamic interoperability
• Static interoperability

Discovery, understanding, and collaboration at this level require more
than just an ability to interface and to exchange data. Interoperability is
“the ability of two or more systems or components to exchange data and
use Information” [68], whereas semantic interoperability “means enabling
different agents, services, and applications to exchange information, data and
knowledge in a meaningful way, on and off the Web” [67][68].

Semantic interoperability is achieved when interacting systems attribute
the same meaning to an exchanged piece of data, ensuring consistency of the
data across systems regardless of individual data information. This consis-
tency of meaning can be derived from pre-existing standards or agreements
on the description and meaning of data or it can be derived in a dynamic way
using shared vocabularies either in a schema form or in an ontology-driven
approach.

In i3-MARKET, we are aiming at an innovative approach for semantic
data, metadata, and modelling activities as represented in Figure 4.1.

To lead the concept of O-CASUS, which is an idea based on the data
lifecycle process, we:

• compile vocabularies and taxonomies in relation to marketplaces meta-
data, operation, and management;

• formalize the state of current marketplaces by using best practices and
standards;

Figure 4.1 i3-MARKET data model and the data lifecycle process.

58 i3-MARKET Semantic Models

• compile an ontology for collecting, accessing, storing, utilizing, and
selling data.

4.2 i3-MARKET Semantic Core Models

The Figure 4.2 illustrates the high level of i3-MARKET semantic models that
include all the basic conceptual entities and their relationship to all modules.

Details of each module are presented in the following subsections as
shown in Figure 4.3. The i3-MARKET Semantic Core Models provide an
overview of the i3-MARKET classes of resources that can be members of
data offerings and the relationships between them. Except where it does
not provide cardinality constraints as they are shown in the Figure 4.4
respectively.

One of the main contributions of the semantic models (vocabular-
ies/ontologies) is the consolidation of the i3-MARKET models and the
integration and extensions of other common sematic models to enable the

Figure 4.2 High-level semantic model structure of main modules.

4.2 i3-MARKET Semantic Core Models 59

Figure 4.3 Main classes’ block diagram of the i3-MARKET semantic model.

mapping of the metadata describing the data assets, contracts, and operations,
provided from i3-MARKET stakeholders, to the model/ontology concepts to
capture the structural and semantic characteristic of the metadata in relation
to the various entities that corresponds to the different data assets and data
offerings respectively.

More specifically, the core uses of these models are as follows:

1) Data registration of metadata descriptions, which corresponds to the data
harmonization process. In this way, each provided data asset is registered
in our registry with concepts from the i3-MARKET data offering model
in a semi-automatic way.

2) Metadata linking where any provided data asset metadata will be linked
with other relevant sources (or data assets) that exist in the Backplane.

3) Data discovery (for local or federated registries) that involves the devel-
opment of algorithms and software for supporting the selection of the
most appropriate metadata that best match user preferences.

4) Management of information related to smart contract, data access and
transfer, pricing models, identity and credential identifications, and
notifications.

The i3-MARKET models are used for capturing the structural and
semantic metadata characteristics of the various entities involved in the i3-
MARKET Backplane domain, whereas the underlying conceptual models

60 i3-MARKET Semantic Models

Figure 4.4 Overview of the i3-MARKET semantic model.

facilitate the use of lightweight reasoning during the discovery and opera-
tional process, e.g., for contracts and service/agreements, data access/transfer
operations, etc.

4.3 Data Marketplace and Data Space Actors

• Provider module:

A provider can be a marketplace, data space, or service instance that offers
available DataOfferings. A provider is described through the core:Provider
class. At this stage, each provider has a name and ID (core:providerId) and

4.3 Data Marketplace and Data Space Actors 61

its organization as shown in Table 4.1. More information about the provider
can be added in the future.

Table 4.1 Provider properties.
Property name Data types Description

core:providerId String Provider ID
providerDescription String A description of the provider
providerName String Name of the provider
:sourceOrganization core:Organization The provider’s organization

• Organization module:

A provider may also describe its organization. The provider’s organiza-
tion has been an instance of the schema.org model (Organization Ontology
class particularly). The connection between the provider and the organization
is the sourceOrganization property. Table 4.2 presents some basic proper-
ties of the organization class, e.g., at the moment example taken from the
schema.org model and particularly Organization Class.

Table 4.2 Organization properties.
Property name Data types Description

core:organizationId String Organization ID
organizationName String Name of the organization
:address String Physical address of the organi-

zation
contactPoint schema:ContactPoint A contact point for the organiza-

tion
organizationDescription String A description of the organiza-

tion

• Consumer module:

A consumer can be an entity, application, or service instance that requires
access to data resources in order to implement an intended service or function.
In the consumer model, we create the core:Consumer class that represents
the i3-MARKET consumers. Same as the provider, the consumer is also
linked to the organization. Table 4.3 presents some basic properties of the
core:Consumer.

• Owner module:

The actual owner of the data sources provided by marketplace, data
space, or service instance that offers available DataOfferings. An owner is

62 i3-MARKET Semantic Models

Table 4.3 Consumer properties.
Property name Data types Description

core:consumerId String Consumer ID
core:dataOfferingQuery core:DataOfferingQuery Query to i3-MARKET of con-

sumer
consumerDescription String A description of the consumer
consumerName String Name of the consumer
:sourceOrganization schema:Organization The consumer’s organization
core:subscribedTo core:DataOffering Data offering IDs the consumer

subscribes to

described through the core:Owner class. At this stage, each owner has a
name (schema:name) and ID (core:ownerID) as shown in Table 4.4. More
information about the provider can be added in the future.

Table 4.4 Owner properties
Property name Data types Description

core:ownerId String Owner ID
ownerDescription String A description of the provider
ownerName String Name of the provider
:sourceOrganization schema:Organization The provider’s organization

• Data market module:

Information on the connected data marketplace is given in Table 4.5.

Table 4.5 Market module.
Property name Data types Description

core:dataMarketId String Data Market ID
dataMarketDescription String A description of the data marketplace
dataMarketName String Name of the data marketplace
dataMarketNode String Info of the data market node

4.4 Data Offering

Data offering description:
The i3-MARKET enables providers to offer or trade access to datasets

via the Backplane. A data offering is defined by a “data offering description”,
which describes via metadata a set of resources offered via the i3-MARKET
Backplane. It typically encompasses a set of related information. A data

4.4 Data Offering 63

offering description provides a semantic description of the datasets provided
to a consumer once the data offering is registered. The description also entails
context and meta information about the distribution, including information
about the pricing for accessing the resource(s), the license of the information
provided, contractual parameters, and service description as URL for data
access.

As illustrated in Figure 3.12, the data offering module represents the
initial conceptualization, which is built around the DataOffering Class and
its metadata. All the core concepts of this module are defined as follows.

A provider registers its offerings on the marketplace by providing an
offering description. An offering description is an instance of the data offering
class (which can be mapped to the common subclass of schema:Offer). It
contains the information about the data assets, data service, categories of data
assets, subclass components of catalogues and resources, data services, and
categories of the offering (:category). All relevant communication metadata
are provided on how the offering can be accessed through the data service
and service extension descriptions.

Details of all classes and their properties in the offering module are
presented in the following sections.

• Data Offering description:

To describe the data assets, contractual parameters, rights, licenses, pric-
ing models, data service, endpoints, format of data, domain annotations,
related actors, and other information that describe the datasets, we defined
shared “data offering descriptions”.

We use W3c Data Catalog Vocabulary (DCAT) − Version 3 vocabulary
related to parts such as: dataset, distribution, and DataService used in data
offering description (https://w3c.github.io/dxwg/dcat/).

It is recommended to use the description and specifications of DCAT for
all the information related to dataset, distribution, and DataService used in
data offering description (https://www.w3.org/TR/vocab-dcat-3/).

DCAT enables a publisher to describe datasets and data services in a cata-
logue using a standard model and vocabulary that facilitates the consumption
and aggregation of metadata from multiple catalogues. This can increase the
discoverability of datasets and data services. It also makes it possible to have
a decentralized approach to publishing data catalogues and makes possible
federated search for datasets across catalogues in multiple sites using the
same query mechanism and structure.

64 i3-MARKET Semantic Models

• Data Offering class:

Definition: High-level class in the i3-MARKET core model that intro-
duces the data offering description of dataset resources in Table 4.6.

Table 4.6 Data Offering properties.
Property Data types Description

hasDataset Dataset Links the data offering in core to a
DCAT (-AP) dataset

dataOfferingDescription String Contains a free-text account of
the DataOffering

Provider Provider Refers to an entity (organization)
responsible for making the data
offering available

providerDiD DID This is the provider DID, registered
in VC and i3-MARKET, which is
uniquely identified as a provider in
IDM and Wallet

Owner Owner Refers to an entity that have source
ownership of the data

ownerDiD DID This is the owner DID, registered
in VC and i3-MARKET, which is
uniquely identified as an owner in
IDM and Wallet

Marketid Market This is the market name ID, which is
uniquely identified as a marketplace

marketDiD DID This is the market DID, registered
in VC and i3-MARKET, which is
uniquely identified as a marketplace
in IDM and Wallet

dataOfferingTitle String Contains a name given to the cata-
logue

License LicenseDocument This property refers to the license
under which the catalogue can be
used or reused

Category ConceptScheme Refers to a knowledge organization
system used to classify the data
offering categories for datasets
The high-level category
terms and the URI used are
defined in the scheme file
DataOfferingCategory.ttl

themeTaxonomy skos:ConceptScheme This property refers to a knowledge
organization system used to classify
the DataOffering’s datasets

4.4 Data Offering 65

Table 4.6 Continued.
Property Data types Description

Active String Flag to set if the DataOffering is acti-
vated/available by the provider to be
checked/searched by, e.g., the con-
sumer

core:ownerConsentForm Hashtag string to report the informa-
tion about the explicit user consent
form documentations

core:inSharedNetwork Boolean to define if the DataOffering
is shared by the marketplace to be
visible and consumable by all actors
in the i3-MARKET network

core:status To define the data offering status
core:dataOffering
ExpirationTime

Expiration time of DataOffering in
case

core:lastModified Most recent date on which the data
offering was changed, updated, or
modified

dcat:previousVersion The previous version of a resource in
a lineage (PAV)

Version To define the “version” of the regis-
tered data offering

Core:datasetInformation For the module that describes the
information related to the details of
the raw data (with info on origin
of data, measurements, data types,
devices, units, etc.)

core:hasPricingModel pricingmodel:
PricingModel

The pricing model for the data offer-
ing

core:contractParameters core:
ContractParameters

Some specific contract parameters
related to data offering

• (DCAT) Dataset class:

Definition: A collection of data published or curated by a single agent and
available for access or download in one or more representations, as shown in
Table 4.7.

• DatasetInformation class:

Definition: Extended specific annotations to add extra information related
to a dataset. This information is used to give providers the possibility to
describe with more granularity the source and types of data in datasets

66 i3-MARKET Semantic Models

Table 4.7 DCAT dataset main properties.
Property Data types Description

Description String Contains a free-text account of the
dataset

Title String Contains a name given to the
dataset

Keyword String Contains a keyword or tag
describing the dataset

core:datasetInformation core:DatasetInformation Some specific information anno-
tations of dataset metadata infor-
mation types, which represent
attributes of observations, mea-
surements, fields, etc. in the
dataset

core:datasetRecord core:DatasetRecord In case data records types that rep-
resent attributes of fields, in the
dataset

datasetDistribution Distribution Links the dataset to an available
distribution

geographicalCoverage Location Refers to a geographical area cov-
ered by the dataset

temporalCoverage PeriodOfTime Refers to a temporal period that
the dataset covers

Category Concept Refers to a category of the dataset.
A dataset may be associated with
multiple categories

accessRights RightsStatement Refers to information that indi-
cates whether the dataset is open
data, has access restrictions, or is
not public

Frequency Frequency Refers to the frequency at which
the dataset is updated

Documentation Documentation Refers to a page or document
about this dataset

hasVersion Dataset Refers to a related dataset that is
a version, edition, or adaptation of
the described dataset

Creator Agent Refers to the entity primarily
responsible for producing the
dataset

dcat:theme skos:Concept This property refers to a category
of the dataset. A dataset may be
associated with multiple themes

4.4 Data Offering 67

and annotations related to specific domains (see Table 4.8). Also consult
Appendix B for an extended version of information details to be used to
describe the raw original data for consumers’ understanding).

Table 4.8 Main properties of the DatasetInformation class.
Property Data types Description

core:measurementType String The data types that represent
attributes of observations,
measurements in the dataset

core:measurementChannelType String The data measurement channel
types in the dataset

core:sensorID String Sensor ID
core:deviceID String Device ID
core:cppType String Cyber−physical systems cpp type
core:sensorType String Sensor type

• (DCAT) Distribution class:

Definition: A specific representation of a dataset in Table 4.9.

Table 4.9 DCAT distribution main properties.
Property Data types Description

Description String Contains a free-text account of the distribution
accessURL Resource Contains a URL that gives access to a distribu-

tion of the dataset
Availability Concept Indicates how long it is planned to keep the

distribution of the dataset available
Format MediaTypeOrExtent Refers to the file format of the distribution
downloadType String Download type (it means frequency as

“Stream” or “Bulk” dataset can be down-
loaded)

License LicenseDocument Refers to the licence under which the distribu-
tion is made available

accessService DataService Refers to a data service that gives access to the
distribution of the dataset

byteSize Double Size of a distribution in bytes
Documentation Documentation Refers to a page or document about this distri-

bution
downloadURL Resource URL that is a direct link to a downloadable file

in a given format
releaseDate DateTime Contains the date of formal issuance (e.g.,

publication) of the distribution

68 i3-MARKET Semantic Models

• (DCAT) DataService class:

Definition: A collection of operations that provides access to one or more
datasets or data processing functions is shown in Table 4.10.

Table 4.10 DataService properties.
Property Data types Description

Description String Contains a free-text account of the data service
endpointURL Resource The root location or primary endpoint of the

service (an IRI)
Title String Contains a name given to the data service
servesDataset Dataset Refers to a collection of data that this data ser-

vice can distribute
License LicenseDocument Refers to the licence under which the data ser-

vice is made available
accessRights RightsStatement Includes information regarding access or restric-

tions based on privacy, security, or other policies
serviceID String Service ID
serviceSpecs ServiceSpecs Service specification reference to ITSO extra

service model specifications

• ContractParameters class:

Definition: A collection of parameters that provides information about the
use and scope of the DataOffering/dataset in Table 4.11.

Table 4.11 DataService properties.
Property name Data types Description

core:interestOfProvider Literal This property is used to iden-
tify the interest of the data
owner. The following possibil-
ities exist: Free sharing quota-
tion; selling of data (e.g., just
earning money by selling the
data, no specific feedback on
these data by a data consumer
expected)

core:interestDescription Literal Data provider can specify which
sort of quotation he wants
exactly, e.g., quotation for main-
tenance service or quotation for
optimization of production

core:hasGoverningJurisdiction Literal Jurisdiction

4.4 Data Offering 69

Table 4.11 Continued.
Property name Data types Description

core:purpose Literal Purpose for the use of the
dataset

core:purposeDescription Literal Description of the purpose for
the use of the dataset

core:hasIntendedUse core:IntendedUse To intended use class/properties
core:hasLicenseGrant core:LicenseGrant To license grant class/properties

• LicenseGrant class:

Definition: Definition of the type of license is associated with the data
asset in Table 4.12.

Table 4.12 LicenseGrant properties.
Property name Data/object Description

types
core:paidUp Boolean If licence grant to paidUp
core:transferable Boolean Transferable (true or false)
core:exclusiveness Boolean License of exclusiveness (true or false)
core:revocable Boolean License revocable (true or false)
core:processing Boolean If licence grant data to be processed
core:modifying Boolean If licence grant data to be modified
core:analyzing Boolean If licence grant data to be analysed
core:storingData Boolean If licence grant to store data
core:storingCopy Boolean If licence grant to store copy of data
core:reproducing Boolean If licence grant to reproduce data
core:distributing Boolean If licence grant to distribute data
core:loaning Boolean If licence grant to loan data
core:selling Boolean If licence grant to sell data
core:renting Boolean If licence grant to rent data
core:furtherLicensing Boolean If licence grant for further licensing
core:leasing Boolean If licence grant to lease data

• IntendedUse class:

Definition: What the data provider allows the consumer to be the intended
use of the data assets in Table 4.13.

70 i3-MARKET Semantic Models

Table 4.13 IntededUse properties.
Property name Data/object

types
Description

core:processData Boolean Process data (true or false)
core:shareDataWithThirdParty Boolean Share data with third party

(true or false)
core:editData Boolean Edit data (true or false)

• DataExchangeSpec class:

Definition: Information inside the accessService block for data exchange
specifications that serve the distributions of the datasets, used also by the data
access and transfer system in Table 4.14.

