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English Abstract

Medical imaging plays a key role in treatment of various cancer types and in particular in
image-guided radiotherapy (IGRT) and can be used in all stages of the radiotherapy treat-
ment including accurate target delineation and radiation dose calculations in the planning
of IGRT. Magnetic resonance (MR) imaging is often used for accurate soft-tissue delin-
eation and computed tomography (CT) images are used for radiation dose calculations.
The accurate target delineation together with multimodal imaging may enable a smaller
radiation field. This is important in IGRT as it enables a high radiation dose to the target
and minimizes the radiation dose to the surrounding healthy tissue, which results in an
improved treatment outcome with lower toxicity and reduced side-effects.

The use of multimodal imaging requires alignment of MR and CT in order to map
the target delineation in MR to CT for dose calculations. The target delineation and the
image alignment are today widely performed manually and are therefore time-consuming,
labor-intensive, and prone to observer variations. The target for radiation is extended to
include healthy tissue to ensure that the tumor is always radiated during treatment as a
consequence of the observer variation together with other uncertainties.

The thesis seeks to address these challenges in the planning of radiotherapy of prostate
cancer. Prostate cancer is a cancer type where the treatment highly benefits from the use
of IGRT and multimodal imaging. The prostate is delineated as the target in MR because
of the good soft-tissue visualization in MR and a following image alignment enables dose
calculations based on CT. At Aalborg University Hospital a newly developed removable
Ni-Ti prostate stent is implanted into the prostate gland and is used as a fiducial marker
to achieve an accurate alignment of the prostate in MR and CT. The first part of the
thesis focuses on automatic image alignment using voxel similarity and on a comparison
of the automatic approach with the current clinical approach. The second part focuses
on automatic target delineation. Two automatic approaches for target delineation in MR
using both voxel intensities and knowledge about the shape are developed and validated.

The approaches presented are expected be adaptable to target delineation and image
alignment of other soft-tissue organs.
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Dansk resumé (Danish Abstract)

Medicinske billeder er et væsentligt redskab i behandling af kræft og særligt i billedvejledt
strålebehandling, hvor billederne kan blive anvendt i alle faser af strålebehandlingen f.eks.
i planlægningsfasen for at indtegne strålefeltet præcist og til at udregne dosisfordelingen i
kroppen. Magnetisk resonans (MR) billeder er ofte brugt til at indtegne kroppens blødde-
le og computertomografi (CT) bruges til at beregne fordelingen af stråledosis i kroppen.
En mere præcise indtegning af bløddele sammen med multimodale billeder kan give et
mindre strålefelt. Det er vigtigt i billedvejledt strålebehandling, fordi det kan muliggøre
en høj bestråling af tumor, mens det samtidig kan minimere bestråling af det omkringlig-
gende raske væv. Den mere præcise behandling betyder et forbedret behandlingsresultat
med en reduceret toksicitet af rask væv og færre bivirkinger og komplikationer som følge
af behandlingen.

Billedregistering af MR og CT er nødvendig ved brug af multimodale billeder for at
kunne overføre indtegningen af strålefeltet fra MR til CT for derefter at kunne beregne
dosisfordelingen. Både indtegningen af strålefeltet og registeringen af MR og CT er i
dag hovedsageligt udført manuelt, hvilket er tids- og arbejdskrævende samt tilbøjelig til
at tilføje observatørvariationer i planlægningen af strålebehandlingen. Som følge af bl.a.
observatørvariationer bliver strålefeltet udvidet, så det også indbefatter rask væv for at
sikre, at tumor bliver bestrålet.

Denne afhandling omhandler disse udfordringer i forbindelse med planlægning af
strålebehandling af prostatakræft. Prostatakræft er en kræfttype, hvor behandlingen har
en stor fordel af billedvejledt strålebehandling og multimodale billeder. Prostatakirtlen er
indtegnet som strålefeltet i MR pga. MRs gode visualisering af bløddele og en efterføl-
gende billedregistrering muliggør beregningen af dosisfordelingen vha. CT. For at kunne
opnå en præcis billedregistrering af MR og CT bruger Aalborg Universitetshospital en
nyudviklet prostatastent, der implanteres i prostatakirtlen, som markør. Afhandlingens
første del fokuserer på automatisk intensitetsbaseret billedregistrering af MR og CT og
på en sammenligning af den automatiske billedregistrering og den nuværende anvendte
manuelle billedregistrering. Afhandlingens anden del fokuserer på automatisk indtegning
af prostata som strålefeltet i MR ved brug af to forskellige metoder. To metoder, der begge
bruger billedintensiteter og en viden om prostatas form, er udviklet og valideret i forhold
til manuelle indtegninger af prostata.

De præsenterede metoder forventes at kunne tilpasses til registering og indtegning af
andre bløddelsstrukturer.
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1 Introduction

1.1 Background

Radiotherapy plays a key role in the treatment of cancer. The goals of the treatment are
to shrink the tumors and kill cancer cells to cure the cancer patient with a minimum of
side effects. An important step to obtain a better treatment is to improve the accuracy
of the radiation field so that the target for radiation gets a maximal radiation dose and,
at the same time, to reduce the exposure of surrounding healthy tissue. Advances in the
planning of radiotherapy and treatment have focused on sparing the healthy tissue while
allowing the same or higher radiation dose to the target. [1]

Advances in medical imaging have been essential for this development and image-
guided radiotherapy (IGRT) is now often used to treat cancer. IGRT enables a visualiza-
tion of the target and the surrounding healthy tissue so that an accurate target definition is
possible, which can reduce the radiation dose to the surrounding healthy tissue if the ra-
diation beam is shaped to fit the target. Furthermore, IGRT uses imaging in the treatment
room for patient setup in the treatment system, which also decreases the uncertainties in
the treatment. Computed tomography (CT) is used for planning radiotherapy and dose
calculations and is thus referred to as the planning CT. Other imaging modalities can be
aligned with CT to provide a better target visualization e.g. the good soft-tissue visual-
ization in magnetic resonance (MR) and positron emission tomography to add functional
information about the tumor. During treatment the target can be localized, potential target
movement can be tracked, and the patient can be accurately aligned with the treatment
system. All this is based on image information. [2, 3] A further advantage of IGRT is
that it encourages the use of intensity-modulated radiotherapy (IMRT) planning, which
offers a highly conformal 3D radiation field. The advantages of IMRT include a concave
dose distribution and steep dose gradients. This has improved the therapeutic ratio by
facilitating dose escalation and, at the same time, sparing the healthy tissue compared
with conventional radiotherapy because IMRT allows a modulation of the intensity of
each radiation beam. [4, 5] The risk of using IMRT and a highly conformal radiation
field is geometrical misses because of the sharp edges between the radiation field and the
surrounding tissue. This stresses the importance of accurate treatment planning. [4]

The advances in IGRT and IMRT are challenged due to several uncertainties and
sources of errors in the planning of radiotherapy and the treatment, which reduce the
radiation dose to the target and increase the radiation dose to the healthy tissue. The
uncertainties include errors in the definition of the target, movement of the target, setup
errors, visualization uncertainties, and the use of different modalities because an align-
ment is needed. Therefore, margins are added to the tumor and new volumes are used to
plan the treatment. Typically, three volumes are used, the gross tumor volume (GTV), the
clinical target volume (CTV), and the planning target volume (PTV), see Figure 1.1 for an
example of the three volumes. The GTV (solid) is the part of the tumor that is visible. The
CTV (dashed) includes the GTV and the subclinical and microscopic anatomical spread
patterns, and it is generated by adding a predefined margin to the GTV based on clini-
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cal and pathological experience. The PTV (dotted) consists of predefined safety margins
added to the CTV to account for the uncertainties in the planning process or treatment
e.g. tumor movement. A side-effect of the large margins added to the tumor is that large
areas of healthy tissue adjacent to the target are included into the radiation volume. [6]

GTV

CTV

PTV

Figure 1.1: The three margins typically used for planning IGRT. Solid line: the GTV,
dashed line: the CTV, dotted line: the PTV.

Studies which have compared IMRT and conventional 3D conformal radiotherapy
have showed a reduced acute and late radiation-induced side-effects using IMRT. [4] The
reductions in acute and late toxicities are particular important in radiotherapy of prostate
cancer because the survival rates of prostate cancer are better than for most other cancer
types and many patients will therefore live for years with the side-effects of their treat-
ment. Critical and healthy structures such as the small bowel, the rectum, and the bladder
risk to be damaged in radiotherapy of prostate cancer. Increased toxicity and damage
may result in pain, bleeding, incontinence, nocturia, etc. [7]. These side-effects are a
limiting factor for the radiation dose even though dose escalation has shown to increase
the biochemical control of the treatment [8, 9, 10].

