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Summary 

 

Cost reductions for offshore wind turbines are a substantial requirement in order 

to make offshore wind energy more competitive compared to other energy supply 

methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance 

costs are typically estimated to be a quarter to one third of the total cost of energy. 

Reduction of Operation & Maintenance costs will result in significant cost savings and 

result in cheaper electricity production. Operation & Maintenance processes mainly 

involve actions related to replacements or repair. Identifying the right times when the 

actions should be made and the type of actions requires knowledge on the accumulated 

damage or degradation state of the wind turbine components. For offshore wind turbines, 

the action times could be extended due to weather restrictions and result in damage or 

degradation increase of the remaining components. Thus, models of reliability should be 

developed and applied in order to quantify the residual life of the components. Damage 

models based on physics of failure combined with stochastic models describing the 

uncertain parameters are imperative for development of cost-optimal decision tools for 

Operation & Maintenance planning. Concentrating efforts on development of such 

models, this research is focused on reliability modeling of Wind Turbine critical 

subsystems (especially the power converter system). For reliability assessment of these 

components, structural reliability methods are applied and uncertainties are quantified. 

Further, estimation of annual failure probability for structural components taking into 

account possible faults in electrical or mechanical systems is considered. For a 

representative structural failure mode, a probabilistic model is developed that 

incorporates grid loss failures. Further, reliability modeling of load sharing systems is 

considered and a theoretical model is proposed based on sequential order statistics and 

structural systems reliability methods. Procedures for reliability estimation are detailed 

and presented in a collection of research papers.  



 

 
 

Resumé 

 

Omkostningsreduktion er af stor betydning for at havvindmøller kan opnå 

konkurrencedygtighed i forhold til andre energiforsyningskilder. I løbet af vindmøllers 

20-25 års levetid, tegner drift og vedligeholdelses omkostninger sig til at være fra en 

fjerdedel til en tredjedel af de samlede omkostninger. En reduktion af drift og 

vedligeholdelses omkostninger kan beløbe sig i betydelige besparelser og resultere i 

billigere el-produktion. Driften og vedligeholdelses processerne omfatter hovedsageligt 

vedligehold, reparationer eller udskiftninger af dele. Identificering af det rigtige tidspunkt 

for en sådan krævet vedligeholdelse og typen af handling kræver viden om 

komponenternes tilstand, den akkumulerede skade eller den nedbrydning der måtte være 

pågået vindmøllekomponenterne. For havvindmøller kan behovet for disse påkrævede 

vedligeholdelses handlinger være øget pga. de barskere vejrforhold på havet eller 

resultere i øget slid med flere skader i de resterende komponenter. Derfor bør der 

udvikles pålidelighedsmodeller til at kvantificere komponenternes resterende levetid. 

Skadesmodeller for fysiske fejl kombineret med stokastiske modeller, der beskriver 

usikkerheds parametre er afgørende for udvikling af omkostningsoptimale 

beslutningsværktøjer til planlægning af drift og vedligehold. Fokus i dette projekts 

forskning har været koncentreret om udviklingen af modeller til pålideligheds 

modellering af vindmøllens kritiske delsystemer (særligt kraftoverføringssystemet). Til 

pålidelighedsvurdering af disse komponenter, er der anvendt strukturelle 

pålidelighedsmetoder og usikkerhederne er kvantificeret. Endvidere er modeller udviklet 

til estimering af den årlige svigtsandsynlighed for strukturelle komponenter under 

hensyntagen til eventuelle fejl i de elektriske eller mekaniske systemer. For et 

repræsentativt strukturelt svigt er der udviklet en probabilistisk model, hvor fejl i 

nettilkobling er inkorporeret. Endvidere er der opstillet en pålideligheds model for 

lastfordeling i systemer; i form af en teoretisk model baseret på sekventiel rækkefølge af 



 

 
 

svigt ved anvendelse af statistiske og strukturelle systempålideligheds metoder. 