Table 4.14 DataExchange properties.
Property name Data/object

types
Description

core:encAlg Boolean Encryption algorithm used to encrypt
blocks. Either AES-128-GCM
(’A128GCM’) or AES-256-GCM
(’A256GCM)

core:signingAlg Boolean Signing algorithm used to sign the proofs.
Like ECDSA secp256r1 with key lengths:
either “ES256”, “ES384”, or “ES512”

core:hashAlg Boolean Hash algorithm used to compute
digest/commitments. It is SHA2 with
different output lengths: either “SHA-256”,
“SHA-384”, or “SHA-512”

core:ledgerContractAddress The ledger smart contract address (hexadec-
imal) on the DLT

core:ledgerSignerAddress The orig (data provider) address in the DLT
(hexadecimal)

core:pooToPorDelay Maximum acceptable delay between the
issuance of the proof of origin (PoO) by
the orig and the reception of the proof of
reception (PoR) by the orig

core:pooToPopDelay Maximum acceptable delay between the
issuance of the proof of origin (PoO) by
the orig and the reception of the proof of
publication (PoP) by the dest

core:pooToSecretDelay If the dest (data consumer) does not receive
the PoP, it could still get the decryption
secret from the DLT. This defines the maxi-
mum acceptable delay between the issuance
of the proof of origin (PoO) by the orig and
the publication (block time) of the secret on
the blockchain

4.4 Data Offering 71

For a more complete list of classes and attributes that are used for the data
offering description and details on their definitions, please see Tables 4.15
and 4.16.

Table 4.15 Preliminary example for a metadata description.

PREFIX rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdf: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX pricingmodel: <http://i3-MARKET.eu/Backplane/pricingmode/>
PREFIX core: <http://i3-MARKET.eu/Backplane/core/>
PREFIX : <http://i3-MARKET.org/resource/>

:Mindsphere
 a core:Provider ;
 rdfs:label "Mindsphere"@en ;
 core:dataOffering ex:DataOffering-1 .

Table 4.16 Preliminary example for a DataOffering description.
Preliminary example for a DataOffering description

{
"@context": {
 "core": “http://i3-MARKET.eu/Backplane/core/”
 "dcat": "https://www.w3.org/ns/dcat.jsonld”
 "pricingmodel": "http://i3-MARKET.eu/Backplane/pricingmodel”
 },
 “id”: “#####-#######-#######-###” OR ”http://i3-
MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://i3-MARKET.eu/Backplane/core/DataOffering”

 "provider": "#####-#######-#######-###”
 "marketId": "#####-#######-#######-###",
 "owner": "#####-#######-#######-###",
 "dataOfferingTitle": "_field",
 "dataOfferingDescription": "string",
 "category": "Other",
 "status": "e.g. Activated, InActivated, ToBeDeleted, Deleted",
 "dataOfferingExpirationTime": "NA",
 "contractParameters":
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://i3-MARKET.eu/Backplane/core/ContractParameters”

72 i3-MARKET Semantic Models

Table 4.16 Continued.
 "contractParametersId": "string",
 "interestOfProvider": "NA",
 "interestDescription": "NA",
 "hasGoverningJurisdiction": "NA",
 "purpose": "NA",
 "purposeDescription": "NA",
 "hasIntendedUse":
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://i3-MARKET.eu/Backplane/core/IntendedUse”

 "intendedUseId": "string",
 "processData": "true OR false",
 "shareDataWithThirdParty": "true OR false",
 "editData": "true OR false"
 } ,
 "hasLicenseGrant":
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://i3-MARKET.eu/Backplane/core/LicenseGrant”

 "licenseGrantId": "string",
 "copyData": "true OR false",
 "transferable": "true OR false",
 "exclusiveness": "true OR false",
 "revocable": "true OR false"
 }
 } ,

 "hasDataset":
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://www.w3.org/ns/dcat#Dataset”

 "datasetId": "string",
 "title": "_field",
 "keyword": "_field",
 "dataset": "_field",
 "description": "_field",
 "issued": "date-time",
 "modified": "date-time",
 "temporal": "_field",
 "language": "_field",
 "spatial": "_field",
 "accrualPeriodicity": "_field",
 "temporalResolution": "_field",
 "distribution": [
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://www.w3.org/ns/dcat#Distribution”

 "distributionId": "string",
 "title": "_field",
 "description": "_field",
 "license": "_field",
 "accessRights": "_field",

4.4 Data Offering 73

Table 4.16 Continued.

 "downloadType": "_field",
 "conformsTo": "_field",
 "mediaType": "_field",
 "packageFormat": "_field",
 "accessService":
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-
###”
 “type”: “http://www.w3.org/ns/dcat#DataService”

 "dataserviceId": "string",
 "conformsTo": "_field",
 "endpointDescription": "_field",
 "endpointURL": "_field",
 "servesDataset": "_field",
 "serviceSpecs": "_field"
 }
 }
],
 "datasetInformation": [
 {
 “id”: ”http://i3-MARKET.org/resource/#####-#######-#######-###”
 “type”: “http://i3-MARKET.eu/Backplane/core/DatasetInformation”

 "datasetInformationId": "string",
 "measurementType": "_field",
 "measurementChannelType": "_field",
 "sensorId": "_field",
 "deviceId": "_field",
 "cppType": "_field",
 "sensorType": "_field"
 }
],
 "theme": [
 "_field"
 "_field"
 "_field"
]
 }
}

4.4.1 Controlled vocabularies suggested to be used for
particular annotations

In Table 4.17, a number of properties are listed with controlled vocabularies
that should be used for the listed properties. The declaration of the following
controlled vocabularies as high recommendation (in DCAT_AP specifications
are listed as mandatory) ensures a minimum level of interoperability.

74 i3-MARKET Semantic Models

Table 4.17 Preliminary example for annotations.
Property URI Used for

class
Vocabulary
name

Vocabulary URI Usage note

dcat:mediaType Distribution IANA Media
Types [5]

http://www.iana.org
/assignments/media
-types/media-types
.xhtml

dcat:theme Dataset Dataset Theme
Vocabulary

http://publications
.europa.eu/resourc
e/authority/data-the
me

The values to be used for
this property are the URIs of
the concepts in the vocabu-
lary

dcat:themeTaxonomy Catalogue Dataset Theme
Vocabulary

http://publications.e
uropa.eu/resource/
dataset/data-theme

The value to be used for
this property is the URI of
the vocabulary itself, i.e.,
the concept scheme, not the
URIs of the concepts in the
vocabulary

dct:accrualPeriodicity Dataset EU Vocabularies
Frequency
Named Authority
List [70]

http://publications.e
uropa.eu/resource/
authority/frequency

dct:format Distribution EU Vocabularies
File Type Named
Authority List
[71]

http://publications.e
uropa.eu/resource/
authority/file-type

dct:language Catalogue,
dataset,
catalogue
record,
distribution

EU Vocabularies
Languages
Named Authority
List [72]

http://publications.e
uropa.eu/resource/
authority/language

dct:publisher Catalogue,
dataset

EU Vocabularies
Corporate Bodies
Named Authority
List [73]

http://publications
.europa.eu/resourc
e/authority/corporat
e-body

The corporate bodies NAL
must be used for European
institutions and a small set
of international organiza-
tions. In case of other types
of organizations, national,
regional, or local vocabular-
ies should be used

dct:spatial Catalogue,
dataset

EU Vocabularies
Continents
Named Authority
List [74], EU
Vocabularies
Countries
Named Authority
List [75], EU
Vocabularies
Places Named
Authority List
[76], Geonames

http://publications.e
uropa.eu/resource/
authority/continen
t/,~http://publicatio
ns.europa.eu/resou
rce/authority/coun
try,~http://publicat
ions.europa.eu/res
ource/authority/pl
ace/,
http://sws.geonam
es.org/

The EU Vocabularies Name
Authority Lists must be
used for continents, coun-
tries, and places that are in
those lists; if a particular
location is not in one of the
mentioned Named Author-
ity Lists, Geonames, URIs
must be used

adms:status Distribution ADMS status
vocabulary

http://purl.org/adm
s/status/

The list of terms in the
ADMS status vocabulary is
included in the ADMS spec-
ification [77]

dct:type Agent ADMS publisher
type vocabulary

http://purl.org/adm
s/publishertype/

The list of terms in the
ADMS publisher type
vocabulary is included in
the ADMS specification

4.4 Data Offering 75

Table 4.17 Continued.
Property URI Used for

class
Vocabulary
name

Vocabulary URI Usage note

dct:type Licence doc-
ument

ADMS licence
type vocabulary

http://purl.org/adm
s/licencetype/

The list of terms in the
ADMS licence type vocab-
ulary is included in the
ADMS specification

dcatap:availability Distribution Distribution
availability
vocabulary

http://data.europa.
eu/r5r/availability/

The list of terms for the
availability levels of a
dataset distribution is
included in the DCAT-AP
specification

4.4.2 Pricing model

Here we present the general representation of a pricing model to describe the
pricing information attached to the data assets related to legacy information
of pricing specification in the marketplaces.

Pricing models associated with the DataOffering class is shown in
Table 4.18.

• Base class pricingmodel:PricingModel:

Table 4.18 PricingModel basic properties.
Property name Data types Description
currency xyz Currency type
:description String A description
:name String Name
:hasPaymentOnSubscription pricingmodel:

PaymentOnSubscription
PaymentOnSubscription

:hasPaymentOnAPI pricingmodel:PaymentOnAPI PaymentOnAPI
:hasPaymentOnPlan pricingmodel:PaymentOnPlan PaymentOnPlan
:hasPaymentOnUnit pricingmodel:PaymentOnUnit PaymentOnUnit
:hasPaymentOnSize pricingmodel:PaymentOnSize PaymentOnSize
:hasFreePrice pricingmodel:FreePrice FreePrice

For payment categories from marketplace terms, we can have like:
pricingmodel:PaymentOnPlan, pricingmodel:PaymentOnAPI,
pricingmodel:PaymentOnUnit,
pricingmodel:PaymentOnSize,
pricingmodel:PaymentOnSubscriptiOn, and pricingmodel:FreePrice.

76 i3-MARKET Semantic Models

• PaymentOnPlan class:

The payment type class pricingmodel:PaymentOnPlan is shown in
Table 4.19.

Table 4.19 PaymentOnPlan basic properties.
Property name Data types Description
:hasPlanPrice String Plan price
:description String A description
:name String Name
: :planDuration String Plan duration

• PaymentOnAPI class:

The payment type class pricingmodel:PaymentOnAPI is shown in
Table 4.20.

Table 4.20 PaymentOnAPI basic properties.
Property name Data types Description
:hasAPIPrice String Basic price
:description String A description
:name String Name
pricingmodel:numberObject Number of objects moved via API

• PaymentOnUnit class:

The payment type class pricingmodel:PaymentOnUnit is shown in
Table 4.21.

Table 4.21 PaymentOnUnit basic properties.
Property name Data types Description
:hasUnitPrice String Basic price
:description String A description
:name String Name
pricingmodel:dataUnit Data unit type
:unitID String :unit ID

• PaymentOnSize class:

The payment type class pricingmodel:PaymentOnSize is shown in
Table 4.22.

4.4 Data Offering 77

Table 4.22 PaymentOnSize basic properties.
Property name Data types Description
:hasSizePrice String Basic price
:description String A description
:name String Name
:dataSize Size of data

Table 4.23 PaymentOnSubscription basic properties.
Property name Data types Description
:hasSubscriptionPrice String Subscription price
:description String A description
:name String Name
:timeDuration Time Subscription d duration
:fromValue Date time Subscription validity starting

point
:toValue Date time Subscription validity ending

point
:repeat pricingmodel:RepeatBy In case the subscription is

repeatable

• PaymentOnSubscriptiOn class:

The payment type class pricingmodel:PaymentOnSubscriptiOn is shown
in Table 4.23.

• FreePrice class:

The payment type class pricingmodel:FreePrice is shown in Table 4.24.

Table 4.24 FreePrice basic properties.
Property name Data types Description
:hasFreePrice String Free option

Suggested data pricing-value model:
The pricing information is useful to compile the necessary details for

smart contracts and other auditable information (Figure 4.5), plus we use
parameters for helping users evaluate the possible best suggested prices for
their assets that have to be traded/shared (Figure 4.6).

78 i3-MARKET Semantic Models

Figure 4.5 Data pricing-value model.

Parameters used in our price recommendation calculator tool are shown
in Figure 4.6.

Figure 4.6 Data pricing-value model parameters.

4.4.3 Domain categorization/taxonomies for domain-specific
annotations of datasets

Property: core:category and dcat:theme:
The dcat:theme is used to give annotation and information about the

domain categorization of the datasets. In i3-MARKET, we use the themes as

4.4 Data Offering 79

sub-categories to give more granularity in defining the domain annotations.
In DCAT 1, the domain of dcat:theme was dcat:Dataset, which limited the
use of this property in other contexts. The domain has been relaxed in later
revisions.

We also added a upper level property for a data offering to annotate
directly the high-level type of category the data offering belongs to as
core:category.

Semantic
attribute:

dcat:theme

Definition: A category of the resource. A resource can have multiple themes
Sub-property of: dct:subject
Range: skos:Concept
Usage note: The set of skos:Concepts used to categorize the resources are orga-

nized in a skos:ConceptScheme describing all the categories and
their relations in the catalogue

Class: ConceptScheme:

Semantic
class:

skos:ConceptScheme

Definition: A knowledge organization system (KOS) used to represent
themes/categories of datasets in the catalogue

Class: Concept:

Semantic
Class:

textbfskos:Concept

Definition: A category or a theme used to describe datasets in the catalogue
Usage
note:

It is recommended to use either skos:inScheme or skos:topConceptOf on
every skos:Concept used to classify datasets to link it to the concept
scheme it belongs to. This concept scheme is typically associated with the
catalogue using dcat:themeTaxonomy

We are using skos:ConceptScheme via skos:Concept to create taxonomies
to annotate high-level types of annotations for domain themes/categories
classifications.

80 i3-MARKET Semantic Models

Example of category terms as in i3-MARKET DataCategory.ttl schema.

Data Categories

<http://i3.market.eu/auth/dataCatagory/Manufacturing>
 skos:prefLabel "Manufacturing"@en.
<http://i3.market.eu/auth/dataCatagory/Automotive>
 skos:prefLabel "Automotive"@en.
<http://i3.market.eu/auth/dataCatagory/Wellbeing>
 skos:prefLabel "Wellbeing"@en.
<http://i3.market.eu/auth/dataCatagory/Agriculture>
 skos:prefLabel "Agriculture, fisheries, forestry and
food"@en.
<http://i3.market.eu/auth/dataCatagory/Culture>
 skos:prefLabel "Culture and sport"@en.
<http://i3.market.eu/auth/dataCatagory/Economy>
 skos:prefLabel "Economy and finance"@en.
<http://i3.market.eu/auth/dataCatagory/Education>
 skos:prefLabel "Education"@en.
<http://i3.market.eu/auth/dataCatagory/Energy>
 skos:prefLabel "Energy"@en.
<http://i3.market.eu/auth/dataCatagory/Environment>
 skos:prefLabel "Environment"@en.
<http://i3.market.eu/auth/dataCatagory/Government>
 skos:prefLabel "Government and public sector"@en.
<http://i3.market.eu/auth/dataCatagory/Health>
 skos:prefLabel "Health"@en.
<http://i3.market.eu/auth/dataCatagory/International>
 skos:prefLabel "International issues"@en.
<http://i3.market.eu/auth/dataCatagory/Justice>
 skos:prefLabel "Justice, legal system and public safety"@en.
<http://i3.market.eu/auth/dataCatagory/Regions>
 skos:prefLabel "Regions and cities"@en.
<http://i3.market.eu/auth/dataCatagory/society>
 skos:prefLabel "Population and society"@en.
<http://i3.market.eu/auth/dataCatagory/Science>
 skos:prefLabel "Science and technology"@en.
<http://i3.market.eu/auth/dataCatagory/Transport>
 skos:prefLabel "Transport"@en.

4.4.4 W3C Verifiable Credentials data model

For representing the Verifiable Credentials, the Backplane follows the W3c
Verifiable Credentials Data Model 1.0.

Credentials are a part of our daily lives; driver’s licenses are used to assert
that we are capable of operating a motor vehicle, university degrees can be
used to assert our level of education, and government-issued passports enable

4.4 Data Offering 81

us to travel between countries. These credentials provide benefits to us when
used in the physical world, but their use on the Web continues to be elusive.

Currently, it is difficult to express education qualifications, healthcare
data, financial account details, and other sorts of third-party verified machine-
readable personal information on the Web. The difficulty of expressing digital
credentials on the Web makes it challenging to receive the same benefits
through the Web that physical credentials provide us in the physical world.

This specification provides a standard way to express credentials on
the Web in a way that is cryptographically secure, privacy respecting, and
machine verifiable.