CT is the standard imaging modality for planning of IGRT of prostate cancer. CT pro-
vides a good spatial accuracy and provides the electron density data needed for the dose
planning to calculate the attenuation of the radiation dose. A disadvantage of CT is the
poor soft-tissue visualization. T2-weighted MR imaging is, on the other hand, superior
to CT in terms of soft-tissue visualization, and is therefore the preferred choice for delin-
eation of the CTV. Fig. 1.2 shows the visualization of the prostate in corresponding CT
and MR images, which illustrates that there is a lack for distinction between the prostate
and the surrounding tissue due to the poor soft-tissue visualization in the CT image. A
number of studies e.g. by Sannazzari et al. [11], Hentschel et al. [12], and Rasch et
al. [13] have compared MR and CT for prostate delineation and demonstrated that the
mean prostate volume was 1.34, 1.35 and 1.4 times larger in CT compared with MR, re-
spectively. An overestimation of 34% of the CTV delineation on CT compared with MR
corresponds to an almost 5 mm larger CTV radius than if MR was used [11]. In addition
to the improved accuracy in target delineation on MR, the interobserver variation is re-
duced in MR compared with CT [14]. Brabandere et al. [15] investigated interobserver
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1 Background

Figure 1.2: Corresponding CT (left) and MR (right) scan from the same patient, where
the manual CTV contour is superimposed. The prostate (white contour) is clearly better
visualized in MR compared with CT.

variation using either CT or MR for prostate delineation. The interobserver variation was,
as expected, largest on CT with 23.4% in variation compared with 17.1% using MR. The
authors found the variation using MR for delineation unexpectedly large but concluded
that the variation was mainly caused by a difference in agreement of the location of the
prostate boundary and because some of the authors seemed to include a margin to the
CTV even though only the prostate gland should be delineated as the CTV. Neverthe-
less, the interobserver variation associated with manual delineation is still an unsolved
problem [16, 17].

Spatial alignment, also called image registration, of MR and CT is common in IGRT
of prostate cancer for adding an accurate target delineation in MR to the CT for dose
planning. [12] Today this is primarily performed by selecting corresponding anatomi-
cal landmarks in MR and CT to determine the spatial alignment between the imaging
modalities. A well-known uncertainty related to the spatial alignment of MR and CT for
radiotherapy planning of prostate cancer is the prostate movement. The prostate move-
ment results in different positions and orientations of the prostate relative to the pelvic
bones and skin markers [18, 19, 20] and is a limiting factor in the achievement of reduced
margins added to CTV. An alignment of the bones can reduce the size of the CTV because
MR can be used for delineation, however, a registration based on the pelvic bones does
not change the size of the margin added to the CTV to define the PTV. [14] Consequently,
a local registration of the prostate is needed to account for the translational and rota-
tional movement of the prostate relative to the pelvic bones. A MR-CT registration of the
prostate to limit the influence from the pelvic bones can be achieved using intraprostatic
fiducial markers implanted into the prostate gland as a surrogate for the prostate. Fiducial
markers are needed as the difference in image contrast in MR and CT makes it difficult to
identify common structures within the prostate. The fiducial markers can be used for veri-
fication of the prostate location and thereby account for the prostate movement relative to
the pelvic bones. A frequently used fiducial marker are gold markers implanted into the
prostate gland [21]. As an alternative to the gold markers a removable Ni-Ti prostate stent
[22] has been developed and is now used at Aalborg University Hospital. The prostate
stent has several advantages compared with gold markers e.g. that it causes less artifacts
in CT, is clearly visible in MR, and can be perceived as a 3D object [23, 24]. Fig. 1.3
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illustrates the prostate stent in CT (left) and MR (right).

Figure 1.3: An example of the CT image (left) and MR image (right) in the axial (top) and
sagittal (bottom) image plane. The white arrow marks the prostate stent in both images.

1.2 Objectives

The motivation of the thesis is to reduce uncertainties related to manual procedures as
the procedures are prone to errors and observer variation. These errors are systematic
errors and remain constant during treatment and can therefore cause a geometrical miss
of the tumor and increased radiation of the surrounding healthy tissues. Medical image
analysis has been suggested in a variety of applications to automate the image registra-
tion and target delineation, also called image segmentation, to improve the planning of
radiotherapy.

The main procedures related to treatment of prostate cancer using IGRT are shown in
Fig. 1.4, where the focus of this thesis is MR-CT registration and target delineation in the
radiotherapy planning process.

Diagnosis Planning of 
radiotherapy

CT and MR scans MR-CT registration Delineation of the 
target volumes

Calculation of 
dose distribution

Setup veri�cation

Radiotherapy
treatment

Figure 1.4: The process for prostate cancer treatment using IGRT. First, a diagnosis is
made, followed by a planning of radiotherapy, and radiotherapy treatment. The focus of
this thesis (solid boxes) is planning of radiotherapy and in particular MR-CT registration
and target delineation. Other procedures in the planning process relate to acquisition of
MR and CT, calculation of radiation dose distribution, and patient setup in the treatment
system.

The objectives of the thesis are to:
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2 Objectives

• Develop an approach for MR-CT registration of the prostate using a newly devel-
oped prostate stent to be able to perform target delineation in MR.

• Compare the MR-CT registration and the currently used manual registration.

• Develop approaches for prostate segmentation in MR to be able to perform auto-
matic prostate segmentation as the CTV.

• Validate the MR-CT registration as well as the prostate segmentation.
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2 Image Registration

2.1 Introduction to Image Registration

Image registration is the problem of bringing two or more image data sets into spatial
alignment. Thereby, the images can be analyzed in the same coordinate system, which fa-
cilitates e.g. monitoring of the progression of the disease or treatment outcome, improved
target delineation, creation of statistical models, creation of atlases, or co-registering of
different imaging modalities.

This thesis focuses on intra-subject registration of MR and CT to allow target delin-
eation in MR and dose calculations in CT. In image registration, one image data set is
called the moving (or source) image and is transformed to align with the fixed (or target)
image data set. The registration can have different degrees of freedom associated with the
transformation type. Translation registration allows three translations. Rigid registration
allows three translations and three rotations. Procrustes registration allows three transla-
tions, three rotations, and one global scaling. Affine registration allows three translations,
three rotations, three scalings, and three shears. Non-rigid registration allows local elastic
deformations of the moving image data set and results therefore in a high-dimensional
optimization problem but is often required in inter-subject registration or in registration
of organs which can deform over time.

Based on a review by Maintz and Viergever [25] medical image registration ap-
proaches can be divided into four categories:

• Non-image-based registration

• Landmark-based registration

• Segmentation-based (also known as surface-based) registration

• Voxel-based registration

These categories will be used in the following to divide the previous studies, which
have performed co-registration of MR and CT of the prostate.

Most of the previous work in MR-CT registration of the prostate have focused on
rigid registration. This assumes no prostate deformations. However, this assumption is
difficult to validate because the shape of the prostate gland is difficult to delineate in the
CT image. Instead, the assumption was validated by Carl et al. [24] using two MR scans
from the same patient, which were registered using a manual landmark-based registration
and very minor difference in shape was observed. Furthermore, Deurloo et al. [26] found
no significant variation of GTV during radiotherapy treatments. The variation of GTV
was in the order of intraobserver variation and was small compared with the movement
of the prostate. Deformations of the prostate are likely to occur when an endorectal coil
is used to improve the quality of the MR image [27], where a rigid registration should be
used with care and affine or non-rigid registration might be more accurate.

7



Image Registration

In some of the previous studies the main objective was not the registration itself, but
it was used to be able to e.g. compare MR and CT for target delineation as in [13]. In
cases where more than one approach have been used e.g. in [28] the categorization is
determined by the method, which is believed to bring most weight into the registration.
Also, the study in [29] has described and compared two approaches and they will therefore
be described separately in the suitable category.

A common objective of the studies is that the registration was used to be able to de-
lineate the CTV in MR and use CT for treatment planning for either external radiotherapy
and brachytherapy. Some studies have based the registration of the pelvic bones risking
an inaccurate alignment of the prostate caused by the prostate movement, which can oc-
cur relative to the pelvic bones. However, the majority of the recent studies have applied
a prostate registration using fiducial markers implanted into the prostate gland to obtain
prostate alignment in MR and CT.