Procedurer for estimering af pålideligheden er detaljeret beskrevet og præsenteret i en 

samling videnskabelige artikler. 
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CHAPTER 1. RESEARCH PROBLEM FORMULATION 

1.1 Introduction and Problem Statement 

Wind turbines (WT) should be designed for 20-25 year lifetimes defined by the 
International Electrotechnical Commission standards (e.g. IEC 61400-1 (2005)). WTs are 
complex systems, which consists of electrical, mechanical, hydraulic, structural and 
software subsystems. The main purpose of WTs is to transform kinetic energy from wind to 
electrical power. Offshore WTs have the advantage to be green, ecosystem friendly, be 
located off-shore in deep seas and economically justified for a reasonable period of time. 
However, all these aspects are influenced by the reliability of the WTs. WTs with low 
reliability can increase the Operation & Maintenance (O&M) costs and thereby increase the 
Cost of Energy (CoE). On the contrary, the reliable components can be very expensive but 
with low O&M costs, resulting in low CoE. The optimal reliability should thus be assessed 
taking both component costs and O&M costs into account, as well as other cost 
contributions (e.g. installation costs). Thus, it is important to be able to estimate the 
reliability of all WT components and design the components such that a cost-optimal 
reliability level is attained. Different subsystems of WTs can have different levels of 
reliability. For example, WT blades are designed for an annual probability of failure 
between 10-4 and 10-3. Recently many studies are devoted to the reliability assessment of 
electrical components in WTs, which shows the high failure rates of electrical systems, 
typically between 0.05 and 0.2 per year. High failure rates in electrical systems affect 
profitability via increase in CoE and O&M costs. Electrical systems failure rates can cover 
both significant (costly) failures and some that are easy to handle and fix (e.g. by remote 
actions). 

Influence of failed systems on survived systems is based on their direct or indirect 
interactions, resulting on consequences of increasing failure hazard for the survived systems 
and for the whole system (see Figure 1). Thus, the amount of increase in CoE and O&M 
costs will directly depend on the electrical systems failure influences on the survived 
systems (e.g. blades, tower, etc.), resulting on consequences of increasing failure hazard of 
the survived systems and for the whole WT (and wind farm).  

Thus, more detailed understanding of electrical systems main components, their 
reliability modeling and failure influence on structural components reliability are necessary 
to be able to decrease the CoE. These issues are addressed in this research. 
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Figure 1: Influence and consequence of subsystems on the whole system 

  

1.2 Operation and Maintenance Planning 

O&M planning strategies are related to the decisions that operators / owners of WT 
should take during the WT life (they are not fixed and might be changed during the WT life 
by a learning process). Recently many studies are devoted to identify the optimal O&M 
strategies that can overcome the high cost of unexpected failures. Generally, O&M might be 
classified into two groups: corrective and preventive O&M strategies. Corrective O&M 
(COM) is performed after the failure event has been observed, while preventive O&M 
(POM) is implemented while the failure event is not observed (any time within the start 
until the time when the failure event occurs). Further, POM might be performed based on 
usage age, periodically scheduled (calendar), condition based and risk (probability) based 
maintenance strategies. To determine an optimal O&M strategy, the objective functions 
should be determined (minimization or maximization) during the service life or infinite time 
horizon, subject to the model limitations. Objective functions to be minimized might be 
defined based on costs / downtimes, whereas objective functions to be maximized could be 
defined based on profits (benefits) / availabilities. Also, it is necessary to have information 
on the damage level of the critical (electrical) components. This information can be direct 
information about the damage size or it can be indirect knowledge though indicators. The 
information can be either deterministic or it can be probabilistically be expressed. An 
important objective of this research is therefore to formulate deterministic and probabilistic 
damage measures as function of time related to electrical components 

Downtimes play an important part and might influence the choice of O&M strategy. It is 
important to include them into the considerations, as far as in offshore WT applications time 
to repair might take significant time. In addition, downtimes could be increased by weather 
conditions. Altogether, a significant downtime might be observed, during which a parked 
WT might be affected by the extreme / fatigue wind loads, affecting reliabilities of the WT 
components, e.g. blades and tower. 
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1.3 Wind Turbine Components and Failure Statistics 

A WT can be considered as a system comprised structural, mechanical and electrical 
subsystems. Categorization of WT components is necessary to sustain failure statistics and 
concentrate reliability estimation efforts for critical components / subsystems. Figure 2 
illustrates the WT main components and systems. 
 

 
Figure 2: WT main components 

 
Based on main components failure statistics (see Figure 3), electrical systems have the 

highest annual failure rates among all three WT classes. This analysis was reported by 
[Faulstich et al., 2008] on “German Wind Energy Report 2008”, where data was based on 
about 1500 German turbines included in the WMEP from 2008. 