Also, in i3-MARKET, the SSI& IAM subsystems use DIDs that follow
the W3c decentralized identifiers (DIDs) v1.0 specifications.

Decentralized identifiers (DIDs) are a new type of identifier that enables
verifiable, decentralized digital identity. A DID refers to any subject (e.g.,
a person, organization, thing, data model, abstract entity, etc.) as determined
by the controller of the DID. In contrast to typical, federated identifiers, DIDs
have been designed so that they may be decoupled from centralized registries,
identity providers, and certificate authorities. Specifically, while other parties
might be used to help enable the discovery of information related to a DID,
the design enables the controller of a DID to prove control over it without
requiring permission from any other party. DIDs are URIs that associate a
DID subject with a DID document allowing trustable interactions associated
with that subject.

4.4.5 Smart contracts for data sharing agreements

How to create a fair and trusted ecosystem around the sharing/trading of data?

� Contracts set the basis of the data/sharing/trading.
� Contractual agreements are critical to ensure the fair and trustworthy

sharing/trading of data.
� Smart contracts offer new affordances and opportunities to enhance trust

in trading and sharing of data.

Most common clauses for DSAs:

◦ General legal provisions:

� Parties and roles.
� Preamble, scope of the agreement, and definitions.

82 i3-MARKET Semantic Models

� Description/specification of the subject matter > descrip-
tion/scoping of the data and data trading and the agreement.

� Duties/obligations and rights> terms & conditions for data trading
(room for flexibility).

� Intended use.
� Warranties > room for flexibility.
� Liability and dispute resolution mechanisms> room for flexibility.
� Duration and termination > performance, breach, modification,

conditions for premature termination, and consequences.

◦ Specific license types:

� License grants.
� Intended use.

4.5 Online i3-MARKET Semantic Model Repository and
Community Management

The results are shared not only with project partners but also with stakehold-
ers and community in open-source repositories. As part of open-source assets,
the data models, documentations, and files used in the i3-MARKET project
are made available, such as the following.

• The i3-MARKET data pack is the set of files, schemas, and metadata
model diagrams that represent the way the i3-MARKET semantics are
organized and structured; it also contains the metadata in two different
formats, e.g., ttl and Jason-ld. owl.

• The i3-MARKET semantic model info is the documentation that
describes in detail all the taxonomies and vocabularies from needed
domains used in i3-MARKET and that describes and represents all
the relationships between them to build the graph representation of
the i3-MARKET semantic model.

• The support repo is the mechanism for how the data model is maintained
following the interoperability requirements in i3-MARKET. If you
want to contribute or have any suggestion for improving the semantic
models, visit the open-source repositories and contact the authors and
members.

• The model files are shared in i3-MARKET GitHub/Gitlab repositories
with release versions where each section contains the online machine-
readable files in OWL and other format for online accessibility. The files

4.6 Data Offerings Description–Schema Definitions in the API Template 83

are maintained and updated regularly to keep the latest version of the
models files up to date.

The code as well the models and vocabularies are available open-source
via the establishment of the i3-MARKET spaces on Gitlab available at:
https://gitlab.com/i3-MARKET-V3-public-repository/, and GitHub available
at: https://github.com/i3-MARKET-V3-public-repository/.

The i3-MARKET semantic models governance process, which is defined
as the support and evaluation process to include semantic improvements, is
as follows:

• Request for changes or updates: Identify any changes previous to a
major release, which should be considered private and usually is on
testing and pre-consensus/staging.

• The evaluation of any type of update request: A review from editors
and community approves participation and updates. In particular terms,
vocabularies, ontologies or initiate a model in i3-MARKET OSS.

• The communication of the results from technical experts: A tagging
version using alpha, beta, and gamma versions and then tagged as major
is used here.

• Evaluation of contributions for new commits: Technical experts, PM,
TM, TPMs, WPLs, and TaskLs, Assess and Evaluate the Contribution
Includes documentation at the initiated project in i3-MARKET OSS.

• Reports and changes report: The technical board issues a short report,
explaining the rational on the rejection in exceptional cases. This step
can include rejection/cancellation of project participation.

It is possible to find a more complete definition of the attributes used in
the data offerings description schema template as used in the Semantic Engine
API in Appendix A.

4.6 Data Offerings Description–Schema Definitions in the
API Template

When creating resources as per the data offering description, you fill the
attribute fields to describe the traded/shared assets and datasets in the
templates that are registered in the registry catalogue and allow the collec-
tion of information that are used by the engine and other components to
retrieve details for search and retrieval of data for information systems and
operations.

84 i3-MARKET Semantic Models

You can find the main semantic data model files for i3-MARKET in open-
source GitHub and Gitlab repository project, e.g., at https://github.com/i3-
MARKET-V3-Public-Repository/SemanticsDataModels.

Definitions for semantic description of data offerings in relation to the
API template:

DataOffering:
{
“marketId”:

Semantic
attribute:

core:marketId

Definition: This is the market name ID, which is uniquely identified a
marketplace

Range: Marketplace identifier: xsd:string
Usage note: n/a
See also: n/a

“provider”:

Semantic
attribute:

core:provider

Definition: Provider of the DataOffering
Range: Provider identifier: xsd:string
Usage note: Should be the identifier of the provider in the i3-MARKET system veri-

fication that should be done with registered providers. All other providers
shall be rejected.Return an error message in case an unregistered provider
is specified.

See also: Maybe connected with the IDs in identity manager. As the actual reg-
istration is by the Marketplaces/DataSpaces, they have the knowledge
and responsibility to have the name/identity of the providers (that have
knowledge of the owners) whom they would know are the providers

“owner”:

Semantic
attribute:

core:owner

Definition: Owner of the DataOffering
Range: Owner identifier: xsd:string
Usage note: Should be the identifier of the owner in the i3-MARKET system.

Owners are not registered in i3-MARKET. Optional parameter. Not
to be verified.

See also: n/a

4.6 Data Offerings Description–Schema Definitions in the API Template 85

“marketDid”: (could be automatically filled by, e.g., WEB-RI in the
creation moment of the data offering)

Semantic
attribute:

core:marketDid

Definition: This is the market DID, registered in VC and i3-MARKET, which is
uniquely identified a marketplace

Range: Marketplace identifier: DID
Usage note: This ID is generated at the marketplace level, and inserting into an

offering automatically by the marketplace itself rather than by a user.
See also:

“providerDid”: (could be automatically filled by, e.g., WEB-RI in the
creation moment of the data offering)

Semantic
attribute:

core:providerDid

Definition: Provider of the DataOffering DID, registered in VC and i3-MARKET,
which is uniquely identified

Range: Provider identifier: DID
Usage note: Should be the identifier of the provider in the i3-MARKET system.

Verification should be done with registered providers. All other
providers shall be rejected.Return an error message in case an unregis-
tered provider is specified.

See also: linked to VC

“ownerDid”: (could be automatically filled by, e.g., WEB-RI in the
creation moment of the data offering)

Semantic
attribute:

core:ownerDid

Definition: Owner of the DataOffering DID, registered in VC and i3-MARKET,
which is uniquely identified

Range: Owner identifier: DID
Usage note: Should be the identifier of the owner in the i3-MARKET system.

Owners are not registered in i3-MARKET. Optional parameter. Not to
be verified.

See also: Maybe connected with the IDs in identity manager

86 i3-MARKET Semantic Models

“ownerConsentForm”: (should be implemented allowing the indication
for user consent form hash details)

Semantic
attribute:

core:ownerConsentForm

Definition: Hashtag string to report the information about the explicit user consent
form documentations

Range:
Usage note: Should be the Hashtag string to report the information about the

explicit user consent form documentations.

See also: n/a

“active”:

Semantic
attribute:

core:active

Definition: Boolean to define if the DataOffering is ready to be visible
Range:
Usage note: Should be the Boolean to define if the DataOffering is ready to be

visible.
True or false.

See also: n/a

“inSharedNetwork”:

Semantic
attribute:

core:inSharedNetwork

Definition: Boolean to define if the DataOffering is shared by the marketplace to be
visible and consumable by all actors in the i3-MARKET network

Range: n/a
Usage note: Should be the Boolean to define if the DataOffering is shared by the mar-

ketplace to be visible and consumable by all actors in the i3-MARKET
network.
True or false.

See also: n/a

4.6 Data Offerings Description–Schema Definitions in the API Template 87

“personalData”:

Semantic
attribute:

core:personalData

Definition: Boolean: To define if the data offering offers a dataset that contains
personal data

Range: n/a
Usage note: Should be the Boolean to define if the data offering offers a dataset that

contains personal data.
See also: n/a

“dataOfferingTitle”:

Semantic
attribute:

core:dataOfferingTitle

Definition: The title of the DataOffering
Range: xsd:string
Usage note: A name to identify the DataOffering. A few words only that summa-

rize the offering.
See also: n/a

“dataOfferingDescription”:

Semantic
attribute:

core:dataOfferingDescription

Definition: A description of the DataOffering
Range: xsd:string
Usage note: Used to have description text to describe what the data offering is

about.This can be a long block of text. At least 1000 characters shall
be reserved for this.

See also: n/a

“category”:
Semantic
attribute:

core:category

Definition: A category to have a high-level classification of domain for the DataOf-
fering

Range: xsd:anyURI
Usage note: Use the categories naming schema defined for high-level categories as

URIs:Categories should only be added by extending the categories list.
This is done by the community.The parameter should be checked against
this list. If it does not match, return an error.

88 i3-MARKET Semantic Models
See also: Categories in table below

prefix: dataCatagory <http://i3.market.eu/auth/dataCatagory>
dataCatagory:Automotive
Data categories (as per definitions in Gitlab file:https://gitlab.com/i3-
MARKET/code/data-models/-/blob/master/Version-
1/DataOfferingCategory.ttl)
<http://i3.market.eu/auth/dataCatagory/Manufacturing>
<http://i3.market.eu/auth/dataCatagory/Automotive>
<http://i3.market.eu/auth/dataCatagory/Wellbeing>
<http://i3.market.eu/auth/dataCatagory/Agriculture>
<http://i3.market.eu/auth/dataCatagory/Culture>
<http://i3.market.eu/auth/dataCatagory/Economy>
<http://i3.market.eu/auth/dataCatagory/Education>
<http://i3.market.eu/auth/dataCatagory/Energy>
<http://i3.market.eu/auth/dataCatagory/Environment>
<http://i3.market.eu/auth/dataCatagory/Government>
<http://i3.market.eu/auth/dataCatagory/Health>
<http://i3.market.eu/auth/dataCatagory/International>
<http://i3.market.eu/auth/dataCatagory/Justice>
<http://i3.market.eu/auth/dataCatagory/Regions>
<http://i3.market.eu/auth/dataCatagory/Society>
<http://i3.market.eu/auth/dataCatagory/Science>
<http://i3.market.eu/auth/dataCatagory/Transport>
See also file DataOfferingCategory.ttl

“status”:

Semantic
attribute:

core:status

Definition: To define the DataOffering status
Range: xsd:string
Usage note: Possible values:“Inactive”: The offer is not visible but still exists and can

be activated again.“ToBeDeleted”: Data offer is still available and visible
but will be deleted once the last contract on this offer expired. No new
purchases are allowed on it.“Deleted”: The offer is not visible and cannot
be activated again. It is no longer available for consumers or providers.

Note: Rename this field to “Status”. Possible values:“Inactive”: The offer is not
visible but still exists and can be activated again.“ToBeDeleted”: Data
offer is still available and visible but will be deleted once the last contract
on this offer expired. No new purchases are allowed on it.“Deleted”: The
offer is not visible and cannot be activated again. It is no longer available
for consumers or providers.

4.6 Data Offerings Description–Schema Definitions in the API Template 89

“dataOfferingExpirationTime”:

Semantic
attribute:

core:dataOfferingExpirationTime

Definition: Expiration time of DataOffering in case
Range: Can be: xsd:dateTime
Usage note: The dateTime data type is used to specify a date and a time.

The dateTime is specified in the following form “YYYY-MM-
DDThh:mm:ss” where:
• YYYY indicates the year
•MM indicates the month
• DD indicates the day
• T indicates the start of the required time section
• hh indicates the hour
• mm indicates the minute
• ss indicates the second
Note: All components are required!
The following is an example of a dateTime declaration in a schema:
“2002-05-30T09:00:00”.

See also: n/a

“dataOfferingCreated”: (this can be created automatically by the sys-
tem at registration time, by engine timestamp, instead of manually by
market...)

RDF prop-
erty

core:dataOfferingCreated

Definition: Date of formal issuance (e.g., publication) of the data offering
Range: Encoded using the relevant ISO 8601 date and time compliant string

(DATETIME) and typed using the appropriate XML schema datatype
(XMLSCHEMA11-2) (xsd:dateTime)

Usage note: This property should be set using the first known date of issuance.
The date of the initial publication of this data offering in i3-MARKET.

See also: Property: release date

“lastModified”: (this can be created automatically by the system at
registration time, by engine timestamp, instead of manually by market...)

Semantic
attribute:

core:lastModified

Definition: Most recent date on which the data offering was changed, updated, or
modified

90 i3-MARKET Semantic Models

Range: Encoded using the relevant ISO 8601 date and time compliant string
(DATETIME) and typed using the appropriate XML schema datatype
(XMLSCHEMA11-2) (xsd:dateTime)

Usage note: The value of this property indicates a change to the data offering record.
An absent value may indicate that the item has never changed after
itsinitial publication, that the date of last modification is not known, or
that the item is continuously updated.

See also: Property: frequency, Property: update/modification date, and Property:
update/modification date in DCAT 3 webpage

“versionNotes”:

Semantic
attribute:

adms:versionNotes

Definition: A description of changes between this version and the previous version
of the resource (VOCAB-ADMS)

Range: xsd:string
Usage note: In case of backward compatibility issues with the previous version of

the resource, a textual description of them should be specified by using
this property.

See also: Property: current version, Property: has version, Property: is replaced
by, Property: is version of, Property: previous version, Property:
release date, Property: replaces, Property: status, and Property: version
notes

“previousVersion”:

Semantic
attribute:

dcat:previousVersion

Definition: The previous version of a resource in a lineage (PAV)
Range: xsd:anyURI
Usage note: This property is meant to be used to specify a version chain, consisting

of snapshots of a resource.
The notion of version used by this property is limited to versions
resulting from revisions occurring to a resource as part of its lifecycle.
One of the typical cases here is representing the history of the versions
of a dataset that have been released over time.

See also: Property: current version, Property: has version, Property: is replaced
by, Property: is version of, Property: previous version, Property:
release date, Property: replaces, Property: status, and Property: version
notes

4.6 Data Offerings Description–Schema Definitions in the API Template 91

“replaces”:

Semantic
attribute:

dcterms:replaces

Definition: A related resource that is supplanted, displaced, or superseded by the
described resource (DCTERMS)

Range: xsd:anyURI
Usage note: Resource replaced.
See also: Property: current version, Property: has version, Property: is replaced

by, Property: is version of, Property: previous version, Property:
release date, Property: replaces, Property: status, and Property: version
notes

“previousVersion”:

Semantic
attribute:

dcat:previousVersion

Definition: The previous version of a resource in a lineage (PAV)
Range: xsd:anyURI
Usage note: This property is meant to be used to specify a version chain, consisting

of snapshots of a resource.
The notion of version used by this property is limited to versions
resulting from revisions occurring to a resource as part of its lifecycle.
One of the typical cases here is representing the history of the versions
of a dataset that have been released over time.

See also: Property: current version, Property: has version, Property: is replaced
by, Property: is version of, Property: previous version, Property:
release date, Property: replaces, Property: status, and Property: version
notes

“contractParameters”:
{
“interestOfProvider”:

Semantic
attribute:

core:interestOfProvider

Definition: This property is used to identify the interest of the data owner/provider
related to the trading/sharing of their data assets. The following possibil-
ities exist:
• Free sharing
• Quotation
• Selling of data (e.g., just earning money by selling the data, no specific
feedback on these data by a data consumer expected)

Range: xsd:string
Usage note: It could be simple notations like: Free Sharing – Quotation − Selling of

data; or we can decide to have specific definitions for our system.
See also: n/a

92 i3-MARKET Semantic Models

“interestDescription”:

Semantic
attribute:

core:interestDescription

Definition: Data provider can specify which sort of quotation he wants exactly,
e.g., quotation for maintenance service or quotation for optimization of
production

Range: xsd:string
Usage note: More text description of the interest of the data owner/provider related

to the trading/sharing of their data assets.Example: “This data is shared
only for the purpose of creating a quotation for maintenance for the
production machines described in the dataset. Any other use of this data
is not permitted”.

Note: n/a

“hasGoverningJurisdiction”:

Semantic
attribute:

core:hasGoverningJurisdiction

Definition: The file format of the distribution
Range: xsd:string (or xsd:anyURI)
Usage note: Can be string naming like:

GLOBAL
US-JURISDICTION
EU-JURISDICTION
(or we use URIs to define the specific terms for jurisdictions)
To be extended to define a list of jurisdictions that are valid here.