2.2 Review of MR-CT Registration of the Prostate

2.2.1 Non-image-based Registration

Algan et al. [30] aligned the imaging coordinate systems from the MR and CT scanner
by first acquiring the CT images and then the MR images using a patient immobilization
device. This approach does not take patient or prostate movement into account but is an
alignment of the imaging coordinate systems. As a consequence, Algan et al. [30] also
recommended a margin of at least 10 mm added to the CTV.

2.2.2 Landmark-based Registration

A registration based on landmarks is obtained by a selection of corresponding anatomical
or geometrical landmarks in both MR and CT. Kagawa et al. [31] registered the bones in
MR and CT by selecting three manually defined landmarks in both MR and CT on the pu-
bic symphysis and the sciatic notch. The results showed events of prostate movement due
to differences in rectal filling in the time of the CT and MR acquisition, which stresses the
importance of a more local registration registration of the prostate. A two-step procedure
was applied by Polo et al. [32] in which an automatic step was first performed based on
an extraction of common contours in MR and CT, but this is not described in detail in
the paper. This was followed by a manual landmark-based registration by selecting three
anatomical landmarks on the pelvic bones to improve the registration [32].

Lian et al. [33] used a deformable landmark-based registration because the MR im-
ages were acquired using an endorectal coil causing deformation of the prostate between
the scans. Four to eight control points were placed on the prostate border in both MR
and CT in each slice of the volume. The warping process was carried out using a thin
plate spline transformation for each 2D slice. Thereby, the registration was based on an
assumption that the prostate border can be extracted from CT. [33] Local prostate features
in form of fiducial markers implanted into the prostate gland have been used frequently.
Carl et al. [22] defined three landmarks on a removable Ni-Ti prostate stent as a fiducial
marker, one at the cranial, middle and caudal end of the stent. Another one or two anatom-
ical landmarks were defined, one anterior and one lateral to the prostate but as close to
the prostate surface as possible to limit the influence of the surrounding tissue but in the
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2 Review of MR-CT Registration of the Prostate

same time to constrain rotations about the center axis of the stent. The use of anatomical
bone landmarks are not needed when three or more fiducial markers are implanted into
the prostate gland. Nevertheless, bone and soft-tissue landmarks were used by Crook et
al. [34] to obtain an initial registration, which was refined by a local registration of the
prostate based on landmarks defined on the fiducial markers.

Three manually defined landmarks were selected on the center of the gold fiducial
markers in the studies by Parker et al. [14] and Huisman et al. [29]. Huisman et al. [29]
furthermore validated the observer variation, which was not found to have a statistically
significant effect on the registration. Only 42% of the registrations had a precision higher
than 2 mm at the prostate border. [29]

2.2.3 Segmentation-based Registration

Segmentation-based registration requires that equivalent surfaces in the two images are
segmented. The alignment can then be achieved e.g. by using the iterative closest point,
which tries to minimize the distance between two point clouds obtained from the segmen-
tations. A bone segmentation in MR and in CT was used by Rasch et al. [13] and Herk
et al. [35]. The segmentation was followed by an automatic tracer to detect the points
forming the bone edges and a manual removal of the points caused by artifacts. Based on
the edge points, chamfer matching was applied by minimizing the distance between the
points within a fixed limit.

Huisman et al. [29] used a manual segmentation of the fiducial markers. It was con-
verted to surface models followed by the iterative closest point approach to minimize the
root-mean-square distance between the cloud points from the segmentations in MR and
CT. This approach was compared with a manual landmark-based registration and results
showed a better performance of the iterative closest point as 86% of the registrations were
regarded as clinical acceptable compared with 42% using the landmark-based registration

2.2.4 Voxel-based Registration

Voxel-based registration uses the voxel intensities in the image data sets to find the opti-
mal transformation, which requires that common structures in the two image data sets are
visualized. Maes et al. [36] used the similarity measure mutual information to register the
pelvic bones in MR and CT as one example of possible applications, which can benefit
from the use of a voxel-based registration using mutual information.

Vidakovic et al. [28], McLaughlin et al. [37], and Roberson et al. [38] used voxel-
based registration of MR and CT using fiducial markers implanted into the prostate gland
to obtain a local registration. The studies had in common that the image resolution and
information inside the prostate were found to be too poor to allow for a registration solely
based on voxel similarity, which is supported in [14]. Therefore, all three studies have
applied a two-step approach. Vidakovic et al. [28] first defined feature lines as a straight
line between the center of fiducial markers followed by a determination of the in-plane
rotation (in the sagittal and coronal plane) based on the angle between the lines. This
rotation was applied to the MR so that the feature lines were parallel. The final registration
used normalized mutual information but constrained the rotation to the patient center axis
and allowed translation in all three image planes. McLaughlin et al. [37] and Roberson
et al. [38] used an initial registration based on manually defined landmarks from the
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prostate, the surrounding tissue, or from the fiducial markers. This was followed by a
cropping of the volume of interest in MR, where the default cropping contained some
of the pelvic bone. In the work by Roberson et al. [38] the volume could be varied
by cropping out the rectum, bladder, or the remaining part of the bones depending on
the changes between the scans. Roberson et al. [38] found that cropping the volume so
that only the prostate was included resulted in reduction of accuracy because the image
support was not sufficient to prevent large rotations. The second step relied on voxel
information using mutual information as the similarity measure to register the cropped
MR data set with the CT data set.

2.3 Validation of Image Registration

Validation of image registration is needed in order to demonstrate performance of the
registration. Various validation methods have been suggested to assess the registration
quality including visual inspection, comparison with a ground truth registration, contour
overlays, and quantitative validation of the robustness and consistency. [39]

Visual inspection provides a qualitative validation of the performance of the registra-
tion. Fitzpatrick et al. [40] have investigated the accuracy of a visual validation and found
that the human can visually detect target registration errors down to 2 mm for MR-CT reg-
istration of brain images [40]. Visual inspection is a crucial part of the validation because
a ground truth registration does not exist within prostate registration. In brain registra-
tion, West et al. [41] have used skull-implanted markers for brain surgery to establish a
ground truth for multimodal rigid registration to which new registration approaches can
be compared with. In the absence of a ground truth registration, phantom studies and sim-
ulations can be used [25] even though it only resembles the clinical use. In cases where
it is possible to extract common structures from the images, contour overlays can be used
to validate the registration. This is however not the case for MR-CT registration of the
prostate except if the fiducial markers can be extracted with a high accuracy. Otherwise,
a segmentation or delineation error will influence the validation of the registration. [39]
Quantitative validation of the robustness and consistency of the registration can show the
ability for the registration to converge to the same result after changing the registration
conditions. It can be validated by adding noise, defining different starting transforma-
tions, or to use a registration circuit. The registration circuit can be used if three or more
image data sets are available using the approach in Equation 2.1. The first data set (T1)
is registered to the second (T2), which is then registered to the third (T3), which is then
again registered back to the first image data set. A consistent registration approach will
result in an identity transformation (T ). [42]

T = T1→2T2→3T3→1 (2.1)

This approach is more suitable for single modal registration than for multi-model regis-
tration, as the MR-CT registration does not need to the same as the inverse registration.

2.4 Methods Investigated in this Thesis

Two studies are performed related to image registration of MR and CT. In Paper I, the
registration of MR and CT images to obtain an accurate alignment of the prostate is
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described. In Paper II, two image registration approaches are compared to investigate
the clinical potentials for automating the registration process. Subsection 2.4.1 and 2.4.2
provide in overview of the methodology used in Paper I and Paper II, respectively.

2.4.1 MR-CT Registration using a Ni-Ti Prostate Stent in Image-Guided
Radiotherapy of Prostate Cancer

One of the goals of the registration approach presented in this section is that it should be a
clinical accepted solution and thus be simple, accurate, and robust. Mutual information is
a voxel similarity measure which has been widely used for multi-modal image registration
primarily in brain imaging, and is the measure used in this work because it has shown to
be accurate and robust [43]. The assumption behind voxel similarity measures relates to
comparable intensity values of the region of interest in the two images, where the ratio
of the variance of the intensity values in the region of interest should be small. The
average variance of this ratio is minimized in the registration and the joint entropy is
decreased with increased alignment. [44] Viola and Wells [45] and Collignon et al. [46]
simultaneously suggested to use the images mutual information for image registration.
The mutual information I for the images A and B is given by:

I(A,B) = H(A)−H(B|A) = H(B)−H(A|B), (2.2)

where H(A) is the entropy of the moving image, H(B) is the entropy of the region of
the fixed image where the moving image is overlapping, and H(A|B) and H(B|A) are the
conditional entropies of the two images. Maximizing the mutual information I(A,B) is
obtained by minimizing the joint entropy of the images.