Further, using this failure statistics, [Isaksson & Dahlberg, 2011] published “2011, 
Elforsk report 11:18”, where failures were represented in a risk matrix, based on likelihood 
of a failure and the consequences. In “2011, Elforsk report 11:18”, consequences were 
considered on economical (E) as well as health, safety and environment (HSE) aspects, 
where economical aspect incorporates costs related to opportunity cost (downtime cost 
while system being maintained) and actual component costs. 
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Figure 3: WT failure statistics based on “German Wind Energy Report 2008”, ‘P’ in kW 
 

 

 
Figure 4: Risk matrix based on “2011, Elforsk report 11:18” 

 
As it is seen from Figure 4 (based on “2011, Elforsk report 11:18”), electrical systems 

have the highest failure likelihood, while its consequence is considered low. This is because 
in “2011, Elforsk report 11:18”, the electrical systems failure has consequence composed of 
economical (E) aspect only, and its health, safety, environment (HSE) aspect is negligible. 

However, the negligible judgment on health, safety, environment (HSE) aspect for 
electrical systems failure consequence might result in expensive practical punishment. The 
electrical systems failure downtimes might influence on WT safety and consequently will 
increase the hazard, especially for WT blades and tower subsystems. In addition, downtimes 
might be prolonged due to weather conditions, and consequently the WT will be exposed to 
breaking as well as damaging (fatigue) loads.   
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Thus, one part of this research was concentrated on developing reliability models for 
electrical subsystem and its components. The models were aimed for O&M strategy 
development and could be integrated with non-destructive evolution techniques (e.g. 
remotely obtaining information on fatigue measure evolution without damaging the 
component).   

1.4 Wind Turbine Power Converter Systems 

Pitch-controlled variable-speed WTs for off-shore applications in practice have a 
variable generator speed due to variations of the rotor speed. Depending on generator type, 
different alternating current (AC) at variable frequency will be generated, which has to be 
adapted to the grid requirements. 

Three type of generators are commonly used, which are asynchronous (induction), 
synchronous or doubly fed induction generators. Mostly asynchronous (induction) 
generators are used for constant speed WT, where the generated AC is directly coupled to 
the grid (see Figure 5). Two most common variable speed layouts are full power and partial 
power conversion systems (see Figure 6 and Figure 7). A converter system is required in 
order to convert (rectifying) generated variable frequency AC to direct current (DC), then 
the fluctuating DC to convert back to the grid required AC (inverting). Also some filters are 
used to smooth the inverted current. For variable speed layout with full power conversion 
usually synchronous generators are used (even though asynchronous generators could be 
used as well), while in partial conversion layouts doubly fed induction generators are used. 

 

 
Figure 5: Constant speed layout 

 

 
Figure 6: Variable speed layout with full power conversion 
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Figure 7: Variable speed layout with partial power conversion 

 

 
Figure 8: Structural details of IGBT module 

 
A converter system is an electronic circuit composed of power electronics. One of its 

main components is an insulated-gate bipolar transistor (IGBT) module, which is a three 
terminal electronic switch, comprised from semiconductors (diodes and IGBT chip), 
aluminum, copper and ceramics. These components are linked together by soldering, wire 
bonding and other manufacturing techniques, see [Lu et al., 2009]. Silicon IGBT chips are 
soldered to the ceramic isolator and to the base plate. The Ceramic isolator has upper and 
lower layers of copper and on these layers the physical soldering is done (see Figure 8). 
Usually SnAg lead free solders are used in soldering techniques. Nowadays, SnAg lead free 
solders are used as a replacement for SnPb lead based solders from the environmental 
standpoint advantages and restrictions from hazardous substances directives in the EU. In 
Table 1, thermal expansion linear coefficients for IGBT module layers are shown. During 
its operation, an IGBT faces power losses in switching of high voltage and current. These 
causes temperature fluctuations in all layers of the IGBT, which again induces fatigue loads 

Converter System 
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Gearbox Generator Grid 
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and possible development of fatigue cracks. Thus, temperature profiles are the main loads / 
stresses that an IGBT is facing during its useful life. 

Three dominant failure modes of standard wire-bonded IGBTs are bond wire lift-off, 
solder joints cracking under the chip and solder joints cracking under the ceramics. This 
research is focused on the solder cracking failure mode that propagates under the chip and it 
is predominated by creep-fatigue failure mechanism. The main reason for this is the 
mismatch in coefficients of thermal expansion between layers of silicon, solder and cupper 
(see Table 1).   