See also: n/a

“purpose”:
Semantic
attribute:

core:purpose

Definition: Purpose of the agreement
Range: xsd:string
Usage note: Short label for the purpose.

In case we could have specific terminology for define list of @pur-
pose@ terms.

Note: This parameter is part of the contractual parameters. Ask contract
partners, what this is for (Susanne).

4.6 Data Offerings Description–Schema Definitions in the API Template 93

“purposeDescription”:
Semantic
attribute:

core:purposeDescription

Definition: In case full text description of describing the reasons behind the cre-
ation of the agreement

Range: xsd:string
Usage note: Text description.
Note: This parameter is part of the contractual parameters. Ask contract

partners, what this is for (Susanne).

“hasIntendedUse”:
{
“processData”: “true OR false”

Semantic
attribute:

core:processData

Definition: If consumer allowed to process data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is

for.Make this parameter to type Boolean.

“shareDataWithThirdParty”: “true OR false”

Semantic
attribute:

core:shareDataWithThirdParty

Definition: If consumer allowed to share data with third parties
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is

for.Make this parameter to type Boolean.

“editData”: “true OR false”

Semantic
attribute:

core:editData

Definition: If consumer is allowed to edit the data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is

for.Make this parameter to type Boolean.

},

94 i3-MARKET Semantic Models

“hasLicenseGrant”:
{
“paidUp”: “true OR false”

Semantic
attribute:

core:paidUp

Definition: If licence grant to paidUp
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“transferable”: “true OR false”

Semantic
attribute:

core:transferable

Definition: If licence is transferable
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
See also: n/a

“exclusiveness”: “true OR false”

Semantic
attribute:

core:exclusiveness

Definition: If licence grant exclusiveness
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
See also: n/a

“revocable”: “true OR false”

Semantic
attribute:

core:revocable

Definition: If licence is revocable
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
See also: n/a

4.6 Data Offerings Description–Schema Definitions in the API Template 95

“processing”: “true OR false”

Semantic
attribute:

core:processing

Definition: If licence grant data to be processed
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“modifying”: “true OR false”

Semantic
attribute:

core:modifying

Definition: If licence grant data to be modified
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“analyzing”: “true OR false”

Semantic
attribute:

core:analyzing

Definition: If licence grant data to be analysed
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“storingData”: “true OR false”

Semantic
attribute:

core:storingData

Definition: If licence grant to store data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

96 i3-MARKET Semantic Models

“storingCopy”: “true OR false”

Semantic
attribute:

core:storingCopy

Definition: If licence grant to store a copy data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“reproducing”: “true OR false”

Semantic
attribute:

core:reproducing

Definition: If licence grant to reproduce data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“distributing”: “true OR false”

Semantic
attribute:

core:distributing

Definition: If licence grant to distribute data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“loaning”: “true OR false”

Semantic
attribute:

core:loaning

Definition: If licence grant to loan data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

4.6 Data Offerings Description–Schema Definitions in the API Template 97

“selling”: “true OR false”

Semantic
attribute:

core:selling

Definition: If licence grant to sell data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“renting”: “true OR false”

Semantic
attribute:

core:renting

Definition: If licence grant to rent data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“furtherLicensing”: “true OR false”

Semantic
attribute:

core:furtherLicensing

Definition: If licence grant for further licensing
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

“leasing”: “true OR false”

Semantic
attribute:

core:leasing

Definition: If licence grant to lease data
Range: xsd:boolean
Usage note: The value space of xsd:boolean is true and false. Its lexical space

accepts true, false, “TRUE”, or “FALSE”.
Note: Part of contractual parameters. Ask contract partners, what this is for.

} } ,

98 i3-MARKET Semantic Models

“hasPricingModel”:
{
“pricingModelName”:

Semantic
attribute:

pricingmodel:pricingModelName

Definition: The name to define the legacy, by marketplace, pricing model related
to the data offering

Range: xsd:string
Usage note: Pricing models are individually defined by marketplaces. No common

pricing model will be defined for i3-MARKET. Maybe try to general-
ize existing pricing models.

See also:

“basicPrice”:

Semantic
attribute:

pricingmodel:basicPrice

Definition: The generic basic price for the traded data for basic cost of trade
Range: xsd:double
Usage note: Number related to price.
See also:

“currency”:

Semantic
attribute:

pricingmodel:currency

Definition: The file format of the distribution
Range: xsd:string
Usage note: Using ISO 4215 currency terminology.
See also: lis-ISO-4217-Currencyt_one.xml

See XML file for three-letter abbreviations.
lis-ISO-4217-Currencyt_one.xml

“hasPaymentOnSubscription”:
{
“timeDuration”:

Semantic
attribute:

pricingmodel:timeDuration

Definition: Time duration of subscription
Range: xsd:anyURI

4.6 Data Offerings Description–Schema Definitions in the API Template 99

Usage note: Or generic xsd:string text with labels for duration vocabulary or URIs
with vocabulary like:
“http://reference.data.gov.uk/def/intervals/Day”
“http://reference.data.gov.uk/def/intervals/Hour”
“http://reference.data.gov.uk/def/intervals/Minute”
“http://reference.data.gov.uk/def/intervals/Month”
“http://reference.data.gov.uk/def/intervals/Quarter”
“http://reference.data.gov.uk/def/intervals/Second”
Price is per timeDuration. For example, if parameter is “Second” here,
then the specified price is per second (e/ s).

See also: Terms in intervals.rdf

“description”:

Semantic
attribute:

dcterms:description

Definition: The description of payment on subscription
Range: xsd:string
Usage note: Text description.
See also: n/a

“repeat”:

Semantic
attribute:

pricingmodel:repeat

Definition: If subscription can be repeated define the frequency, e.g., daily,
monthly, etc.

Range: xsd:anyURI
Usage note: We can use specific vocabulary

For example, in freq.ttl definitions like:
http://purl.org/cld/freq/daily
freq:monthly
freq:weekly
.

See also: See also freq.ttl
or frequency.ttl.txt

“hasSubscriptionPrice”:

Semantic
attribute:

pricingmodel:hasSubscriptionPrice

Definition: Price allocated to subscription payment type
Range: xsd:double
Usage note: Price.
See also: n/a

} ,

100 i3-MARKET Semantic Models

“hasPaymentOnPlan”:
{
There may be things like basic plan, premium plans, etc. that gives access

to certain types of data. Which are difficult to implement in i3-MARKET.
Example for other usage: Deliver data only once a month or once every x

period.Optional parameter does not have to be used.

“description”:

Semantic attribute: pricingmodel:planDescription
Definition: The text description of plan
Range: Xsd:string
Usage note: Description text.
See also: n/a

“planDuration”:

Semantic attribute: pricingmodel:planDuration
Definition: The duration of the plan
Range: xsd:anyURI
Usage note: Or generic xsd:string text with labels for duration vocabulary or

URIs with vocabulary like:
“http://reference.data.gov.uk/def/intervals/Day”
“http://reference.data.gov.uk/def/intervals/Hour”
“http://reference.data.gov.uk/def/intervals/Minute”
“http://reference.data.gov.uk/def/intervals/Month”
“http://reference.data.gov.uk/def/intervals/Quarter”
“http://reference.data.gov.uk/def/intervals/Second”

See also: Terms in intervals.rdf

“hasPlanPrice”: “string”

Semantic attribute: pricingmodel:hasPlanPrice
Definition: The price of the plan
Range: xsd:double
Usage note: Price.
See also: n/a

} ,

4.6 Data Offerings Description–Schema Definitions in the API Template 101

“hasPaymentOnApi”:
{
“description”:

Semantic attribute: Dcterms:description
Definition: The text description of payment type
Range: Xsd:string
Usage note: Description text.
Note: Optional. Useful for Agora.

“numberOfObject”:

Semantic attribute: pricingmodel:numberObject
Definition: Number of objects for API handle payments
Range: Xsd:double
Usage note:
Note: Optional. Useful for Agora.

“hasAPIPrice”: “string”

Semantic attribute: pricingmodel:hasAPIPrice
Definition: The price of the API payment type
Range: xsd:double
Usage note: Price.
Note: Optional. Useful for Agora.

} ,

“hasPaymentOnUnit”:
{
"description":

Semantic attribute: Dcterms:description
Definition: The text description of payment type
Range: Xsd:string
Usage note: Description text.

Purchase a cluster of data. Sets of data. One cluster is a group of
datasets.

See also: n/a

102 i3-MARKET Semantic Models

“dataUnit”:

Semantic attribute: pricingmodel:dataUnit
Definition: Data unit type handle by service
Range: Xsd:string
Usage note: Define what the unit resembles.

Example: A predefined dataset. A “Unit” of transaction as indi-
cated in specification of the service method of exchange.

See also: Data unit type − In telecommunications, a protocol data
unit (PDU) is a single unit of information transmitted among
peer entities of a computer network. For example, the data unit
in which data are packeted when transmitted in streams. Also,
e.g., a data unit that contains one or many stream data objects.

“hasUnitPrice”: “string”

Semantic attribute: pricingmodel:hasUnitPrice
Definition: The price of the unit by payment type
Range: xsd:double
Usage note: Price per data unit.
See also: n/a

} ,

“hasPaymentOnSize”:
{
“description”:

Semantic attribute: Dcterms:description
Definition: The text description of payment type
Range: Xsd:string
Usage note: Description text.
See also: n/a

“dataSize”:
Semantic attribute: pricingmodel:dataSize
Definition: The size of data exchanged for payment
Range: Typically typed as xsd:nonNegativeInteger
Usage note: The size in bytes can be approximated (as a non-negative integer)

when the precise size is not known.While it is recommended that
the size be given as an integer, alternative literals such as “1.5
MB” are sometimes used.

See also: We can decide to use a specific vocabulary

4.6 Data Offerings Description–Schema Definitions in the API Template 103

“hasSizePrice”: “string”
Semantic attribute: pricingmodel:hasSizetPrice
Definition: The price of the unit by payment type
Range: xsd:double
Usage note: Price, e.g., pay per megabyte of data.
See also: n/a

} ,

“hasFreePrice”:
{
“hasPriceFree”: “FREE”

Semantic attribute: pricingmodel:hasPriceFree
Definition: The data is shared for free
Range: Xsd:string
Usage note: “FREE”. Data is for free, no payment needed.
See also: We might use an URI as Pricingmodel:Free as unique term

} } ,

“hasDataset”:
{ (Dataset description)

Description of the datasets contained. Note: This is not a description of the
individual data items but an overview.

“title”:
Semantic attribute: dcterms:title
Definition: A name given to the dataset
Range: Xsd:string [rdfs:Literal]
Usage note: Title.
See also: n/a

“keyword”:

Semantic attribute: dcat:keyword
Definition: A keyword or tag describing the resource
Range: Xsd:string [rdfs:Literal]
Usage note: Text keywords (in case we can decide to have a selection of

terminologies to set as keywords).
One or more keywords describing the data.

See also: To have multiple keywords, you can have multiple instances of
the property “keyword”

104 i3-MARKET Semantic Models

“description”:

Semantic attribute: dcterms:description
Definition: A free-text account of the dataset
Range: Xsd:string [rdfs:Literal]
Usage note: Description text of dataset.
See also: n/a

“issued”:
RDF property dcterms:issued
Definition: Date of formal issuance (e.g., publication) of the distribution
Range: Encoded using the relevant ISO 8601 date and time compli-

ant string (DATETIME) and typed using the appropriate XML
schema datatype (XMLSCHEMA11-2) (xsd:dateTime)

Usage note: This property should be set using the first known date of
issuance.
The date of the initial publication of this dataset in i3-MARKET.

See also: § 6.4.7 Property: release date

“modified”:

Semantic attribute: dcterms:modified
Definition: Most recent date on which the item was changed, updated, or

modified
Range: Encoded using the relevant ISO 8601 date and time compli-

ant string (DATETIME) and typed using the appropriate XML
schema datatype (XMLSCHEMA11-2) (xsd:dateTime)

Usage note: The value of this property indicates a change to the actual item,
not a change to the catalogue record. An absent value may indi-
cate that the item has never changed after itsinitial publication,
that the date of last modification is not known, or that the item is
continuously updated.

See also: § 6.6.2 Property: frequency, § 6.5.4 Property:
update/modification date, and § 6.8.4 Property:
update/modification date in DCAT 3 webpage

“temporal”:

Semantic attribute: dcterms:temporal
Definition: The temporal period that the dataset covers
Range: In general, used singularly can be used URIs as in intervals vocab

OR dcterms:PeriodOfTime (an interval of time that is named or
defined by its start and end dates)

4.6 Data Offerings Description–Schema Definitions in the API Template 105

Usage note: In case we extend the model to serve the temporal coverage of a
dataset may be encoded as an instance of dcterms:PeriodOfTime,
or may be indicated using an IRI reference (link) to a resource
describing a time period or interval.
For example, as [a dcterms:PeriodOfTime]
dcat:startDate “2016-03-04”∧∧xsd:dateTime;
dcat:endDate “2018-08-05”∧∧xsd:dateTime;

See also: Intervals.rdf

“language”:

Semantic attribute: dcterms:language
Definition: A language of the item. This refers to the natural language used

for textual metadata (i.e., titles, descriptions, etc.) of a catalogued
resource (i.e., dataset or service) or the textual values of a dataset
distribution

Range: Resources defined by the Library of Congress (ISO 639-1, ISO
639-2) should be used
If an ISO 639-1 (two-letter) code is defined for language, then
its corresponding IRI should be used; if no ISO 639-1 code is
defined, then IRI corresponding to the ISO 639-2 (three-letter)
code should be used

Usage note: Repeat this property if the resource is available in multiple lan-
guages.

See also: Also if representations of a dataset are available for each lan-
guage separately, define an instance of dcat:Distribution for each
language and describe the specific language of each distribu-
tion using dcterms:language (i.e., the dataset will have multiple
dcterms:language values and each distribution will have just one
as the value of its dcterms:language property).

“spatial”:

Semantic attribute: dcterms:spatial
Definition: The geographical area covered by the dataset
Range: Xsd:anyURI to use in case using a IRI reference (link) to a

resource describing a location. It is recommended that links are
to entries in a well-maintained gazetteer such as Geonames
Or a dcterms:Location (a spatial region or named place)

Usage note: The spatial coverage of a dataset may be encoded as an instance
of dcterms:Location.
Or may be indicated using an IRI reference (link) to a resource
describing a location. It is recommended that links are to entries
in a well-maintained gazetteer such as Geonames.

106 i3-MARKET Semantic Models

See also: For example, for bbox
dcterms:spatial [[a dcterms:Location]
dcat:bbox """POLYGON[[3.053 47.975 , 7.24 47.975
, 7.24 53.504 , 3.053 53.504 , 3.053 47.975]]""" ;]

“accrualPeriodicity”:

Semantic attribute: dcterms:accrualPeriodicity
Definition: The frequency at which a dataset is published
Range: xsd:anyURI
Usage note: We can use specific vocabulary

For example, in freq.ttl definitions like:
http://purl.org/cld/freq/daily
freq:monthly
freq:weekly.

See also: See also freq.ttl
or at frequency.ttl.txt

“temporalResolution”:

Semantic attribute: dcat:temporalResolution
Definition: Minimum time period resolvable in the dataset
Range: xsd:duration
Usage note: If the dataset is a time-series, this should correspond to the spac-

ing of items in the series. For other kinds of dataset, this property
will usually indicate the smallest time difference between items
in the dataset.

See also: n/a

“theme”: [

Semantic attribute: dcat:theme
Definition: A (sub-)category of the resource. A resource can have multiple

themes
Range: It would be better to have xsd:anyURI with URIs that represent

the various terms in a vocabulary (to be defined with pilot part-
ners for terms related to domains)

Usage note: Use this for domain-specific categories. For example, subcat-
egories like production machines, assembly lines, etc.To be
defined by each application domain.Theme can be used multiple
times to provide multiple subcategories.
The set of themes used to categorize the resources are orga-
nized in a skos:ConceptScheme, skos:Collection, owl:Ontology,
or similar, describing all the categories and their relations in the
catalogue.

See also:

],

4.6 Data Offerings Description–Schema Definitions in the API Template 107

“distribution”: (Distribution: A specific representation of a dataset.
A dataset might be available in multiple serializations that may dif-
fer in various ways, including natural language, media-type or format,
schematic organization, temporal and spatial resolution, and level of
detail or profiles [which might specify any or all of the above]).