The optimization of the registration using the voxel-based registration approach uses
an iterative strategy where an initial estimate of the transformation is refined by calcu-
lating the similarity measure between the images. This continues until the algorithm
converges to a preset tolerance. A risk related to this approach is that the algorithm is
converging towards a local extrema. Therefore, many optimization approaches apply a
multiresolution scheme because many of the local extrema are small extrema that can be
removed by reducing the image resolution and/or blurring the images before registration.
The transformation obtained by registration of the low resolution images or large blurring
kernels are used as an initial transformation to the next registration using a higher image
resolution or a smaller blurring kernel, and so on.

2.4.1.1 Method Overview

Strategies for maximization of mutual information include choices regarding pre-proc-
essing, degrees of freedom in the transformation, interpolation, optimization approach,
potential use of multi-resolution strategies, etc. [44] Figure 2.1 gives an overview of
the registration approach used in Paper I, which consists of an initial registration of the
bones followed by a local registration of a volume tightly surrounding the prostate stent
in MR. The two-step procedure makes it possible to achieve a local alignment of the
prostate in MR and CT, which is needed due to the prostate movement, which occurs
relatively to the pelvic bones. The aim of the first step is to align the pelvic bones, which
serves as an initial registration, and enable the use of rotational constraints in the local
registration. Rotational constraints are needed because the prostate stent has a shape
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of a cylinder, which introduces a risk of unrealistic rotations about the center axis of
the stent and therefore most often about the patient center axis. Langen and Jones [18]
collected the results from studies investigating the translational movement of the prostate
relative to the pelvic bones. The primary axis for translational movement was found in
the studies to occur towards the anterior or posterior direction and towards the cranial or
caudal direction. The translational movement towards the left or right direction is however
limited. The rotation of the prostate has been found to primarily occur in the sagittal plane
resulting in translational movement in the cranial-caudal and anterior-posterior direction
[47, 48, 49, 50, 51, 52, 53]. These findings are likely to be related to changes in rectum
and bladder filling. The rotation about the axial plane is limited which can be explained
by the anatomy of the pelvis where the top of the prostate is attached to the bladder and
the prostate bottom is attached to the pelvic floor.

The registrations are performed in the registration tool minctracc [54], which uses a
trilinear interpolation. Consequently, the image resolution of the two volumes does not
need to be the same and a sub-voxel optimum of registration can be found. In both the
initial registration and in the local registration, a simplex optimization method is used.
The simplex optimizer does not require calculation of derivatives, it converges to the
optimal registration fast, and it considers all degrees of freedom simultaneously. [44] In
minctracc the simplex volume is measured in millimeters of translation and degrees of
rotations. The better the initial registration is believed to be, the lower the simplex search
radius should be [55]. Therefore, the simplex is reduced for each registration level and
only small adjustments are possible in the last step of the registration.

2.4.1.2 Initial Registration

The initial registration uses a multi-resolution strategy with increased image resolution
of 8, 4, 2, and 1 mm. The advantage of a multi-resolution strategy is two-fold. First,
it reduces the computational demand of the registration and reduces the risk for that the
registration is trapped in a non-global optimum [44].

The difference in the center of gravity of the MR and of the CT is calculated, which
serves as a starting translation of the first iteration of the initial registration. Thereafter, an
iterative registration is performed using the multi-resolution scheme, in which the simplex
radius is also decreased.

2.4.1.3 Local Registration

A volume closely surrounding the prostate stent is defined by manually cropping the MR
images. Alternatively, a manual delineation of the prostate as the CTV could have been
used as a mask in the registration. Rotational constraints are defined in minctracc by not
allowing rotations about the patient center axis due to the risk for unrealistic rotations
about the stent. Instead of decreasing the image resolution, Gaussian blurring is used to
reduce the risk for that the registration is trapped in a non-global optimum. The blurring
kernels and simplex radius are iteratively decreased.
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Initial registration

Local registration

- Pre-processing: None
- Degrees of freedom: 6 (Rigid registration)
- Interpolation: Trilinear
- Optimization: Simplex
- Multi-resolution:

  

- Pre-processing: Crop MR

 

- Degrees of freedom: 6 (Rigid registration)
- Rotational constraints
- Interpolation: Trilinear
- Optimization: Simplex
- Blur MR and CT:

  

Moving image (MR) Fixed image (CT)

1x1x1 cm

2x2x2 cm

4x4x4 cm

8x8x8cm
Iteration 1

Iteration 2

Iteration 3

Iteration 4

MR CT

MR: No blur               MR: Blur

Results

Figure 2.1: The two-step MR-CT registration of the prostate.

2.4.2 Comparison of Manual and Automatic MR-CT Image Registration
for Image-Guided Radiotherapy of Prostate Cancer

Two registration studies are compared. The first registration approach is a manual reg-
istration based on manually defined landmarks as described by Carl et al. in [22]. The
second registration approach is the automatic two-step approach described in the previous
section and Paper I.

A manual delineation of the prostate as the CTV in MR is available for all image data
sets. The CTV is registered with both the manual landmark-based registration and with
the automatic voxel property-based registration, see Figure 2.2. Therefore, similarity
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measures in form of sensitivity and Dice similarity coefficient (DSC) [56] between the
volumes after registration using each of the approaches can be determined.

Manual 

regist
ratio

n

Automatic 

registration

Figure 2.2: The manual delineated CTV in MR is registered with both the manual regis-
tration approach and with the automatic registration approach, which enables that trans-
lational and rotational differences as well as overlap measures can be computed.

Figure 2.3 illustrates the CTV registered with the manual (green) and automatic (white)
registration approach with corresponding DSC values for the three examples. Random se-
lected points within the CTV is transformed with each registration approach to be able to
calculate a translational and rotational difference of the prostate between the two registra-
tion approaches. Furthermore, the clinical potential of the automatic registration approach
is discussed based on the fact that the manual registration is already used today at Aalborg
University Hospital and results have indicated reduced longterm toxicities compared with
the standard treatment using CT for target delineation [57].

DSC of 0.89 DSC of 0.95DSC of 0.77

Figure 2.3: The axial view of the overlap of the CTV superimposed on the CT images
from the manual registration (green) and the automatic registration (white). The corre-
sponding DSC is shown for each example.
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Figure 2.4 shows the correspondence between the prostate, the bladder, and the rectum
superimposed on the CT image. The volumes are all manual delineated on the original
MR data set and then transformed to align the CT data set with the manual approach and
the automatic approach.

CTV (M)
CTV (A)
Bladder (M)
Bladder (A)

Rectum (A)
Rectum (M)

Figure 2.4: The CTV and the surrounding critical organs, bladder and rectum, superim-
posed on the CT image. The volumes are transformed with the automatic approach (A)
and the manual approach (M).
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3 Image Segmentation

3.1 Introduction to Image Segmentation

Image segmentation is the problem of partitioning an image into two or more separated
regions, the foreground or region(s) of interest and the background. This thesis focuses
on a segmentation of the prostate in MR as the CTV used for planning radiotherapy of
prostate cancer.

Based on a review by Pham et al. [58] segmentation methods for medical images can
be divided into the following categories:

• Thresholding

• Region growing

• Classifiers (supervised segmentation)

• Clustering (unsupervised segmentation)

• Markov random field models

• Artificial neural networks

• Deformable models or active contours

• Atlas-based segmentation

• Other approaches (e.g. edge detection and watershed)

In addition, statistical models are popular in medical image segmentation as a-priori
information about the statistical characteristics of the object is used in the segmentation
[59].

These categories will be used to divide the previous studies, which have performed
prostate segmentation in MR. Not all methods have been applied for prostate segmenta-
tion and the following will only focus on applied methods.

The clinical practice for defining the CTV or prostate delineation is today widely
performed using a manual contouring of the prostate slice-by-slice using either the axial,
coronal, or sagittal view or a combination of the views. However, the manual work is a
labor-intensive and time-consuming task and is prone to interobserver and intraobserver
variation [16, 17]. To reduce these uncertainties several authors have described semi- or
automatic methods for prostate segmentation in MR in either 2D or 3D.