 

Component/Layer Material 
Thickness 

(µm) 
Coefficients of Thermal 

Expansion at 20 oC (ppm/ oC) 

Bond Wire Al (Aluminum) 300-500 (in 
diameter) 

22-24 

Chip Metal Al (Aluminum) 3 22-24 

Silicon Chip Si (Silicon) 250-300 2.77-3 

Solder SnAg (Tin Silver) 50-100 21.85+0.02039*Tc 

DCB Upper Layer Cu (Copper) 280-300 16.8-17.3 

Ceramic Isolator 

AlN (Aluminum Nitride) 

Al2O3 (Aluminum Oxide, 

Alumina) 
700-1000 

4-4.5 
7-8.1 

DCB Lower layer Cu (Copper) 280-300 16.8-17.3 
Solder SnAg (Tin Silver) 100-180 21.85+0.02039*Tc 

Base/Mounting Plate 
Cu (Copper) 

AlSiC (Aluminum Silicon Carbide) 3000-4000 
16.8-17.3 

8 

Table 1: IGBT layers linear expansion coefficients, where Tc in degree of oC 
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CHAPTER 2. RELIABILITY ESTIMATION APPROACHES 

2.1 Reliability Estimation 

If identical products work under the same conditions, then they will fail or stop 
functioning at different points of time. Thus, the probabilistic nature of failure exists and 
reliability should be defined in terms of probability.  Reliability is defined as a probability 
to the event that the product / system will perform its intended purpose in a specified 
working environment for a specified time. It follows that failure event (inability) of the 
product / system should be defined based on intended function, working environment and 
specified time. A failure event is a conceptual notion and could be differently declared 
among various products. Thus, definition of failure event for a particular product should be 
clearly stated before any reliability assessment.  

Reliability is considered as one of the main characteristics that nowadays’ products 
should fulfill. It helps to evaluate steady duration of functionality in products in the 
anticipated environment and conditions. The level of required reliability might be 
determined by consumers and / or being specified during the product / structure design 
stage. Meeting these requirements will lead to sales volume increase, uphold market 
domination and keep civil infrastructures safe. 

In general, two classes of reliability estimation procedures are defined. One is named as 
classical reliability estimation approach and another one is known as the structural 
reliability estimation approach. A distinguish difference in these two approaches is that in 
structural reliability failure events are mathematically formulated or modeled, uncertain 
parameters are modeled by stochastic variables, fields or processes, and further analysis lays 
on probabilistic estimation of the failure events. While in classical reliability approaches 
failure events are not modeled, but information on failure times is collected based on the 
physical test results, and further analysis is performed to identify probabilistic nature of the 
results. 

If failure times (T ) is considered to be random, then they will follow some failure 
distribution function, ( )TF t  such that 0T > , with unconditional failure rate function ( )Tf t  
and conditional failure (hazard) rate function ( )Th t . The relationships between them as well 
as the expected life are determined by: 

 

0

( ) ( ) ( )
t

T TF t P T t f u du= ≤ = ∫     (1) 

 
( )( )

1 ( )
T

T
T

f Th t
F t

=
−

     (2) 
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( )
0 0

( ) ( ) 1 ( )T TE T uf u du F u du
+∞ +∞

= = −∫ ∫     (3) 

 
To estimate failure distribution ( )TF t , two steps have to be committed, first its 

distributional form has to be chosen, and second its parameters have to be estimated. To 
perform these steps structural and / or classical reliability analysis techniques can be 
applied. 

Components / systems usually fail whenever the applied loads are exceeding the 
materials’ strengths (from which the components / systems are made). Martials’ strengths 
are represented by its mechanical properties, the most common ones are:  

 
• Ultimate Tensile strength : before tensile failure maximum stress (MPa) 
• Yield strength: measures the level at which material starts deform plastically 

(MPa) 
• Young's modulus: measure of stiffness, deform elastically (MPa) 
• Ductility: deform under tensile load (% elongation) 
• Shear strength: before shear failure maximum stress (MPa) 
• Compressive strength: before compressive failure maximum stress (MPa) 
• Fatigue limit (Endurance limit): stress range of cyclic load before initiating 

fatigue failure (MPa) 
• Fracture toughness : in a presence of a crack the ability to resist the crack 

growth, measured by critical stress intensity factor Kc (J/m^2) 
• Etc. 