{
“title”:

Semantic attribute: dcterms:title
Definition: A name given to the distribution
Range: Xsd:string [rdfs:Literal]
Usage note: Title.
See also: n/a

“description”:

Semantic attribute: dcterms:description
Definition: A free-text account of the distribution
Range: Xsd:string [rdfs:Literal]
Usage note: Description text of dataset.
See also: n/a

“license”:

Semantic attribute: dcterms:license
Definition: A legal document under which the distribution is made available
Range: dcterms:LicenseDocument
Usage note: For interoperability, it is recommended to use canonical IRIs of

well-known licenses such as those defined by Creative Com-
mons.
Information about licenses and rights should be provided on
the level of distribution. Information about licenses and rights
may be provided for a dataset in addition to but not instead of
the information provided for the distributions of that dataset.
Providing license or rights information for a dataset that is differ-
ent from information provided for a distribution of that dataset
should be avoided as this can create legal conflicts. See also
guidance at §9. License and rights statements.

See also: Property: rights Property: license
ToDo: Describe a list of possible licenses here.

108 i3-MARKET Semantic Models

“accessRights”:

Semantic attribute: dcterms:accessRights
Definition: Information about who can access the resource or an indication

of its security status
Range: dcterms:LicenseDocument
Usage note: Information about licenses and rights may be provided for the

resource.
To express statements concerning only access rights (e.g.,
whether data can be accessed by anyone or just by authorized
parties).
Access rights can also be expressed as code lists/taxonomies.
Examples include the access rights code list (EUV-AR) used in
(DCAT-AP) and the Eprints Access Rights Vocabulary Encoding
Scheme.

See also: Property: rights
dcterms:accessRights <http://publications.europa.eu/resource/
authority/access-right/PUBLIC> ;
dcterms:conformsTo <http://www.opengis.net/def/serviceType/
ogc/csw> ;

“downloadType”:

Semantic attribute: core:downloadType
Definition: Information about download type (it means “Stream” or “Bulk”

dataset download)
Range: xsd:string
Usage note: To use a set of words like “Stream” and “Bulk”.
See also: n/a

“dataStream”:

Semantic attribute: core:dataStream
Definition: Boolean attribute to check if the dataset is offered as a stream or

not
Range:
Usage note: Should be the Boolean attribute to check if the dataset is offered

as stream or not in the “Distribution” class block.
See also: n/a

4.6 Data Offerings Description–Schema Definitions in the API Template 109

“conformsTo”:
Semantic attribute: dcterms:conformsTo
Definition: An established standard to which the distribution conforms (very

optional)
Range: dcterms:Standard (A basis for comparison; a reference point

against which other things can be evaluated.)
Usage note: This property should be used to indicate the model, schema,

ontology, view, or profile that this representation of a dataset
conforms to. This is (generally) a complementary concern to the
media-type or format.
This is a link to a specific file that describes the data in a domain
specific format. It can also be a text in a freely definable format.

See also: Property: format, Property: media type
Also check file-type.ttl.txt

“mediaType”:

Semantic attribute: dcat:mediaType
Definition: The media-type of the distribution as defined by IANA (IANA-

MEDIA-TYPES)
Range: Xsd:anyURI [dcterms:MediaType]
Usage note: dcat:mediaType should be used if the type of the

distribution is defined by IANA (IANA-MEDIA-TYPES).
https://www.iana.org/assignments/media-types/
For example, mediaType <http://www.iana.org/assignments/m
edia-types/application/ld+json>
For example, a link to a XML, csv, or JSON file, to describe the
data format.

See also: Property: media type, Property: conforms to
Check also file-type.ttl.txt

“packageFormat”:

Semantic attribute: dcat:packageFormat
Definition: The package format of the distribution in which one or more data

files are grouped together, e.g., to enable a set of related files to
be downloaded together

Range: Xsd:anyURI [dcterms:MediaType]
Usage note: In case it is compressed, this could be .zip, .rar, etc.

This property to be used when the files in the distribution are
packaged, e.g., in a TAR file, a Frictionless Data Package, or
a Bagit file. Theformat should be expressed using a media-type
as defined by IANA (IANA-MEDIA-TYPES), if available.

See also: Property: compression format.

110 i3-MARKET Semantic Models

“accessService”: (info inside distribution for service that serves the
distributions of the datasets)

{
“conformsTo”:

Semantic attribute: dcterms:conformsTo
Definition: An established standard to which the distribution conforms
Range: dcterms:Standard (A basis for comparison; a reference point

against which other things can be evaluated.)
Usage note: This property should be used to indicate the model, schema,

ontology, view, or profile that this representation of a dataset
conforms to. This is (generally) a complementary concern to the
media-type or format.

See also: Property: conforms to

“endpointDescription”:

Semantic attribute: dcat:endpointDescription
Definition: A description of the services available via the endpoints, includ-

ing their operations, parameters, etc.
Range: xsd:string
Usage note: The endpoint description gives specific details of the actual end-

point instances, while dcterms:conformsTo is used to indicate the
general standard or specification that the endpoints implement.
An endpoint description may be expressed in a machine-
readable form, such as an OpenAPI (Swagger) description
(OpenAPI), an OGC GetCapabilities response (WFS), (ISO-
19142), (WMS), (ISO-19128), a SPARQL service description
(SPARQL11-SERVICE-DESCRIPTION), an (OpenSearch) or
(WSDL20) document, a Hydra API description (HYDRA), and
else in text or some other informal modes if a formal representa-
tion is not possible.

See also: n/a

“endpointURL”:

Semantic attribute: dcat:endpointURL
Definition: The root location or primary endpoint of the service (a Web-

resolvable IRI)
Range: xsd:anyURI
Usage note: The URL address of the resource via service.
See also: n/a

4.6 Data Offerings Description–Schema Definitions in the API Template 111

“servesDataset”:

Semantic attribute: dcat:servesDataset
Definition: A collection of data that this data service can distribute. The

dataset ID or name and files
Range: xsd:string
Usage note: To point to the datasets that are served via the data service.
See also: n/a

“serviceSpecs”: “string”

Semantic attribute: core:serviceSpecs
Definition: Description of service specification for more details on the data

service implementations
Range:
Usage note: To extend in case the description of data service to add more

detailed descriptions on the system.To describe more details
about the service, e.g. QoS, etc.

See also: n/a

“dataExchangeSpec”: (info inside accessService block for data
exchange specifications that serve the distributions of the datasets)

{
“encAlg”: “string”

Semantic attribute: core:encAlg
Definition: Encryption algorithm used to encrypt blocks. Either AES-128-

GCM (’A128GCM’) or AES-256-GCM (’A256GCM)
Range:
Usage note: Encryption algorithm used to encrypt blocks. Either AES-128-

GCM (’A128GCM’) or AES-256-GCM (’A256GCM).
See also: n/a

“signingAlg”: “string”

Semantic attribute: core:signingAlg
Definition: Signing algorithm used to sign the proofs. Like ECDSA

secp256r1 with key lengths: either “ES256”, “ES384”, or
“ES512”

Range: n/a
Usage note: Signing algorithm used to sign the proofs. It is ECDSA

secp256r1 with key lengths: either “ES256”, “ES384”, or
“ES512”.

See also: n/a

112 i3-MARKET Semantic Models

“hashAlg”: “string”

Semantic attribute: core:hashAlg
Definition: Hash algorithm used to compute digest/commitments. It is SHA2

with different output lengths: either “SHA-256”, “SHA-384”, or
“SHA-512”

Range:
Usage note: Hash algorithm used to compute digest/commitments. It is SHA2

with different output lengths: either “SHA-256”, “SHA-384”, or
“SHA-512”.

See also: n/a

“ledgerContractAddress”: “string”

Semantic attribute: core:ledgerContractAddress
Definition: The ledger smart contract address (hexadecimal) on the DLT
Range: n/a
Usage note: The ledger smart contract address (hexadecimal) on the DLT.
See also: n/a

“ledgerSignerAddress”: “string”

Semantic attribute: core:ledgerSignerAddress
Definition: The orig (data provider) address in the DLT (hexadecimal)
Range: n/a
Usage note: The orig (data provider) address in the DLT (hexadecimal).
See also: n/a

“pooToPorDelay”: “number”

Semantic attribute: core:pooToPorDelay
Definition: Maximum acceptable delay between the issuance of the proof

of origin (PoO) by the orig and the reception of the proof of
reception (PoR) by the orig

Range: n/a
Usage note: Maximum acceptable delay between the issuance of the proof

of origin (PoO) by the orig and the reception of the proof of
reception (PoR) by the orig.

See also: n/a

4.6 Data Offerings Description–Schema Definitions in the API Template 113

“pooToPopDelay”: “number”

Semantic attribute: core:pooToPopDelay
Definition: Maximum acceptable delay between the issuance of the proof

of origin (PoP) by the orig and the reception of the proof of
publication (PoR) by the dest

Range:
Usage note: Maximum acceptable delay between the issuance of the proof

of origin (PoP) by the orig and the reception of the proof of
publication (PoR) by the dest.

See also: n/a

"pooToSecretDelay": "number"

Semantic attribute: core:pooToSecretDelay
Definition: If the dest (data consumer) does not receive the PoP, it could

still get the decryption secret from the DLT. This defines the
maximum acceptable delay between the issuance of the proof
of origin (PoP) by the orig and the publication (block time) of
the secret on the blockchain

Range: n/a
Usage note: If the dest (data consumer) does not receive the PoP, it could

still get the decryption secret from the DLT. This defines the
maximum acceptable delay between the issuance of the proof
of origin (PoO) by the orig and the publication (block time) of
the secret on the blockchain.

See also: n/a

} }
}],

“datasetInformation”: (a description of types that represent
attributes of observations, measurements, fields, etc., in the dataset to
describe the information and structure of the raw real data in the
datasets)

114 i3-MARKET Semantic Models

{
“measurementType”:

Semantic attribute: core:measurementType
Definition: The data types that represent attributes of observations and mea-

surements in the dataset
Range: xsd:anyURI
Usage note: Simple text strings or the use of specific vocabularies collected

to support domains For example, like the vocabulary created for
wellbeing.
For example, <http://www.i3-MARKET.eu/wellbeing_annotat
ions/Sleep_count_micro_awakenings>.
Specific types of measurements for a certain domain. Parameter
can be put multiple times in the API call.

See also: See also example for Wellbeing in DataRecords_Annotations_f
or_Wellbeing_datasets_measurements_02.ttl attached to this
page but also in gitlab https://gitlab.com/i3-MARKET/code/da
ta-models/-/blob/master/Version-1/DataRecords_Annotations_f
or_Wellbeing_datasets_measurements_02.ttl

“measurementChannelType”:

Semantic attribute: core:measurementChannelType
Definition: The data measurement channel types in the dataset

Range: xsd>string or xsd>anyURI
Usage note: Simple text strings or the use of specific vocabularies collected

to support domains.
See also: n/a

“sensorId”:

Semantic attribute: core>sensorID
Definition: Sensor ID
Range: xsd>string
Usage note: ID used to identify the sensors in original datasets source.
See also: n/a

“deviceId”:

Semantic attribute: core>deviceID
Definition: Device ID
Range: xsd>string
Usage note: ID used to identify the devices in original datasets source.
See also: n/a

4.7 Extended Version of Structure for DatasetInformation 115

“cppType”:

Semantic attribute: core:cppType
Definition: The cpp types in the dataset. Derived from AGORA require-

ments
Range: xsd>string or xsd>anyURI
Usage note: Simple text strings or the use of specific vocabularies collected

to support domains.
See also: n/a

“sensorType”: “string”

Semantic attribute: core:sensorType
Definition: The cpp types in the dataset. Derived from wellbeing and

AGORA requirements
Range: xsd>string or xsd>anyURI
Usage note: Simple text strings or the use of specific vocabularies collected

to support domains.
See also: n/a

4.7 Extended Version of Structure for DatasetInformation

The DatasetInformation module may be extended to add more specific
description and structure information related to the raw original data that is
contained in the assets/datasets delivered by the providers. This way, users
can check and have a better understanding of the underlying data model and
associated metadata that describe the data that are transferred. The proposed
data model description of the source of the data, each observation and data
item in the data with their details like quantity type, data type, unit, resolution,
range, etc.

116 i3-MARKET Semantic Models

 "platform": "string”,
 "device": "string”,
 "sensor": "string”,
 "sensorResolution": "string”,
 "procedure": "string”
 }
 }
 "document": {
 "name": "string",
 "documentDescription": "string",
 "comment": "string”,
 "timeResolution": "string"
 }
 "observation" (dataItem): [
 {
 "observationNname": "string",
 "observationDdescription": "string",
 "observedProperty": "string",
 "dataType": "string",
 "accuracy": "string",
 "timeResolution": "string",
 "measure": {
 “quantityKind”:
"string",
 “unit”: "string",
 “value”: "string"
 }
 "range":
 {
 "rangeType": "string",
 "min": "string",
 "max": "string"
 }
 "subObservation" (subDataItem) [
 {
 "observationNname": "string",
 "observationDdescription":
"string",
 "observedProperty": "string",
 "dataType": "string",
 "accuracy": "string",
 "timeResolution": "string",
 "measure": {
 “quantityKind”:
"string",
 “unit”: "string",
 “value”: "string",
 }
 "range":
 {
 "rangeType": "string",
 "min": "string",
 "max": "string",
 } }
]
 }]
 }]

4.7 Extended Version of Structure for DatasetInformation 117

For the definition and semantic annotations related to quantities and units,
we can refer to:

• The Ontology of Units of Measure (OM) 2.0 models concepts and
relations are focus on units, quantities, measurements, and dimen-
sions. http://www.ontology-of-units-of-measure.org/page/om-2

• The Quantities, Units, Dimensions and Data Types Ontologies http://ww
w.qudt.org/2.1/catalog/qudt-catalog.html

• https://qudt.org/
• https://www.qudt.org/2.1/catalog/qudt-catalog.html
• https://www.qudt.org/doc/DOC_SCHEMA-DATATYPES.html
• https://www.qudt.org/doc/DOC_VOCAB-UNITS.html
• https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.ht
ml

5
Distributed Data Storage System

Considerations

5.1 Objectives

Every federated information system requires means to store and share data
securely. The i3-MARKET network is not an exception; hence, a well-
thought solution that is secure, reliable, and usable by all entities in the
i3-MARKET network is needed. The aim of data storage is to store com-
mon data in a federated network of data marketplaces. The common data
shared between participating data marketplace instances may include iden-
tity information, shared semantic models, meta-information about datasets
and offerings, semantic queries, sample data, smart contract templates and
instances, crypto tokens, and payments. No single party should fully control
the data storage system and there shall be no single point of failure. In order
to fulfil the needs of the aforementioned data types, two separate storage
solutions are used: the decentralized and the distributed one.

The former supports the management of distributed identities and smart
contracts. However, the latter has an important role in data synchronization
between different i3-MARKET nodes and, optionally, storage of datasets on
sale. Moreover, the distributed storage supports non-repudiation service and
auditable accounting features of i3-MARKET.

The design of the distributed storage has been an iterative process.
Data storage system takes full advantage of available base technolo-

gies and builds on top of these in order to satisfy i3-MARKET needs and
requirements, with a focus on federated system architecture. The underlying
technologies chosen for decentralized and distributed storage means are
Hyperledger BESU and CockroachDB, respectively.

The federated query engine index (SEED Index) management solution is
available and integrated into the i3-MARKET network, deployed as a smart
contract on Hyperledger BESU. Moreover, a solution called verifiable data

119

120 Distributed Data Storage System Considerations

integrity has been implemented on top of auditable accounting to further
increase the reliability of data. And, finally, access management solution
governing the data access has been designed and implemented, depending
on reliable and secure key management solution.

The common data shared between participating data marketplace
instances may include identity information, shared semantic models, meta-
information about datasets and offerings, semantic queries, sample data,
smart contract templates and instances, crypto tokens, and payments. No
single party should fully control the data storage system and there shall be
no single point of failure.

The high-level capabilities that the data storage aims to provide are:

1. Decentralized storage
2. Distributed storage

The decentralized storage shall provide the highest available security
guarantees in a federated network. The decentralized storage subsystem is
built on a secure Byzantine fault-tolerant consensus-based distributed ledger.
Due to high security requirements, the performance and storage space of such
a system may be relatively limited compared to conventional databases.

The distributed storage shall provide a database-like subsystem that is
scalable, deployed on all i3-MARKET nodes, has a rich query interface
(SQL), and can handle large amounts of data, while the i3-MARKET shall
rely on the API of the decentralized storage provided out-of-box.

5.2 Solution Design/Blocks

The storage system consists of two main subsystems for implementing
the decentralized storage and distributed storage features, respectively. The
subsystems are relatively independent of other systems and also with each
other.

The diagram of a decentralized storage subsystem is shown in Figure 5.1.
The decentralized storage subsystem is implemented as a blockchain-based
distributed ledger network. The software implementation is Hyperledger
BESU in a permissioned setup using IBFT 2.0 consensus. Hyperledger BESU
uses internally an embedded RocksDB instance for storing linked blocks
(the journal of transaction) and world state (the ledger). Hyperledger BESU
can instantiate and execute smart contracts for supporting the use cases of
i3-MARKET framework (Figure 5.1).