Prostate segmentation in MR images is a challenging task because the intensity dis-
tribution inside the prostate gland is characterized by voxel inhomogeneity. Therefore,
an accurate prostate segmentation cannot rely on intensity information alone as in e.g.
thresholding and region growing. Few authors have based their methods on intensity in-
formation yet incorporated additional knowledge about the general prostate shape in the
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segmentation. Most studies have used either atlas-based methods, deformable methods,
or statistical models. The categorization of the applied methods is of course not definitive
as a combination of methods can be beneficial for the performance. The categorization
is in these cases determined by the method, which is believed to bring most weight into
the segmentation. The different approaches will be described briefly based on the cate-
gorization above, however, all methods based on voxel information are described under
the category voxel-based. Only studies working with prostate segmentation in MR are de-
scribed. For an overview for the segmentation in ultrasound and CT, see e.g. the review by
Ghose et al. [60]. In addition to the following description of segmentation approaches,
the Prostate MR Image Segmentation (PROMISE12) challenge was held together with
MICCAI2012, where participants submitted their results using the same data sets and
the studies can therefore be directly compared. Litjens et al. [61] collected the different
methodologies and results.

3.2 Review of Prostate Segmentation in MR

3.2.1 Voxel-based

Voxel-based methods use intensity values to separate the image into regions e.g. using
edge detection, one or more threshold values, or by assuming connectivity of similar
pixels in a region. [58] Flores-Tapia et al. [62] selected four points manually at the top,
left, right, and the lower part of the prostate. A multiscale wavelet transform was used to
detect edges, which was followed by a set of spatial rules about the prostate shape. Ellipse
contours in the superior end and inferior end of the prostate and a cardioid contour in the
middle of the prostate were assumed. Zwiggelaar et al. [63] used a user defined prostate
center and the image ridges were detected using a polar transform in 2D, which was
followed by non-maximum suppression. The prostate border was defined as the longest
curvilinear structures.

3.2.2 Atlas-based

Atlas-based segmentation turns the segmentation problem into a registration problem. An
atlas is created using a training set with manual delineations of the object of interest. The
atlas represents the probability for that a given voxel belongs to the object of interest.
The atlas is then registered to the target image. [58] Probabilistic atlas segmentation
has been used by Ghose et al. [64] and by Martin et al. [65], where the probabilistic
atlas was registered with the target image. Further processing was used to improve the
segmentation quality. Ghose et al. [64] used graph cuts for energy minimization of the
posterior probabilities for a voxel to be a part of the prostate, which was obtained by
the atlas-based segmentation and a random forest classification. Martin et al. [65] used
user-defined points on the prostate border to improve the registration of the atlas with the
target image and to incorporate shape constraints in the segmentation.

The majority of the previous studies have used multi-atlas segmentation as it gen-
erally is considered to be more accurate than a single atlas or a probabilistic atlas [66].
Klein et al. [67] used an automatic multi-atlas segmentation and majority voting fusion.
The segmentation was based on a pairwise registration followed by atlas selection based
on image similarity using normalized mutual information between the target image data
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set and each atlas image data set. Dowling et al. [68] added a preprocessing step to
the approach suggested in [67] using the same data set and performed a comparison of
multi-atlas segmentation and a probabilistic atlas in which the multi-atlas segmentation
had the highest accuracy. Langerak et al. [69] also used multi-atlas-based segmentation
with a focus of improving the atlas fusion strategy. A combination of atlas selection and
performance estimation strategies was used in an iterative procedure called Selective and
Iterative Method for Performance Level Estimation. This work was continued in [70]
where atlases were clustered so that each cluster only contained atlases which registered
well to each other. The decision of the most suitable cluster was based on registration
of one atlas image from each cluster to the target image. The cluster with the atlas im-
age, which has the highest estimated performance, was chosen and all atlas images in this
cluster were then registered with the target image using multi-atlas registration.

3.2.3 Deformable Models

Deformable models segment the boundary of the region of interest based on closed para-
metric curves or surfaces placed near the desired boundary. The curve or surface will then
deform under the influence of internal and external forces. [58] Deformable models have
been used by Martin et al. [71], Chandra et al. [72], Pasquier et al. [73], and Makni et al.
[74] to deform an atlas or shape model to the target image.

Martin et al. [71] and Chandra et al. [72] used non-rigid atlas registration to obtain an
initial atlas-based segmentation using a probabilistic atlas and multi-atlas-based approach,
respectively. This segmentation was then used to initialize the deformable model, which
was regularized using a statistical shape model, image features and spatial constraints to
ensure only anatomical possible deformations. Chandra et al. [72] first found the most
similar atlas images based on normalized mutual information, which were then used to
create the atlas.

Pasquier et al. [73] and Makni et al. [74] used a landmark-based active shape model
which was automatically deformed using deformable models to the prostate. Makni et al.
[74] added an extra step in form of a Bayesian classification framework to the method.

3.2.4 Statistical Models

Statistical models consist of shape models and active appearance models (AAM) which
are both based on training data. Shape models represent the object of interest statistically
by analyzing the variation across the training set, hereafter the model is used to segment
the target image. AAM is an extension of the shape model in which the texture e.g. the
intensities of the object, is statistical described and included in the shape model. [59]
Chowdhury et al. [75] used both MR and CT in the segmentation as an extension of the
work in [76]. A shape model was obtained after registration of MR and CT and training
samples of prostate in both CT and MRI were used so that the shape variations in MR
and CT were linked in the two imaging modalities. Tsai et al. [77] used a level-set rep-
resentation of the object shape. The work was motivated by a wish to eliminate the need
for manual landmark selection and point by point correspondence in the shape model.
The shape model was obtained by a principal component analysis (PCA) of a collection
of signed distance representations of the shapes of the training images. Segmentation of
the prostate was used to show a potential application. A level-set representation of the
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prostate shape was also used by Toth and Madabhushi [78] in an AAM segmentation.
Texture information contained image derived features such as the image intensities and
gradient information. AAM was also used by Ghose et al. [79] but here manually de-
fined points in the training data sets were used to represent the prostate shape, which was
propagated by the approximation coefficients of Haar wavelet transform in 2D.

3.3 Validation of Image Segmentation

Validation is needed in order to demonstrate segmentation performance and to compare
the results with other studies. Various validation methods have been suggested to assess
the segmentation quality, where visual inspection and comparison with a ground truth
segmentation using different similarity metrics are the two most frequently used methods.
Visual inspection is an important qualitative validation of the accuracy of the segmenta-
tion. A ground truth segmentation is often defined as a manual segmentation of the same
object to allow for a quantitative validation. However, the manual segmentation is prone
to inter-observer variation [16, 17] and is therefore only the best available candidate for
a ground truth segmentation. Therefore, several studies e.g. [67, 68] have two or more
observers to perform the same segmentation to determine the interobserver agreement to
which the proposed similarity metrics can be compared with. Often used similarity met-
rics within prostate segmentation are DSC, mean surface distance (MSD), and hausdorff
distance.

A comparison of the results from different studies should be accepted with care be-
cause different imaging protocols have been used. For example, Toth and Madabhushi
[78] used MR images acquired using an endorectal coil, which makes the prostate bound-
ary easier to detect. The same data set should be used to directly compare the results, e.g.
the data set from the PROMISE12 challenge [61].

3.4 Methods Investigated in this Thesis

In Paper III, the development of a prostate segmentation in MR using an AAM with
a level-set representation of the shape is described. In Paper IV, the development of a
prostate segmentation in MR combining shape obtained from atlas registration and in-
tensity information in a graph cut framework is described. Further, Subsection 3.4.1 and
3.4.2 provide an overview of the methodology used in Paper III and Paper IV, respectively.

3.4.1 Active Appearance Modeling using Level-set Representation of the
Prostate Shape

Statistical models can be used to provide knowledge about the object variability between
subjects, which can be derived in a training phase. The idea behind statistical models is
that it is possible to learn plausible variations of the objects prior to segmentation. An
often used statistical model for image segmentation is active shape models suggested by
Cootes et al. [80]. The training of the model is used to determine the possible defor-
mations of the model to the target image. An extension of the active shape model is the
AAM [81, 82] in which a statistical model of the object shape and the appearance of the
texture of the object can be combined to add additional knowledge into the segmentation
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model. The texture model is used to model the image intensities or other features. The
traditional AAM is built in a training phase using anatomical landmarks placed on the
object border.

The assumption behind AAM is that changes in the shape and the texture of a given
object are correlated. The AAM presented here is a PCA-based statistical model where a
shape model and a texture model are combined, described with the same set of parameters.

3.4.1.1 Method Overview

The overall approach for the use of an AAM can be divided into five main procedures:

• Alignment of training images

• Modeling shape variation

• Modeling texture variation

• Combining the shape and texture models in the AAM

• Fitting the AAM to the target image

The segmentation approach applied here combines texture and shape information in
an AAM using a level-set representation of the prostate shape. The methodology used is
suggested by HU and Collins [83] and Stephansen [84]. An overview of the creation of
the AAM and the segmentation of the target image is shown in Figure 3.1

3.4.1.2 Alignment of the training images

Prior to the creation of the shape and texture model, an alignment of the training images
is performed. In this work, a common reference image is chosen to which the remaining
training images are registered to using the Procrustes registration and the voxel similarity
measure mutual information in the registration tool minctracc [54].
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Figure 3.1: Overview of the segmentation approach. A level-set representation of the
shape is used to create the shape model of the shape variation. The texture model consists
of a modeling of the image texture and is combined with the shape model to define an
AAM. The AAM is then fitted to the target image to segment the target image.
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3.4.1.3 Modeling Shape Variation

The traditional AAM requires a manual selection of landmarks at the object border to
create a shape model based on the mean and variation of the landmark positions [81]. It
is a time-consuming task as well as it is prone to errors because the user needs to be able
to place the landmarks in the same position in all training images to prevent problems
with correspondence [85]. An alternative approach for selection of landmarks is based on
automatic landmark selection. However, this is also prone to errors [86]. Consequently,
a more recent approach based on a level-set representation is applied to eliminate the
need for landmark selection. Signed distance functions are used to represent the prostate
shape [87, 86]. The shortest distance from each image point to the prostate border forms
the distance map. The image points inside the object are assigned with negative values
and image points outside the object are assigned with positive values. The image points
forming the object border are assigned with the value zero. [77] A shape model based on
signed distance maps still requires correspondence between the training images, which is
achieved in the alignment of the training images.

The shape model is a linear statistical model and is based on a PCA, which models the
possible modes of variation of the mean shape. The shape model consists of mean shape,
the possible modes of variations (eigenvectors), and the range of the modes (eigenvalues).
The shape can be modeled in a linear combination [83]:

φφφ = φ̂φφ+ Psbs, (3.1)

where φ̂φφ is the mean shape, Ps is a set of eigenvectors describing the principal modes of
shape variation, and bs is the weight coefficient vector. Adjusting bs will result in various
shapes or signed distance functions. Spurious variations and noise are removed from the
training by removing the eigenvectors with the smallest eigenvalues, here the threshold is
set to 0.98% suggested by Cootes et al. [85].

3.4.1.4 Texture Model

The texture model is a linear model consisting of gray image intensities. As for the shape
model, the texture model is constructed using PCA. Therefore, the texture is also modeled
in a linear combination [83]:

g = ĝ + Pgbg, (3.2)

where ĝ is the mean intensity, Pg is a set of eigenvectors describing the principal modes of
texture variation, and bg is the weight coefficient vector describing the texture parameters.
Adjusting bg will result in various textures.

3.4.1.5 Active Appearance Model

The aim of the AAM is to describe both the shape and texture of the training data. The
two models are combined and by varying the appearance parameters c new images and
shapes can be synthesized. [

φφφ
g

]
=

[
φ̂φφ
ĝ

]
+

[
PsW−1s Pcs

PgPcg

]
· c,
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where Pcs and Pcg represent the shape and texture part of the principal modes of appear-
ance variation. The appearance parameters c values are constrained to the interval of ±3
standard deviations as in [82]. Ws is a weight matrix to account for potential differences
between the shape and texture units. The weight matrix is determined by the ratio of the
image intensity variation to the shape variation.

3.4.1.6 Fitting the AAM to the Target Image

The last step in the segmentation process using AAM is to fit the AAM to the target im-
age also known as segmentation of the target image. The fitting process seeks to find
the AAM model parameters which generate a model image closely corresponding to the
target image. These model parameters are learned prior to segmentation, so that only
plausible variations of the prostate shape and texture are tried. To ensure that all possi-
ble shapes are generated each of the AAM parameters are constrained to be within ±3
standard deviations. [85]

3.4.2 Atlas Registration and Intensity Modeling

3.4.2.1 Atlas-based Segmentation

Atlas-based segmentation methods convert the segmentation problem into a registration
problem. Atlas-based segmentation has been widely used for segmentation problems and
is based on the atlas image consisting of an intensity image and a corresponding labelled
image. The different registration methods mentioned in Section 2.1 can all be used to
create an atlas. However, the voxel-based approaches are recommended because they do
not require prior segmentation or user-interaction e.g. by selecting landmarks. More-
over, most atlases are based on affine and/or non-rigid registration because the atlases are
based on inter-subject registrations and therefore need to be able to include the anatomical
variations between subjects.

Three types of atlases exist, single atlas, probabilistic atlas, and multi-atlas. The
single atlas is also called topological atlas or deterministic atlas and is based on a single
subject. The atlas is often selected so that it represents the average shape of the object of
interest. As a result, the atlas does not represent the diversity of the anatomy. To better
represent the diversity, probabilistic atlases have been used in brain segmentation [54]
and few studies have focused on the creation of atlas of the prostate in [88, 89]. The
probabilistic atlas consists of a smoothed intensity image and a corresponding probability
map representing the average anatomical variation. The probabilistic atlas can then be
registered to the target image. Multi-atlas is subject-specific and is believed to be more
accurate compared with the other atlas-based approaches [90]. The higher accuracy of
the probabilistic atlas and the multi-atlas compared with the single atlas can be explained
by registration errors as each propagated segmentation might classify a voxel in the target
incorrect. However, if these errors are random, which is likely to be true if the atlas
is created by data sets from different patients, the registration errors will be corrected
using several data sets in the atlas. The creation of the multi-atlas is based on a pairwise
registration of the atlases to the target image. Thereafter, label fusion is performed with all
registered atlases to obtain a final segmentation of the target image. The most frequently
used method for label fusion is the majority voting where the label that the majority of all
registered atlases predict to be the target is used as the final segmentation. A drawback is
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that is a computationally heavy task and time-consuming to create the atlas as it requires
pairwise registrations to the target image. [66]

In this work the registration tool Elastix [91] is used for all registrations and a multi-
atlas segmentation is used because of the high accuracy. The first step is a three-step
multi-resolution registration approach using the voxel similarity measure normalized mu-
tual information. The registrations are then used to create a subject-specific atlas.

Figure 3.2: An example of the subject-specific probability map. The atlas-based segmen-
tation is obtained by majority voting, where a voxel with a probability higher than a preset
threshold is assigned as the atlas.

In this thesis multi-atlas-based segmentation using majority voting label fusion is used
as one candidate for prostate segmentation. The final segmentation is obtained by thresh-
olding the probability map so that the segmentation is determined by majority of the
labels.

The accuracy of the atlas-based segmentation can be improved using more atlases
but that will also make the segmentation of the target image more computational heavy.
Therefore, a potential improvement of the atlas-based segmentation in form of atlas se-
lection is suggested. [92]

3.4.2.2 Atlas selection

Atlas selection is a potential extension to atlas-based segmentation to improve the accu-
racy instead of increasing the number of atlases. Different atlas selection strategies have
been used e.g. based on the similarity between the atlas images and the target image
[67, 72]. Another approach is to select a fixed number of atlases and then choose the
atlases with the highest image similarity with the target image or to use derived similarity
from the subjects meta-information e.g. age or cancer stage [92] or to cluster the must
similar atlases [70]. The atlas selection used in this thesis is based on the image similarity
normalized mutual information between the target image and the atlas images. The atlas
images within a threshold of 0.98 of the maximum normalized mutual information be-
tween the atlas and the target image are selected. If less than 10 atlases meet this criteria,
the 10 atlases with the highest similarity with the target image are selected to maintain a
variability in the atlas population.
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3.4.2.3 Combination of Intensity and Shape Information

Van der Linj et al. [93] have suggested to combine intensity information and atlas-
based segmentation to add additional knowledge into the atlas-based segmentation for
hippocampus segmentation. Thereby, the shape prior is supported by intensity informa-
tion in cases when the segmentation based only on the registrations is insufficient for
an accurate segmentation. This idea was applied by Fortunati et al. [94] for head and
neck segmentation in CT. The methodology described in this section is based on Kumar
and Hebert [95], van der Lijn et al. [93], and Fortunati et al. [94]. Figure 3.3 gives an
overview of the method.

Applying Bayes’ rule to the segmentation problem, the problem can be divided into
shape and image intensity parts based on prior knowledge. The optimal segmentation
given the combination of the shape and intensity information is found at the maximal
posterior probability p(f|i), which is defined as the maximum a posteriori probability
(MAP):

∧
f = argmax

f
p(f|i) (3.3)

where f is the total label configuration and i is the observed intensity for each voxel in
the image. p(f) is the prior probability which does not take any information about i into
account. p(i|f) is the likelihood that f will occur if i is true, or the likelihood for a label
to occur if the voxel according to the intensity model belongs to the prostate. p(i) is the
marginal likelihood which acts as a normalizing constant.