5.2 Solution Design/Blocks 121

Figure 5.1 Decentralized storage subsystem.

The components depending on the decentralized storage subsystem uses
Hyperledger BESU’s native JSON-RPC-based interface. A separate interface
layer for accessing (or limiting access to) decentralized storage is not planned,
as the nodes of the decentralized storage will already validate all transactions
submitted to the ledger. The diagram of a distributed storage subsystem is
shown in Figure 5.2. The subsystem consists of database nodes. The database
provides an SQL interface to other i3-MARKET framework components.
The software implementation database is CockroachDB that can be accessed
via PostgreSQL-compatible wire protocol for which a large number of client
libraries exist in different languages and platforms. Only secure access (TLS
with mutual authentication) to the database will be enabled; hence, all clients
need to use private keys and valid certificates to access the database.

Figure 5.2 Distributed storage subsystem.

122 Distributed Data Storage System Considerations

The distributed storage component is an internal component with no
external access. That is to say that it will have connections only with other
trusted services within the i3-MARKET Backplane. Even though this sim-
plifies the necessary measures in terms of authentication and authorization,
it is still needed to secure machine-to-machine connections between the
i3-MARKET services since they can be deployed on shared infrastructure.

The authentication and authorization solution relies on providing the
distributed storage behind a TLS server endpoint and requiring TLS client
certificates for the different connecting services. The setup guarantees end-
to-end security between the distributed storage service and any of its client
services.

The governance of the certificates has followed up to now the keep it
simple approach. The distributed storage system is in charge of issuing the
servers’ and clients’ certificates, unless the instance has its own certificate
authority (CA), in which case the CA is responsible for issuing server certifi-
cates to the distributed storage server component and client certificates to the
clients.

5.2.1 Service availability

The storage subsystem is a critical component of the i3-MARKET network
contributing to the proper functioning of the platform. Hence, appropriate
measures in the form of design, choice of technologies, and deployment
have to be applied. Fortunately, the two main subsystems used in the storage
solution already have strong built-in availability features that are summarized
below.

5.2.1.1 Distributed storage
The distributed storage solution is based on a CockroachDB server. Initially,
the database was deployed as a global cluster of database nodes; however,
after the initial testing of the entire network, a couple of issues were dis-
covered. First, the deployment of a CockroachDB instance and connecting it
to a cluster is not an automated process, but rather manual as configuration
steps must be tightly coordinated between the nodes. This contradicts with
the overall concept of i3-MARKET, which should be operable without any
central administration.

The second and far greater problem, which was eventually acknowledged,
is that each node in a CockroachDB cluster has equal rights with full admin-
istrative privileges over the cluster. This is a problem because any node can

5.2 Solution Design/Blocks 123

alter data and there is no consensus mechanism to agree on the changes.
Furthermore, in case of the rise of a rogue node could potentially lead to
full erasure or silent corruption of the entire database.

Therefore, a decision was made to replace the global cluster with inde-
pendent clusters deployed at each i3-MARKET instance. In this deployment
mode, each instance is responsible for its own operation and a configuration
mistake in one instance, or a malicious act cannot affect the stored data at
other instances. There was only one implication to this change – SEED Index
would not work in such a setup anymore. As a result, the index was migrated
from the distributed storage to the decentralized storage.

5.2.1.2 Decentralized storage
The decentralized storage used in the platform is a Hyperledger BESU
network, which uses the IBFT 2.0 (proof of authority) consensus protocol. In
this network, there are four validator nodes based on the genesis configuration
stored in the corporative Nexus. In this configuration, there are three accounts
to be used by the i3-MARKET federation.

The federated search engine index service uses the Hyperledger BESU
blockchain as its storage backend. For this purpose, a smart contract storing
the endpoints of all SEED instances along with the associated data categories
has been deployed on the blockchain.

In this scenario, different components like auditable accounting, SEED
Index, etc., are capable to deploy and manage smart contracts and transactions
over those accounts.

5.2.2 Verifiable database integrity

The purpose of the VDI is to provide an infrastructure for data to be stored
in a way that its presence, or lack thereof, can be cryptographically proven.
It takes advantage of the blockchain technology to determine the integrity of
the data it contains.

The VDI component consists of a library that implements a Compact
Sparse Merkle Tree (CSMT)1 and exposes an API that allows for data to be
inserted, retrieved, updated, and removed. The API consumer can later obtain
proofs of membership/non-membership and verify those proofs against the
existing Merkle tree.

1 Compact Sparse Merkle Trees: https://eprint.iacr.org/2018/955.pdf

124 Distributed Data Storage System Considerations

Figure 5.3 VDI integration with auditable accounting.

This data structure works on the same principles of verifiable maps2,
periodically generating a root hash that, after been made public, can guarantee
the integrity of the data at that point in time. Membership or non-membership
of any given key can be cryptographically proven against the Merkle tree.

• Integration:

The VDI is not a separate application on its own but is integrated into
the auditable accounting component, as can be seen in Figure 5.3. The
MerkleTreeService class exposes methods to create a CSMT tree from the
array of hashes obtained from registries. The individual proofs are then stored
along with their corresponding root hash into the registries repository in the
database. The unregistered blockchain record is also stored in the database
along with the serialized Merkle tree data itself.

The library3 is implemented in TypeScript and distributed as a node
package. The main data structure of the VDI is a class called CSMT. This
class keeps a map of all the nodes that are stored in the tree as well as the
tree’s root hash. On an empty tree, the root hash is initialized as a zero node.
Data (in key-value format) can then be inserted into the tree, producing new
nodes and updating the root hash.

What follows is a summary of the functions that are available for the
consumers of the CSMT class.

2 Verifiable data structures, p. 2: https://continusec.com/static/VerifiableDataStructures.pdf
3 https://github.com/i3-MARKET-V3-Public-Repository/SP4-VerifiableDatabaseIntegrity

5.2 Solution Design/Blocks 125

• Add:

This method adds a given key-value pair to the tree. The key has to be in
byte array format. The value can be any arbitrary string and is optional. If the
provided key already exists in the tree, an error is returned, and no duplicate
keys are allowed. The data is combined in a new array that contains the key in
a hexadecimal format, the hash of the value and an entry mark that flags this
as a leaf node. This data is then inserted into the nodes map, where the hash
of the data is, in itself, the key for this record in the map. Finally, the tree’s
root hash is recalculated.

• Insert:

This is a convenient method to insert data in bulk to the tree. This method
just validates the data and calls the method add above on each individual
element.

• Get:

This method looks up for a given key in the nodes map. It returns the hash
of the corresponding value for the key, or undefined if the key is not present.

• Delete:

This method looks up for a given key in the nodes map and removes it.
The tree’s root hash is then recalculated based on the remaining nodes. If no
key is found, an error is returned.

• Create proof:

This method looks up for a given key in the nodes map and creates a
new proof object. The proof object contains the data itself (if present), the
chain of additional nodes along the tree traversal, the root hash of the tree,
and a membership flag (true if the given key is present in the tree, false
otherwise).

• Verify proof:

When the consumer has a proof object, it can verify whether that proof
matches against the existing tree by calling this method. It verifies whether
the root hashes and node chain (in case of membership) matches with what
the CSMT class has stored internally. It returns true if the proof matches. If it
returns false, it means that either the proof does not belong to this tree or that
the proof was tampered with.

126 Distributed Data Storage System Considerations

5.2.3 Federated query engine index management

The decentralized storage sub-component of data storage provides function-
ality to manage an index used for semantic data discovery. The federated
query engine index supports federated queries, a concept implemented by the
semantic engine. The distributed storage plays a vital role in supporting the
verifiable data integrity, non-repudiation service, and auditable accounting.

Decentralized storage implements two main use cases – managing the
index and querying the index – in order to provide the required functionality
to the semantic engine for accessing the content of the index.

The index is a collection of data categories together with the endpoint
location addresses of the corresponding semantic engines. One semantic
engine is not limited to storing offerings belonging to one category but to
several of them. Hence, the index contains one to many relationships, linking
a specific semantic engine to a set of data categories.

Each semantic engine instance has a private key, while the corresponding
public key serves as an identifier that is associated with a set of SEED Index
records. The private key is needed to update corresponding index records.
Moreover, in order to pay for update transaction, the SEED account must
have enough resources. The owner of the SeedsIndexStorage smart contract
can assign administrator roles to other keys that can update records stored
under any public key.

Every new marketplace joining the i3-MARKET network will connect to
the decentralized storage through a semantic engine. If the marketplace has
been around for a while, the marketplace has most probably stored offerings
metadata. This metadata should also be stored in the SEED to participate in
federated queries. Therefore, such a marketplace would have to populate the
index by inserting category information to the decentralized storage.

• Manage:

In order to provide the most recent and accurate information to the
semantic engines in the i3-MARKET network, the index must be kept up
to date at all times. Therefore, functions – insert, update, and delete − to
maintain the index are required. All these activities are limited to registered
i3-MARKET nodes only and the authentication uses self-signed certificates.

• Insert:

Before an i3-MARKET instance receives any data offering registrations,
the semantic engine has no reason to insert any content into the index.
Although it is possible to insert an empty entry containing the endpoint
address and an empty category list to the index, it is recommended to keep the

5.3 Diagrams 127

index clean of unnecessary information. After receiving the first data offering,
the semantic engine inserts the first entry to the index, revealing to other i3-
MARKET instances the category of offerings stored in that specific semantic
engine.

• Update:

Over the course of the market lifecycle, data offerings of different data
categories are stored in a single marketplace. Upon the registration of a
data offering belonging to a category that is not yet present in the semantic
engine, the semantic engine updates the index with relevant information (data
category, endpoint address, etc.) by inserting a new entry to the database.

• Delete:

The final management activity of the index lifecycle allows the removal
of entries from the index. It is the responsibility of the semantic engine to
keep the index up to date; therefore, redundant and outdated information is
removed from the index. In the event of closing down of an i3-MARKET
marketplace instance, either temporarily for maintenance or indefinitely,
the semantic engine has to remove unavailable content from the index.
Moreover, this function should be accessible by a system administrator to
remove relevant entries from the index, in case of a sudden shut down of a
marketplace/i3-MARKET node.

• Query:

In case a semantic engine needs to perform a federated query among all
other instances in the i3-MARKET network, the index shall provide input
to the federated query. The semantic engine firstly queries the index with
relevant parameters (data category, description, etc.) and the distributed stor-
age shall return information from the index indicating which i3-MARKET
instance contains the data that the SEED is looking for.

5.3 Diagrams

Federated query engine index management:
The sequence diagram in Figure 5.4 shows the interaction of the decen-

tralized storage on the SEED regarding the federated query engine index
management. Each function – insert, update, delete, and query – has been
depicted on a single sequence diagram, as there is no relevant complexity to
be shown for each interaction. Index record identifiers (uuid in the figure)
are derived from node public keys via cryptographic hashing and all requests
must be signed with an authorized key (e.g., corresponding private key).

128 Distributed Data Storage System Considerations

Figure 5.4 Federated query engine index management.

Verifiable data integrity:
The sequence diagram in Figure 5.5 demonstrates the integration of

verifiable data integrity with the auditable accounting subsystem. All features
are displayed on a single diagram, as there is no specific complexity within
the functions.

5.4 Interfaces 129

Figure 5.5 Verifiable data integrity.

5.4 Interfaces

The distributed storage subsystem does not expose a bespoke API for internal
or external services. Each system within the Backplane uses the storage
component’s out-of-box means for connectivity.

Likewise, the API provided by the decentralized storage comes out-of-
box with the solution. The service can be accessed via JSON-RPC protocol
offered by Hyperledger BESU. Please refer to BESU Documentation4 for the
details of the API provided by Hyperledger BESU and client libraries.

The SEEDS Index solution consists of a Java library, called SeedsIn-
dex, which provides wrappers for the smart contract and utility functions for

4 Hyperledger BESU documentation, https://besu.hyperledger.org/en/stable/

130 Distributed Data Storage System Considerations

convenience. The SeedsIndex library uses Web3j5 library for accessing the
BESU network. The library interface is documented by extensive Javadoc
comments and a complete usage example included in the library.

5.5 Background Technologies

The decisions for the choice of selected technologies in order to satisfy the
high-level capabilities are:

- Hyperledger BESU to satisfy decentralized storage.
- CockroachDB6 to satisfy storage requirements.

Hyperledger BESU is an open-source Ethereum client. The decision to
select Hyperledger BESU to satisfy the needs for decentralized storage has
been made based on the following assumptions:

- Self-sovereign identity and access management has decided to base
the reference implementation on Veramo, which specifically requires
Ethereum-based blockchains.

- Auditable accounting and data monetization require smart con-
tract whose functionalities are easily satisfied on Ethereum-based
blockchains.

CockroachDB is a relational database management system. Cock-
roachDB has been chosen as the storage solution due to previous experience
of the technology by partners. Moreover, it is highly scalable, designed to
deliver fast access and resilient to network outages. The only shortcoming
of the chosen technology is the lack of features guaranteeing data integrity
in case of the presence of malicious (e.g., because of honest mistakes or
sophisticated external attacks) users. As all nodes of a CockroachDB cluster
that is a part of an i3-MARKET instance are under the control of that instance,
this shortcoming is not relevant in the i3-MARKET architecture. For client
authentication in CockroachDB, mutual TLS authentication is used.

The semantic search engine index is implemented as a smart contract
(written in Solidity programming language), which is deployed on BESU
blockchain for distributed access. Updates to the index are authorized with
digital signatures.

5 https://www.web3labs.com/web3j-sdk
6 CockroachDB, https://www.cockroachlabs.com/product/

6
Data Access and Transfer – Design System

Principles

6.1 Objectives

The i3-MARKET Data Access & Transfer is a component that defines a
secured data access and transfer mechanism allowing an encrypted path
between data providers and consumers.

The data access API is the interface via which data consumers gain
access to the data offered by a data provider or data space. Since this open
interface enables direct interactions among stakeholders of different data
spaces/marketplaces, we need not only an open interface specification that
can be implemented by all but also a high level of security, as the data
exchange might involve sensitive data, e.g., personal data or commercial data.

Since a data exchange shall be only authorized once all involved stake-
holders, i.e., data owner, data provider, and data consumer, have signed
a smart contract, the data access API must be securely linked with and
controlled by the i3-MARKET Backplane. Moreover, for the monetization of
data assets based on the crypto currency, the i3-MARKET Backplane must
be reliably informed about the quantities of the exchanged assets. This is
especially a challenging task due to the decentralized architecture (i.e., the
direct, peer-to-peer access interface between data providers and consumers).

Authentication, authorization, and data transfer are the core features
of the data access API. Authentication is performed by the i3-MARKET
identity provider. The user is authenticated using verifiable claims. After
successful authentication, an access token is issued, which contains the user
role (data consumer and data provider). If a data consumer tries to access
the data provider without a valid access token, it will be redirected to the
i3-MARKET identity provider. A data provider validates the access token
using a service provided by the Backplane. The data transfer takes place
using the non-repudiation protocol. A binary data transfer service based on

131

132 Data Access and Transfer – Design System Principles

the non-repudiation protocol was implemented. The service offers support
for concurrent data transfer and activity logging integrated with the data
transparency subsystem.

The innovative elements of data access API are the following:

1. Integration of the non-repudiable protocol for secure data transfer:
The user authentication is realized by providing the Verifiable Creden-
tials issued by the i3-MARKET identity provider. An access token is
retrieved, and the consumer is authorized for data transfer, while the
dataset is split into fixed size blocks transferred one by one. The security
of the transfer is enforced by an encryption mechanism implemented
with symmetric keys, unique for each data block.

2. Integration with the i3-MARKET Backplane for data transfer mon-
itoring: Data transfer tracking and monitoring component measures
the amount of transferred data and logs this information, which is
transferred to the i3-MARKET Backplane.

3. Integration with the i3-MARKET smart contract: The data parame-
ters and characteristics are retrieved by querying the smart contract.

6.2 Technical Requirements

For data access API, the capabilities described below have been defined. They
are structured as epics and have been documented in a Trello board as shown
in Tables 6.1– 6.10.

Table 6.1 Authentication and authorization – epics.
Name Description Labels

Policy management Policy is a set of rules that define how
to protect the assets in order to pro-
vide trust, security, and privacy. Policy
management component is in charge of
enforcing the rule set provided by i3-
MARKET Backplane inside of the data
access system.

Epic

Role management A role is a set of policies attached to an
entity in order to define the access that
entity has within the i3-MARKET data
access system. The role management
component is in charge with fetching
the list of policies and verifying them
against the data access system.