Prior knowledge and observations of the data sets are used to find the optimal solution.
It can be computed by minimizing a posterior energy as in [93] where p(f|i) is expressed
as an energy minimization problem, which consists of an intensity energy term and an a
prior energy term. The prior energy can thereafter be approximated by a Markov Random
Field.

In this thesis another approach for approximating p(f|i) is used as in [94]. The ap-
proach uses Discriminative Random Fields [95] assuming that the image intensities only
depend on the neighboring voxels.

A discriminative random field is given by an association potential and an interac-
tion potential. The association potential combines the shape (spatial prior) and inten-
sity information (intensity model) for each voxel ignoring the effects on all other voxels.
Therefore, the interaction potential is added using a neighbor model because a piecewise
smooth segmentation is wanted. The association potential and interaction potential are
then combined in a graph cut segmentation. The maximum of the MAP is found using
graph cuts finding the minimum cut and therefore the optimal segmentation.

Spatial Prior The spatial prior is determined using subject-specific multi-atlases as
previously described. A weight parameter λ2 is added to the spatial prior, which works
as a balance term between the spatial prior and the intensity model.

Intensity Model The probability function for the voxel intensities is estimated from
the atlases by taking samples from the background and from the foreground. This results
in a histogram of both the foreground and the background see Figure 3.4 using a Parzen
window approach with a Gaussian kernel. The intensity model is added to correct poten-
tial registration errors and will typically have more weight if the histograms are separated
further from each other.
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Labels

Association potential

Interaction potential

Graph cut

Build intensity 
model

Build neighbor
model

Intersubject atlas 
registration

Build spatial 
prior

Build graph Compute 
minimum cut

Create seg-
mented image

Atlases
MR images

Target image

Figure 3.3: Overview of the segmentation approach. Atlas images consisting of MR im-
ages and corresponding labeled images are used to create the association potential con-
sisting of both the intensity model and the spatial prior model. Based on the intensities of
the target image, the interaction potential is determined to provide a smooth segmentation
of the prostate. The potentials are then combined in a graph cut segmentation.
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Figure 3.4: The probability function of the foreground (solid line) and the background
(dotted line).

Interaction Potential The interaction potential is an intensity dependent smoothing
function to obtain smooth segmentations. This is needed because each voxel is han-
dled individually in the association potential. Figure 3.5 shows the prostate segmentation
without interaction (left) and with the interaction potential (right), which results in a more
smooth segmentation.
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Figure 3.5: Comparison of the segmentation without the used on the interaction potential
(left) and with the interaction potential (right).
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Figure 3.6: A 1x2 voxel image showing the sink, terminal, nodes, and the weighted edges.

3.4.2.4 Graph cuts

Graph cuts have previously been applied for image segmentation to minimize energy
functions [96]. A graph cut algorithm for optimization is here used to globally minimize
the energy function derived from the MAP equation (Equation 3.3). Figure 3.6 shows a
graph used to find the optimal segmentation of a 1x2 voxel image. The weighted graph
G=(E,V) consists of a set of nodes (V), which here correspond to voxels, a set of weighted
edges (E) that connects the nodes, and two terminal nodes called the source (s) and the
sink (t). There are two types of edges, t-links and n-links. Edges that connect a node
to one of the terminals are called t-links (determined by the association potential) and
edges that connect two nodes are called n-links (determined by the interaction potential).
An s-t cut will divide the nodes into two disjoint subsets S and T in a way so that the
source s is in subset S and the sink t is in subset T. If the terminal t and the terminal s
are considered as the foreground class label and the background class label, respectively,
then partitioning the nodes are the same as a labeling of the voxels. Finding the minimum
energy corresponds to finding the minimum cut. The minimum cut is here computed using
the maxflow/min cut algorithm suggested by Boykov and Kolmogorov [97]. Each voxel
corresponds to a node in the graph and the graphs minimum cut results in a segmentation
of the target.

28



4 Paper Contributions

In this thesis approaches to automate the MR-CT registration using the Ni-Ti prostate
stent and to automate the prostate delineation in MR are developed. This has resulted in
four papers which all contribute to the target delineation and image registration processes.

Paper I - MR-CT Registration using a Ni-Ti Prostate Stent in Image-Guided Ra-
diotherapy of Prostate Cancer
The paper presents a local constrained registration of MR and CT based on a newly devel-
oped removable Ni-Ti prostate stent as the fiducial marker. The registration uses the voxel
similarity measure mutual information in a two-step approach in which the pelvic bones
are used to establish an initial registration for the local registration. This is followed by
a local registration in which the MR data set is cropped so it contains a region of interest
that tightly surround the stent. This is done to avoid that the registration is influenced by
pelvic bones and other neighboring structures to the prostate. In order to reduce aperture
problems related to rotations around the center axes of the stent, rotational constraints are
specified for the mutual information optimization procedure.

Paper II - Comparison of Manual and Automatic MR-CT Image Registration
for Image-Guided Radiotherapy of Prostate Cancer
The paper presents a quantitative and qualitative comparison of the automatic registra-
tion approach presented in Paper I and a manual landmark-based registration approach.
Several comparisons are presented including a computation of difference in rotations and
translations of the prostate volume, visual inspection, and a computation of the CTV
overlap after transformation of each registration approach. Furthermore, the potential for
introducing the automatic registration approach into clinical practice is theoretically in-
vestigated by extending the CTV with the registration error of the automatic registration
and thereafter calculating the CTV overlap.

Paper III - The use of an Active Appearance Model for Automated Prostate Seg-
mentation in Magnetic Resonance
The paper presents a method for automatic prostate segmentation in T2-weighted MR im-
ages using an AAM incorporating shape and texture information. The model is based on
a PCA of shape and texture features with a level-set representation of the prostate shape
instead of the selection of landmarks in the traditional AAM. To achieve a better fit of the
model to the target image, prior knowledge to predict how to correct the model and pose
parameters is incorporated. The segmentation is performed as an iterative algorithm to
minimize the squared difference between the target and the model image. The segmenta-
tion is compared with manual delineations of the prostate used as the CTV in the planning
of radiotherapy.

Paper IV - The use of Atlas Registration and Graph Cuts for Prostate Segmen-
tation in Magnetic Resonance Images
The paper presents a method for automatic prostate segmentation in T2-weighted MR im-
ages combining a spatial prior and intensity information. The spatial prior is based on an
inter-subject atlas registration resulting in a subject-specific atlas and the intensity infor-
mation is based on a statistical intensity model learned from the training data. The shape
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and intensity information is combined in a graph cut framework. The method is com-
pared with multi-atlas-based segmentation using majority voting label fusion and with an
extension in form of atlas selection.
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5.1 Discussion

This thesis contributes to the field of planning IGRT of prostate cancer to reduce uncer-
tainties related to manual procedures. The two processes related to spatial alignment of
the imaging modalities MR and CT and the manual target delineation in MR were inves-
tigated. The objective of the PhD studies is to automate these procedures to reduce inter-
observer variations related to the manual registration and the manual target delineation.
The first step to achieve this goal was a presentation of a widely used method for image
registration using the similarity measure mutual information to obtain an automatic and
local MR-CT registration. Furthermore, the registrations were compared with the current
manual landmark-based registration. The second step to achieve more automation was
presented in the second part of the thesis, which focused on automatic target delineation
in MR. For this purpose the prostate was segmented as the CTV using two approaches
which combine shape and intensity information to improve the accuracy of the segmen-
tation. The first approach presented was an AAM using a level-set representation of the
shape. The second approach presented combines a spatial prior and intensity informa-
tion in a graph cut framework. All investigated approaches were qualitatively as well as
quantitatively validated.

5.1.1 MR-CT Registration

The MR-CT registration is an alignment of the two image data sets used for the plan-
ning of radiotherapy of prostate cancer. The movement of the prostate relative to the
pelvic bones remains a source of errors. The movements can occur during treatment ses-
sions (intrafraction), between treatment sessions (interfraction), and between the scans.
The uncertainty of the position of the prostate limits the optimization of more conformal
radiotherapy and limits the possible dose escalation. Previous studies have performed
registration of MR and CT using fiducial markers as the common structures in MR and
CT to obtain a local alignment of the prostate and account for prostate movement between
scans. Paper I addressed the challenge of the prostate movement using a fiducial marker
for obtaining a local registration of the prostate in MR and CT.

The fiducial marker used in the registration studies presented in this thesis is a remov-
able Ni-Ti prostate stent used at Aalborg University Hospital for registration of MR and
CT and for patient setup in the treatment system [24, 22]. The disadvantage of the stent
is the shape of a cylinder, which makes anatomical rotations about the center axis of the
stent possible. Therefore, an automatic registration requires rotational constraints or in-
clusion of part of the pelvic bones. This is not needed for other fiducial markers e.g. gold
markers because typically three or more are inserted into the prostate gland. However,
the prostate stent has several advantages over gold markers including the size of the stent,
which makes it clearly visible in both MR and CT. The gold markers can, on the contrary,
be difficult to automatically locate in MR because they appear as a signal void, which
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was seen in [28, 37, 38, 14]. Furthermore, the low migration risk of the stent makes it
possible to regard an accurate alignment of the prostate stent as an accurate alignment of
the prostate in MR and CT.

A general issue in image registration is the lack of ground truth registration, which
a proposed registration can be compared with. Therefore, a phantom study and visual
inspection were used to validate the accuracy, whereas the consistency was validated by
applying displacements to the first step of the registration.

The lack of a ground truth registration also complicates a comparison of registration
approaches. A comparison of the developed automatic registration approach using mu-
tual information from Paper I and the currently used landmark-based registration was
addressed in Paper II. Both approaches use a rigid registration because the prostate is not
assumed to deform between the scans. The assumption is based on the image acquisi-
tion, where no endorectal coil was used to improve the prostate visualization in MR. The
drawback of the endorectal coil is that it can deform the prostate [27]. Because both ap-
proaches use a rigid registration, a direct comparison between the registration approaches
is possible. Also, the overlap between the manual delineation after registration was calcu-
lated. The landmark-based registration is manual and is therefore prone to interobserver
variation and it was therefore not possible to determine the most accurate registration ap-
proach. However, the manual registration is still accepted to be the closest to a possible
ground truth and the clinical experience makes it the one that potentially should be re-
placed. The landmark-based registration has been used at Aalborg University Hospital
for several years to enable MR CTV delineation followed by the radiation dose calcula-
tions on CT. This procedure has shown to decrease the CTV and results indicate that the
long-term toxicities are reduced compared with the standard CT CTV delineation [57].

Validation showed that the automatic registration approach produced accurate align-
ment of the prostate stent in MR and CT, which is required to be implemented into clinical
practice. Furthermore, the automatic registration has the advantage over the manual reg-
istration that it limits the interobserver variation.

5.1.2 Prostate Segmentation in MR

An accurate delineation of the CTV can reduce the PTV because the uncertainties in the
delineation process are reduced, which is required to permit dose escalation and improved
radiotherapy treatment of prostate cancer. MR is increasingly used for segmentation of
the prostate as the CTV because the soft-tissue visualization is better than on CT. The
majority of previous studies has performed prostate segmentation in MR using either
deformable models, statistical models, or atlas-based segmentation, and a few studies
have combined intensity and shape information. The combination of shape and intensity
information might be used to achieve a more robust and more accurate segmentation
compared with only using either intensity or shape information. Consequently, the two
segmentation approaches presented in this thesis have combined intensity information
and a level-set representation of the shape in an AAM addressed in Paper III and by
combining atlas registration, intensity modeling, and graph cuts (AB+IM) addressed in
Paper IV.

Validation of automatic segmentation is, as the case was for image registration, diffi-
cult as no ground truth segmentation exists. The most widely used validation approach is
to compare the results with a manual delineation, as a manual delineation is the closest
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to a ground truth possible though prone to e.g. interobserver variation [16, 17]. Both
the AAM approach and the AB+IM approach were compared with manual prostate de-
lineations originally used as the CTV. Thereby, the delineations were not intended to be
used to build segmentation models or to validate prostate segmentations and the manual
delineations might deviate from the prostate boundary, which all introduce an uncertainty
in the validation of the segmentation approaches. The similarity metrics dice similar-
ity coefficient (DSC) and mean surface distance (MSD) were used in both studies. The
AB+IM approach was further compared with multi-atlas segmentation using majority la-
beling atlas fusion (AB) and by extending the AB+IM and AB with atlas selection.

The sensitivity and specificity of the AAM showed a trend towards undersegmentation
of the large prostate volumes. This trend was also present for the AB and the AB+IM
approaches without atlas selection. Although not validated on the same data sets, the
findings indicate that the results might be improved by adding more data sets from patients
with large prostates.

The AAM approach was validated on 30 data sets whereas the AB+IM approach was
validation on 67 data sets. The data sets came from the same study conducted by Carl
et al. [22] and therefore some of the data sets were used in both studies. However, this
is not the case of the majority of the data set. Therefore, the results from the AAM and
the AB+IM are difficult to compare, which could be met by using the same data sets
for validation. The AB+IM approach was improved by an extension in form of atlas
selection, which only keeps the atlases with the highest image similarity with the target
image. The AAM uses all data sets to create a global model of the prostate shape and
intensities.

The segmentation approaches have been validated on a data set from Aalborg Uni-
versity Hospital and a comparison of other prostate segmentation approaches is therefore
difficult. A way to overcome this problem is to validate the approaches on data sets used
for a MICCAI prostate segmentation challenge [61]. It will require a new training phase
as the images from the challenge are acquired using an endorectal coil and the intensity
distribution is not expected to be the same as the data sets used in the thesis.

Validation showed that an automatic segmentation might be used for CTV delineation
as they, at least for the AB+IM approach, approached the inter-observer variation. Similar
studies, which have performed prostate segmentation in MR, support the potentials of
automatic segmentation approaches.

5.2 Future Work and Recommendations

In IGRT of prostate cancer further development is required to allow dose escalations and
to reduce acute and long-term toxicities. One of the research areas is adaptive radio-
therapy, which is a process where the treatment planning is modified between or during
the treatment sessions, which may require multiple target contouring and multiple im-
age registrations of MR and CT. This stresses the necessity of automatic registration and
automatic segmentation as the manual labor is time-consuming and labor-intensive.

In this thesis, the CTV was defined as the prostate gland without the seminal vesicles.
In high risk patients, the CTV includes the seminal vesicles as well as the prostate gland
[98]. As a result, a natural next step would be to extend the AAM and AB+IM segmenta-
tion so that the seminal vesicles are included in the target. This extension is only needed
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in high risk patients because a larger volume of the rectum, bladder etc. receives higher
radiation dose with a risk of increasing the normal-tissue toxicity. The methods described
in the thesis should easily be adapted to this purpose as well. However, it requires that a
sufficient data set is available.

Another natural next step is to include the surrounding critical organs such as the
rectum, the bladder, the trigone of urinary bladder, and the external anal sphincter, which
are now all manually delineated. The AB+IM approach was extended by Fortunati et
al. [94] to both include the critical tissues and the target for head and neck hyperthermia
treatment and also an extension of the AAM is possible [99]. Alternatively, an extra step
could be added to the methods, which aims to segment the other organs.

After a segmentation of the whole prostate gland, a further subdivision of the prostate
in the central gland and the peripheral zone can be applied. Few studies have focused on
this e.g. Toth et al. [99] using an AAM and Makni et al. [100] using both T2-weighted
MR and diffusion weighted imaging in a C-means clustering algorithm. The subdivision
of the prostate can be beneficial as approximately 70 − 80% of all prostate tumors are
located in the peripheral zone [101]. This permits that the treatment is tailored to the
patient as the aggression of the cancer is location dependent and it may enable a radiation
dose boost to the prostate zone, which contains the tumor. This will require that the tumor
is accuratly localized.

5.3 Conclusion

This thesis has demonstrated the feasibility of the use of more automatic methods in the
planning of radiotherapy of prostate cancer. Generic approaches used in previous studies
were used throughout the thesis and adapted and evaluated to the specific aim of im-
age registration and image segmentation of the prostate. For example the registration
approach in the first study, which uses the widely used similarity measure mutual infor-
mation in a two-step procedure to ensure an accurate alignment of the prostate in MR and
CT. Therefore, it is reasonable to assume that the approach can work for other organs,
which move relatively to the bone structures. Also, the segmentation approaches were
adapted from [83, 84] and [93, 94] for the third study and fourth study, respectively. The
segmentation approaches showed to be potential candidates for accurate target delineation
in radiotherapy planning of prostate cancer. The work performed in the thesis is expected
to be adaptable to target delineation of other organs, which can be described by a general
shape and intensity distribution because of the segmentation methodologies.
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