Epic

6.3 Solution Design/Blocks 133

Table 6.2 Authentication and authorization – user stories.
Name Description Labels

Intercept access
attempts

As a data provider, I want to
intercept the data access API
access attempts so that I can
check the policy

User Story

Check attempt against
rule set

As a data provider, I want to
check the access attempt of
data access API against pol-
icy so that I be able to grant
access

User Story

Grant access to
permitted assets

As a data provider, I want to
grant access to assets so that
the user can access the data

User Story

Get the list of policies
associated with role

As a data provider, I want
to access Backplane so that I
obtain the list of policies asso-
ciated with the user’s role

User Story

Verify role access As a data provider, I want
to invoke policy management
so that I will verify the role
access of the user

User Story

Allow or deny access As a data provider, I want
to allow or deny access so
that the data can be accessed
according to policy

User Story

Table 6.3 Data transfer transparency – epics.
Name Description Labels

Data transfer
management

Data transfer management is a
component that is in charge with
the control of the connection
between the provider and con-
sumer

Epic

Data transfer
tracking

The data transfer tracking compo-
nent measures the volume of data
transferred between the producer
and consumer

Epic

Data transfer
monitor

The data transfer monitor compo-
nent communicates with the Back-
plane before and after the data
transfer

Epic

134 Data Access and Transfer – Design System Principles

Table 6.4 Data transfer transparency – user stories.
Name Description Labels

Initialize the
connection

As a data provider, I want to initialize a
connection so that I will be able to start the
transfer

User Story

Resume the
connection

As a data provider, I want to resume the
connection so that I will be able to continue
the transfer

User Story

Finalize the
connection

As a data provider, I want to finalize the con-
nection so that I can conclude the transfer

User Story

Measure
transferred data

As a data provider, I want to measure the
transferred data so that I can report the infor-
mation to the Backplane

User Story

Inform
i3-MARKET
Backplane

As a data provider, I want to inform the
Backplane so that the system can track the
volume of transferred data

User Story

Invoke linked
smart contract

As a data provider, I want to invoke the smart
contract so that the data can be transferred
according to contractual parameters

User Story

Table 6.5 secure data transfer & anonymization – epics.
Name Description Labels

Data encryption The data encryption component is respon-
sible for the end-to-end process of encod-
ing and decoding of data during transfer
between the producer and consumer

Epic

Proxy The proxy component can be used when the
data producer identity needs to be hidden

Epic

Table 6.6 Secure data transfer and anonymization – user stories.
Name Description Labels

Key generation
and exchange

As a data provider, I want to obtain the
encryption key so that I will be able to trans-
fer the data securely

User Story

Transfer
encrypted data

As a data provider, I want to transfer
encrypted data so that I will be able to
enforce the transfer safety and confidential-
ity

User Story

Decrypt data As a data consumer, I want to decrypt the
transferred data so that I access the trans-
ferred data

User Story

Activate proxy As a data provider, I want to activate the
proxy so that I can hide my identity

User Story

Transfer data
through proxy

As a data provider, I want to transfer the data
through proxy so that my identity remains
confidential

User Story

6.3 Solution Design/Blocks 135

Table 6.7 Data management – epics.
Name Description Labels

Batch data
transfer
management

Batch data transfer management
refers to one time data transfer and
retrieving one chunk of data in a
session

Epic

Data stream
management

Data stream management compo-
nent is responsible for the con-
tinuous transfer of data based
on a subscription, e.g., pub-
lish/subscribe mechanism

Epic

Table 6.8 Data management – user stories.
Name Description Labels

Request batch
data

As a data consumer, I want to
request a batch of data so that I
will be able to obtain the data from
a provider

User Story

Transfer batch
data

As a data provider, I want to trans-
fer a batch data so that I will send
the data to consumer

User Story

Subscribe to
channel

As a data consumer, I want to sub-
scribe to a channel so that I access
the streaming data

User Story

Trigger data
transfer

As a data provider, I want to trig-
ger the data transfer so that the
data is sent on a stream

User Story

Get data As a data consumer, I want to get
the data so that I can save data
locally

User Story

Unsubscribe from
channel

As a data consumer, I want to
unsubscribe from a channel so that
I disconnect from the stream of
data

User Story

Table 6.9 Data access SDK – epics.
Name Description Labels

Batch data
transfer
management

Authentication and authorization
are required for users who call the
data access API from data access
SDK

Epic

Data stream
management

Data transfer is a component that
is responsible for the management
of the request data and response

Epic

136 Data Access and Transfer – Design System Principles

Table 6.10 Data access SDK – user stories.
Name Description Labels

Authenticate and
authorize the data
consumer

As a software developer, I want
to authenticate and authorize the
consumer so that I will be able to
obtain the data from a provider

User Story

Request data As a software developer, I want to
implement a data request so that I
get access to data

User Story

Get data As a software developer, I want to
implement the get data so that I
can transfer the data locally

User Story

6.3 Solution Design/Blocks

The secure Data Access & Transfer enables data providers to secure reg-
istration to access and/or exchange data in a peer-to-peer fashion once the
contracts and security mechanisms for identity management have been exe-
cuted and confirmed. This improves scalability and avoids the need that
data providers have to share their data assets with intermediaries (e.g., a
marketplace operator). In addition, anonymization can be used to hide the
provider’s identity.

Data Access & Transfer consists of the following main parts:

• Authentication and authorization
• Policy management
• Role management
• Secure data transfer and anonymization
• Data transfer based on the non-repudiation protocol with support for
concurrent threads and logging.

Authentication and authorization:

Authentication: Verifies the identity of the user against the i3-MARKET
Backplane.

Authorization: Verifies the permissions the authenticated user has in the
i3-MARKET platform allowing to perform authorized actions and granting
access to resources.

The authentication and authorization subsystem has the following sub-
components:

6.3 Solution Design/Blocks 137

Policy management:
Policy is a set of rules that defines how to protect the assets to provide

trust, security, and privacy. The policy management component oversees
enforcing the rule set provided by i3-MARKET Backplane within the data
access system. The responsibilities of the policy management module are:

- Intercept access attempts
- Check attempt against rule set
- Grant access to permitted assets

Role management:
A role is a set of policies attached to an entity in order to define the

access that entity has within the i3-MARKET data access system. The role
management component is in charge of fetching the list of policies and
verifying them against the data access system. The responsibilities of the role
management module are:

- Get the list of policies associated with role from Backplane
- verify role access by invoking policy management
- Allow or deny functionalities

Secure data transfer and anonymization:
Secure data transfer and anonymization subsystem has the following

components:

Data encryption:
The responsibilities of the data encryption module are:

- Key generation and exchange
- Transfer data in an encrypted way between endpoints
- Decrypt data on the consumer side

Proxy:
The proxy needs to be used when the identity of the data provider needs to

be hidden. This feature is optional; therefore, there is no need to implement
it if there is no specific requirement referring to the anonymity of the data
provider. The responsibilities of the proxy module are:

- Activate the proxy
- Configure the parameters to hide the identity
- Data transfer goes through the proxy

138 Data Access and Transfer – Design System Principles

Data transfer transparency:
Data transfer transparency subsystem has the following components:

Data transfer management:
This component is responsible for the management of the connection

between provider and consumer and implements the following functionali-
ties:

- Initialize the connection
- Resume the connection
- Finalize the connection

Data transfer tracking:
This component implements the following operation:

- Measure the amount of transferred data.

Data transfer monitor:
The information about how much data was transferred, when the data

transfer was initiated and when it was completed, is monitored and the
following operations are triggered:

- Inform the i3-MARKET Backplane that the data transfer was performed
and report how much data was transferred

- Invoke the linked smart contract

Data management:
Two methods for data transfer are supported by data access API, which

are supported by the following modules:

VDI:
One-time data transfer for one chunk of data in a session with the

following methods:

- Request data
- Transfer data

Data stream management:
Continuous transfer of data based on a subscription, e.g., pub-

lish/subscribe mechanism:

- Subscribe to an offering
- Trigger data transfer – on the producer side
- Get data – on the consumer side
- Unsubscribe

6.4 Diagrams 139

6.4 Diagrams

The process view perspective is presented in the sequence diagrams in
Figures 6.1, 6.2, 6.3, and 6.4.

The sequence diagrams of the subsystems listed below are detailed here:

• Authentication and authorization
• Data transfer transparency
• Data management
• Secure data transfer and anonymization

140 Data Access and Transfer – Design System Principles

F
ig
ur
e
6.
1

A
ut
he
nt
ic
at
io
n
an
d
au
th
or
iz
at
io
n.

6.4 Diagrams 141

F
ig
ur
e
6.
2

D
at
a
tr
an
sf
er

tr
an
sp
ar
en
cy
.

142 Data Access and Transfer – Design System Principles

Figure 6.3 Data management.

6.4 Diagrams 143

Figure 6.4 Secure.

7
Open-source Strategy

The i3-MARKET consortium is committed to contributing to a reference
implementation (community release) of the individual building blocks as
well as the overall i3-MARKET data market frameworks to the developer
community through an open-source project as shown in Figure 7.1.

The open-source management project structure has been updated to reach
the developer and entrepreneur (SMEs) communities largely and facilitate
their onboarding or innovation processes. i3-MARKET followed an open-
source path using two of the most well-known and established open-source
organizations that provide open-source projects hosting: Gitlab and GitHub.
We have studied the options to have better impact and acceptance in the
developer and SME communities and adopted the procedure and roles for
the users of our i3-MARKET open-source project in a way that suited best to
the i3-MARKET case.

The i3-MARKET project governance process defines a support and
evaluation process to include software improvements as follows:

• Request for changes or updates: A technical board identifies any
change requests previous to a major release, which should be integrated
into this major release. Before a release, all changes have to be tested by
using a pre-production/staging approach.

• The evaluation of any type of technical request: A technical board
approves a software component or initiates a project in i3-MARKET
OSS.

• The communication of the results from technical experts: A tagging
release strategy is used in order to indicate the impact of the changes
made on the i3-MARKET ecosystem.

• Evaluation of contributions for new commits: A technical board
assesses and evaluates the contributions including documentation in
i3-MARKET OSS.

145

146 Open-source Strategy

• Reports and changes report: A technical board issues a short report,
explaining the rationale of the acceptance or the rejection in exceptional
cases.

The i3-MARKET team aims to facilitate and simplify development of
data services based on i3-MARKET Backplane; any developer should be
capable of implementing and developing data services based on i3-MARKET
Backplane tools. The i3-MARKET open-source team provides the slack tool
(i3-MARKET.slack.com) for a direct communication and conversations with
the developers team; the slack channel is used as a direct communication
channel and it is open to any developer that is part of the i3-MARKET
community but also for those external that want to start engaging with the
project.

Developers require technical information that goes beyond high-level
descriptions in a website or that a normal software project documentation
can provide. The i3-MARKET project has set up an open-source developers
portal as an online tool to facilitate the members of the ecosystem to get
access to the materials, documentation, technical information, developers
know-how, and code. The online tool of the i3-MARKET project is deployed
to actively facilitate reaching out not only to the open-source community
but also SMEs and entrepreneurs in order to facilitate an easy adoption and
building an ecosystem around the i3-MARKET project.

The documentation and specifications are released using the open-source
website portal at http://www.open-source.i3-MARKET.eu. Videos showing
the progress and use of the developed software tools can be accessed
via the i3-MARKET YouTube channel. The community of open-source
developers SMEs and entrepreneurs can now easily find instructions that
are available at the i3-MARKET open-source portal. This is a live por-
tal, which is a continuous update according to the latest development
of the project. The main purpose of releasing this developer-centric por-
tal is to actively enable a channel for reaching out to the open-source
community and to allow SMEs and entrepreneurs to get all the lat-
est developments and also download and use the different i3-MARKET
available software updates. More specific technical documentations about
the components and systems are also available in a specific “Devel-
oper Portal” at https://i3-MARKET.gitlab.io/code/Backplane/Backplane-api-
gateway/Backplane-api-specification/index.html.

Open-source Strategy 147

Figure 7.1 i3-MARKET open-source strategy.

The code is available open-source via the establishment of the i3-
MARKET spaces on Gitlab, available at https://gitlab.com/i3-MARKET-V3-
public-repository/ and GitHub, available at https://github.com/i3-MARKET-
V3-public-repository. The i3-MARKET’s developers team has made an extra
effort to release all the software created in these two well-known platforms
as they are among the largest and most popular open-source communities;
i3-MARKET has conducted all the necessary efforts to establish an auto-
matic and transparent synchronization mechanism and the OSS governance
methodology to support members of both communities. The i3-MARKET
Git repository provides the collaborative space and software tools used by the
i3-MARKET community. The i3-MARKET Backplane software is included
in the current public repositories and further developments will be supported
by members and communities.

8
Conclusions

The i3-MARKET project addresses the challenge of being integrative follow-
ing design methods used in industry and OSS implementation best practices,
interoperable by using semantic models that define a common conceptual
framework and information model that enables cross-domain data exchange
and sharing, and intelligent from the perspective of smart contracts generated
automatically and associating those financial operations into a set of software
tools that facilitate that data assets can be commercialized via intra-domain
or cross-domain almost transparently in a secure and protected digital market
environment.

In this book series is presented an overview of the i3-MARKET method-
ologies and solutions that are the foundations of its software results in the
form of a Backplane with a set of software support tools and as a solution
addressing the challenge of enabling the coexistence of data spaces with
marketplaces for enlarging the European digital market ecosystem.

The i3-MARKET project has built a blueprint open-source software
architecture called “i3-MARKET Backplane” that addresses the growing
demand for connecting multiple data spaces and marketplaces in a secure
and federated manner. The i3-MARKET consortium is contributing with
the developed software tools to build the European data market economy
by innovating marketplace platforms, demonstrating with three industrial
reference implementations (pilots) that a decentralized data economy and
more fair growth is possible.

The i3-MARKET architecture design provides adequate and in-house
developed building blocks for trustworthy (secure and reliable) data-sharing

149

150 Conclusions

and exchange of existing data assets for current and new future market-
place platforms, with special attention on commercializing data assets from
individuals, SMEs, or large industrial corporations. We used and developed
the i3-MARKET backplane using open-source technologies that impulse the
adoption and exploit the open-source culture, a tendency that, for more than
a decade, is hitting the industry markets and that today more and more
industries are following.

References

[1] “ https://en.wikipedia.org/wiki/System_context_diagram,” [Online].
[2] P. Kruchten, “Architectural Blueprints — The “4+1” View Model of

Software Architecture,” IEEE Software 12, November 1995, pp. 42-50.
[3] J. R. a. I. J. G. Booch, UML User Guide, Addison-Wesley Longman,

1998.
[4] “https://leanpub.com/arc42inpractice/read,” [Online].
[5] i3-MARKET, “i3M-Wallet monorepo,” [Online]. Available:

https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-
I3mWalletMonorepo.

[6] Consensys, “MetaMask,” [Online]. Available: https://metamask.io/.
[7] “Trust Wallet,” [Online]. Available: https://trustwallet.com/.
[8] Exodus, “Exodus Bitcoin & Crypto Wallet,” [Online]. Available: https:

//www.exodus.com/.
[9] T. Voegtlin, “Electrum Bitcoin Wallet,” [Online]. Available: https://elec

trum.org/.
[10] Validated ID, “VIDChain,” [Online]. Available: https://www.validatedi

d.com/vidchain.
[11] Evernym, “Connect.Me Wallet,” [Online]. Available: https://www.conn

ect.me/.
[12] IdRamp, “IdRamp,” [Online]. Available: https://idramp.com/.
[13] trinsic, “Identity Wallets,” [Online]. Available: https://trinsic.id/identit

y-wallets/.
[14] ConsenSys, “uPort,” [Online]. Available: https://www.uport.me/.
[15] “Twala,” [Online]. Available: https://www.twala.io/.
[16] ConsenSys, “Serto,” [Online]. Available: https://www.serto.id/.

151

152 References

[17] “Veramo - A JavaScript Framework for Verifiable Data | Performant and
modular APIs for Verifiable Data and SSI,” [Online]. Available: https:
//veramo.io/.

[18] “OpenTimeStamps, a timestamping proof standard,” [Online]. Avail-
able: https://opentimestamps.org/.

[19] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au and Q. Wang, “Enabling
Secure and Efficient Decentralized Storage Auditing with Blockchain,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[20] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au and Q. Wang, “Towards
Privacy-assured and Lightweight On-chain Auditing of Decentralized
Storage,” 2020 IEEE 40th International Conference on Distributed, pp.
201-211, 2020.

[21] H. Yu and Z. Yang, “Decentralized and Smart Public Auditing for Cloud
Storage,” IEEE 9th International Conference on Software, pp. 491-494,
2018.

[22] J. Shu, X. Zou, X. Jia, W. Zhang and R. Xie, “Blockchain-Based
Decentralized Public Auditing for Cloud Storage,” IEEE Transactions
on Cloud Computing, 2021.

[23] K. Liu, H. Desai, L. Kagal and M. Kantarcioglu, “Enforceable Data
Sharing Agreements Using Smart Contracts,” 27 04 2018. [Online].
Available: https://arxiv.org/abs/1804.10645.

[24] E. J. Scheid, B. B. Rodrigues, L. Z. Granville and B. Stiller, “Enabling
Dynamic SLA Compensation Using Blockchain-based Smart Con-
tracts,” in IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2019.

[25] Ocean Protocol Foundation with BigchainDB GmbH and Newton Cir-
cus (DEX Pte. Ltd.), “Ocean Protocol: A Decentralized Substrate for AI
Data and Services,” 2019.

[26] The European Parliament and the Council of the European Union,
“General Data Protection Regulation (GDPR). Directive 95/46/EC,” 27
04 2016. [Online]. Available: https://gdpr-info.eu/.

[27] K. Jensen and L. M. Kristensen, Coloured Petri nets: modelling and
validation of concurrent systems, Springer Science & Business Media,
2009.

[28] Digital Asset Holdings, “Digital Asset Modelling Language (DAML),”
[Online]. Available: https://daml.com/.

[29] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies, O’Reilly Media, Inc., 2014.

[30] I. Bashir, Mastering blockchain, Packt Publishing Ltd, 2017.

References 153

[31] D. Yaga, P. Mell, N. Roby and K. Scarfone, “Blockchain technology
overview,” arXiv preprint arXiv:1906.11078, 2019.

[32] S. Rouhani and R. Deters, “Security, performance, and applications of
smart contracts: A systematic survey,” IEEE Access, vol. 7, pp. 50759-
50779, 2019.

[33] L. Jing and L. Zhentian, “A survey on security verification of blockchain
smart contracts,” IEEE Access, vol. 7, pp. 77894-77904, 2019.

[34] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project White Paper, vol. 151, no. 2014, pp. 1-32,
2014.

[35] H. Chen, M. Pendleton, L. Njilla and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1-43, 2020.

[36] “Hyperledger Besu,” [Online]. Available: https://github.com/hyperledg
er/besu.

[37] “Solidity,” [Online]. Available: https://solidity-es.readthedocs.io/.
[38] “BIP-39,” 2021. [Online]. Available: https://github.com/bitcoin/bips/bl

ob/master/bip-0039.mediawiki.
[39] i3-MARKET, “i3M-Wallet OpenApi Specification,” 2022. [Online].

Available: https://github.com/i3-Market-V3-Public-Repository/SP
3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desk
top-openapi/openapi.json.

[40] W3C, “Decentralized Identifiers (DIDs) v1.0. Core architecture, data
model, and representations,” W3C Recommendation, 19 07 2022.
[Online]. Available: https://www.w3.org/TR/did-core/.

[41] W3C, “Verifiable Credentials Data Model v1.1.,” W3C Recommenda-
tion, 03 03 2022. [Online]. Available: https://www.w3.org/TR/vc-data-
model/.

[42] F. Román García and J. Hernández Serrano, “i3M-Wallet Base Wallet,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wa
llet.

[43] F. Román García and J. Hernández Serrano, “SW Wallet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP
3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet.

[44] F. Román García and J. Hernández Serrano, “BOK Wallet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet.

154 References

[45] F. Román García and J. Hernández Serrano, “Wallet Desktop,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop.

[46] J. Hernández Serrano and F. Román García, “Server Walllet,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet.

[47] J. Hernández Serrano and F. Román García, “Wallet Desktop OpenAPI,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-
desktop-openapi.

[48] F. Román García and J. Hernández Serrano, “Wallet Protocol,” [Online].
Available: https://github.com/i3-Market-V3-Public-Repository/SP3-
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol.

[49] F. Román García and J. Hernández Serrano, “Wallet Protocol API,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repos
itory/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/walle
t-protocol-api.

[50] F. Román García and J. Hernández Serrano, “Wallet Protocol Utils,”
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-
protocol-utils.

[51] IDEMIA, “Video proving the integration of IDEMIA’s HW Wallet into
the i3-MARKET Wallet Desktop application,” 2022. [Online]. Avail-
able: https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5
kbR05NOE/view?usp=share_link.

[52] Bluetooth SIG - Core Specification Workgroup, “Bluetooth Core Spec-
ification v2.1 + EDR: Secure Simple Pairing,” 2007.

[53] D. Basin, C. Cremers, J. Dreier, S. Meier, R. Sasse and B. Schmidt,
“Tamarin Prover,” [Online]. Available: http://tamarin-prover.github.io/.

[54] OpenJS Foundation, “Electron,” [Online]. Available: https://www.electr
onjs.org/.

[55] Ethers JS, “The Ethers Project,” [Online]. Available: https://github.com
/ethers-io/ethers.js/.

[56] Veramo, “Veramo - A JavaScript Framework for Verifiable Data,”
[Online]. Available: https://veramo.io/.

[57] OpenAPI, “OpenAPI Initiative,” Linux Foundation, [Online]. Available:
https://www.openapis.org/.

[58] “Express OpenAPI Validator,” [Online]. Available: https://github.com/c
dimascio/express-openapi-validator.

References 155

[59] TypeDoc, “TypeDoc,” [Online]. Available: https://typedoc.org.
[60] J. Hernández Serrano, “i3-MARKET Non-Repudiation Library,” 2022.

[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-CR-NonRepudiationLibrary.

[61] J. Hernández Serrano, “i3-MARKET Conflict Resolver Service,” 2022.
[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-CR-ConflictResolverService.

[62] J. Hernández Serrano, “API of the i3-MARKET Non-Repudiation
Library,” i3-MARKET, 2022. [Online]. Available: https://github.com
/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiat
ionLibrary/blob/public/docs/API.md.

[63] Panva, “JOSE,” [Online]. Available: https://github.com/panva/jose.
[64] Ajv, “Ajv JSON schema validator,” [Online]. Available: https://ajv.js.o

rg/.
[65] OpenJS Foundation, “Express JS,” [Online]. Available: https://expressj

s.com/.
[66] Y. Kovacs, S. Stanhke and J. L. Muñoz, “i3-MARKET Smart Contracts,”

[Online]. Available: https://github.com/i3-Market-V3-Public-Repositor
y/SP3-SCGBSSW-I3mSmartContracts.

[67] Hans van der Veer and Anthony Wiles, "Achieving Technical Interoper-
ability - the ETSI Approach," in ETSI, 2008.

[68] Mike Ushold, Christopher Menzel, and Natasha Noy. Semantic Integra-
tion & Interoperability Using RDF and OWL. [Online]. https://www.w3
.org/2001/sw/BestPractices/OEP/SemInt/

[69] M. Compton et al., "The SSN ontology of the W3C semantic sensor
network incubator group," JWS, 2012.

[70] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Frequency. https://publications.europa.
eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency~

[71] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. File type. https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type~

[72] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Language. https://publications.europa.
eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/

[73] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Corporate body. https://publications.eur
opa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-
body/

156 References

[74] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Continent https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent

[75] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Country. https://publications.europa.eu
/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country

[76] EUROPA. Publications Office of the EU. EU Vocabularies. Controlled
Vocabularies. Authority tables. Place.~https://publications.europa.eu/e
n/web/eu-vocabularies/at-dataset/-/resource/dataset/place

[77] European Commission. Joinup. Asset Description Metadata Schema
(ADMS).~https://joinup.ec.europa.eu/solution/asset-description-metad
ata-schema-adms

[78] CI/CD with Ansible Tower and GitHub. Available from: https://keithten
zer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/

[79] Red Hat Ansible Tower Monitoring: Using Prometheus + Node Exporter
+ Grafana. Available from: https://www.ansible.com/blog/red-hat-ansib
le-tower-monitoring-using-prometheus-node-exporter-grafana

Index

A
application program interface xxvii

C
certification authority 50

D
data consumer 7, 14, 113
data marketplace ix, xiii, 1, 7, 25, 31,

119
data provider 3, 32, 112, 137
decentralized identifier 30, 49, 81
distributed ledger technology xxvii

E
European commission x, xviii, 156,

162
European union 152

I
i3-MARKET 3, 58
identity and access management

xxvii, 8, 21, 23, 130

J
JSON web token 47, 48

O
open ID connect 40, 42

P
proof of origin 70, 112, 113
proof of publication xxviii,

70, 113

R
Release x

S
self-sovereign identity 9, 21, 44, 51,

130
service level agreement xxviii
service level specification xxviii
smart contract 10, 38, 77,

120, 161
smart contract manager 10
software development kit xxviii
state of the art 21

V
verifiable credentials 10, 21, 30, 51

157

About the Editors

Dr. Martin Serrano is a recognized expert on semantic interoperability for
distributed systems due to his scientific contribution(s) to using liked data
and semantic formalisms like ontology web language for the Internet of
Things and thus store the collected sensor’s data in the Cloud. He has also
contributed to define the data interplay in edge computing using the linked
data paradigm; in those works he has received awards recognizing his sci-
entific contributions and publications. Dr. Serrano has advanced the state of
the art on pervasive computing using semantic data modelling and context
awareness methods to extend the “autonomics” paradigm for networking
systems. He has also contributed to the area of information and knowledge
engineering using semantic annotation and ontologies for describing data and
services relations in the computing continuum. Dr. Serrano has defined the
data continuum and published several articles on data science and Internet of
Things science and he is a pioneer and visionary on proposing that semantic
technologies applied to policy-based management systems can be used as an
approach to produce cognitive applications capable of understanding, service
and application events, controlling the pervasive services life cycle. A process
called bringing semantics into the box, as published in one of his academic
books. He has published 5 academic books and more than 100 peer reviewed
articles in IEEE, ACM and Springer conferences and journals.

Dr. Achille Zappa is a Post-Doctoral Researcher at Insight, University of
Galway. He received BSC/MSC degree in Biomedical Engineering and PHD
in Bioengineering from the University of Genoa (Italy), his Ph.D. project
was related to semantic web integration, knowledge engineering and data
management of biomedical and genomic data and his research interests

159

160 About the Editors

include semantic web technologies, semantic data mashup, linked data, big
data management, knowledge engineering, big data integration, semantic
integration in life sciences and health care, workflow management, IoT
semantic interoperability, IoT semantic data and systems integration. Dr.
Zappa is the W3C Advisory Committee representative for Insight Centre at
University of Galway and member ofW3Cworking groups like the HCLS IG,
the Web of Things (WoT) IG and WG, the Spatial Data on the Web WG. He
currently work with the main Insight Linked Data and Semantic Web Groups
and with the UIoT (Internet of Things, stream processing and intelligent
systems unit) Research Unit, addressing collaboration with different units and
involvement in various projects where he seeks to develop general-purpose
linked data analytics platform(s), which enables (a) flexible and scalable
data integration mechanisms and (b) flexible use and reuse of data analytics
components such as visualization components and analytics methods. Dr.
Zappa has an extensive expertise of applying semantic web technologies and
linked data principles in health care and life sciences domains.

Mr.Waheed Ashraf is a Senior Software Engineer with extensive experience
in Java programming with Spring Boot and Project Management experience
with a strong background on microservices systems design and is an AWS
Certified person. Mr. Ashraf is a highly skilled senior software engineer,
with 10+ years of project related professional experience in developing and
implementing software systems and developing and maintaining enterprise
applications working for international companies from USA, Australia and
Malaysia. Mr. Ashraf is also proficient in agile software development, scrum
and continuous integration (Jenkins), Amazon Web Services (AWS) and
back-end RDBMS (using SQL in Databases Like Oracle, DB2, MySQL 4.0
and Microsoft SQL Server). He is currently responsible for the design, devel-
opment and implementation of a federated authentication and authorization
infrastructure (AAI) for federated access to data providers in the context
of the Federated Decentralized Trusted Data Marketplace for Embedded
Finance FAME Horizon Europe project.

Mr. Edgar Friess is Senior System Architect at Siemens AG, Germany. In
his early career he acted as project manager and consultant at SIEMENS AG
consulting in the field of engineering with a focus on engineering tools and
methods for customers in the plant engineering and product business. Friess
is graduated from the Technical computer science in Esslingen University of
Applied Sciences.

About the Editors 161

Iván Martínez is project manager and SW architect at Atos, Spain, and a
senior researcher at the ARI department of the company AtoS. He graduated
in computer science from Technical University of Madrid and in the past few
years he has participated in semantic web, cloud, big data and blockchain
related industrial and research projects. He has contributed to national
research projects such as PLATA, and other Cloud, HPC and big data related
projects, such as KHRESMOI, VELaSCCo, TOREADOR, DataBench and
BODYPASSmainly leading in the latter’s definition and integration of system
architecture.

Mr. Alessandro Amicone is an experience project manager at GFT, Italy
leading both public funded and commercial market projects. In the first part
of his professional career, he worked mainly in projects focusing on coor-
dinating documents management and business process management systems
for the bank and insurance industry. In recent years he has been working
on Horizon2020 projects and innovative market projects promoting smart
communities and technology for digital transformation for and between com-
panies in the industry sector and research communities. The development
of processes and management systems mainly focuses on advancing the
state of art using software engineering for blockchain, smart contracts and
distributed/self-sovereign identity, ensuring cyber-security solutions.

Dr. Pedro Malo is professor at the Electrotechnical Engineering and Com-
puters Department (DEEC) of the NOVA School of Science and Technol-
ogy (FCT NOVA), Senior Researcher at UNINOVA research institute and
Entrepreneur at UNPARALLEL Innovation research-driven hi-tech SME. He
obtained an M.Sc. in Computer Science and holds a Ph.D. in Computer
Engineering with research interests in interoperability and integrability of
(complex) systems with special emphasis on cyber-physical systems/Internet
of Things. Pedro coined novel methods and tools such as the plug’n’play
interoperability (PnI) solution for large-scale data interoperability and the
NOVAAS (NOVA Asset Administration Shell) that establishes the guide-
lines and methodology for industry digitization by integrating industrial
assets into a Industry 4.0 communication backbone. As an entrepreneur,
Pedro initiated the development of the IoT Catalogue that aims to be
the whole-earth catalogue of the Internet of Things (IoT) – the one-stop-
source for innovations, products, applications, solutions, etc. to help users
(developers/integrators/advisors/end-users) to take the most advantage of
the IoT for the benefit of society, businesses and individuals. Pedro has

162 About the Editors

20+ years practice in the management, research and technical coordina-
tion/development of RTD and innovation projects in ICT domains especially
addressing data technologies, systems’ interoperability and integration solu-
tions. Pedro is a recognized Project Manager and S&T Coordinator of
European/National RTD and industry projects with skills in the coordination
of both co-localized and geographical dispersed work teams operating in
multidisciplinary and multicultural environments.

Márcio Mateus is project Manager at Unparallel Innovation, Lda Portugal
and a Research engineer holding an M.Sc. in electrotechnical and computer
engineering from the Faculty of Science and Technology of the Universidade
Nova de Lisboa (FCT NOVA). Márcio is an expert in data interoperability
measurement techniques and methodologies for complex heterogeneous envi-
ronments.

Justina Bieliauskaite is Innovations Director at the European Digital SME
Alliance with more than 8 years of project lead and management expe-
rience (previously she worked in Lithuanian and Belgian NGOs). Justina
Bieliauskaite leads the preparation and implementation of Horizon Europe,
Digital Europe Programme, Erasmus+ and other tenders/service contracts
for the European Commission. She is experienced in coordinating stake-
holder engagement, policy analysis and recommendations, SME training,
standardization, and communication activities. Justina is currently the main
coordinator of the BlockStand.eu project. Currently, Justina is leading DIGI-
TAL SME’s Projects and Standardisation teams, and coordinates the internal
WG DIGITALIZATION which covers AI, IoT, cloud computing, blockchain
and emerging technologies, as well as coordination among digital innovation
hubs. Justina holds a Master’s degree in Science (cum laude), focusing on
political science and international relations, from the Universities of Leiden
and Vilnius. Besides her mother-tongue Lithuanian, Justina speaks English,
Italian, Russian and German.

Dr. Marina Cugurra is a lawyer specializing in R&I projects, in particular
in legal issues of new technologies and Information Society (e.g. AI, GDPR,
data ownership, etc.), with a Ph.D. degree at the “Telematics and Information
Society” Ph.D. School at University of Florence. She is also an expert in
ethical and societal themes related to ICT research and technological develop-
ments. She is serving as independent Ethical Expert at European Commission
and European Defense Agency. Consolidated experience in national projects

About the Editors 163

and international and European projects. Scientific collaboration with CNIT
(National Inter-University Consortium for Telecommunications) and CNR
– ITTIG (Italian National Research Council, Institute of Legal Information
Theory and Techniques). Legal Advisor in the R&I Division of multinational
companies. She has contributed to the activities of the legal working groups
of Eu-wide initiatives (EU Blockchain Observatory Forum) and is Chair of
the Ethics, Data Protection and Privacy (EDPP) Task Force of the “Citizen’s
Control of Personal Data” Initiative within Smart City Marketplace.