 
Material failure events are usually distinguished based on failure modes. The most 

common failure modes are: 
 

• Brittle fracture: mechanical loads exceeds materials’ ultimate tensile strength 
• Ductile failure: tensile or shear stresses exceed materials’ yield strength resulting 

in original size and shape changes 
• Buckling failure: due to compressive or torsional stresses, it depends on 

materials shape, dimensions and modulus of elasticity 
• Creep failure:  due to dimensional change, time and temperature dependent, 

causes fracture failure under the applied loads  
• Fatigue failure: due to cyclic loads that are far less of materials’ ultimate tensile 

strength 
• Etc. 

 
Thus, failure events might be governed by several failure modes. For each failure mode, 

a failure mechanism is present, which is a subject to be modeled and analyzed.   
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2.2 Classical Reliability Estimation Approaches  

Depending on the failure type (fatigue, extreme failure, etc.) failure data is fitted to a 
failure distribution. Fatigue failure times commonly are described based on the Weibull 
distribution, while extreme failure times are described by Gumbel type distributions. These 
two distributions are members of the so-called Extreme value distributions family. 

2.2.1 Extreme value distributions 

If one has observed data points for some stochastic variable, it is important to fit these 
points to statistical distribution. This will allow using prediction measures for the ranges 
that has not been observed in the sample. Some stochastic variables make importance from 
the research standpoint in their extreme values, at lower or upper tails.  Extreme value 
stochastic variables are order statistics (see Appendix D), which depend on the parent 
distribution. However, as sample size increases and assuming that “Stability Postulate” 
holds, then extreme values follow Extreme Value Distributions (EVD). The following 
distributions are considered as an extreme value distributions.  

 
Distributions for the Largest Value 

 
Type I (Gumbel Type Distribution) 

( )max max( ) exp
x

F x P X x e
δ

θ
− − 

 
 = ≤ =  
 
−    (4) 

where 0,  - xθ > ∞ < < +∞ . 
 
It is used if the parent distribution is unbounded in the range and direction of the largest 

value. Commonly assumed parent distributions are Normal, Log Normal, Exponential and 
Gamma. 

 
Type II (Frechet Type Distribution) 

( )max max( ) exp xF x P X x
βδ

θ

− − = ≤ = −     
   (5) 

where 0,  >0, xθ β δ> ≤ < +∞ . 
 
It is used if the parent distribution is bounded from bellow in the range and direction of 

the largest value. Commonly assumed parent distribution is Pareto, Log Normal, 
Exponential and Gamma. 

 
Type III (Weibull Type Distribution) 

( )max max( ) exp xF x P X x
βδ

θ
 − = ≤ = − −     

   (6) 

where 0,  >0, xθ β δ> −∞ < ≤ . 
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It is used if the parent distribution is bounded from above in the range and direction of 

the largest value. This is also known as a Reverse Weibull Distribution. Commonly 
assumed parent distribution is Beta(1, alpha). It might be also used to estimate the upper 
bound of the largest value in worst-case scenarios. 

 
Distributions for the Smallest Value 

 
Type I (Gumbel Type Distribution) 

( )min min( ) 1 exp
x

F x P X x e
δ

θ
− 

 
 

 = ≤ = −  
 
−    (7) 

where 0,  - xθ > ∞ < < +∞ . 
 
It is used if the parent distribution is unbounded in the range and direction of the 

smallest value. Commonly assumed parent distribution is Normal. 
 
Type II (Frechet Type Distribution) 

( )min min( ) 1 exp xF x P X x
βδ

θ

− − = ≤ = − − −     
   (8) 

where 0,  >0, xθ β δ> −∞ < ≤ . 
 
It is used if the parent distribution is bounded from above in the range and direction of 

the smallest value.  
 
Type III (Weibull Type Distribution) 

( )min min( ) 1 exp xF x P X x
βδ

θ
 − = ≤ = − −     

   (9) 

where 0,  >0, xθ β δ> ≤ < +∞ . 
 
It is used if the parent distribution is bounded from below in the range of the smallest 

value. It might be used to estimate the lower bound of the smallest value in worth case 
scenarios. Commonly assumed parent distributions are Pareto, Log Normal, Exponential 
and Gamma. This is also a well-known Weibull distribution. If parent distribution is 
Exponential distribution, then the smallest value from Exponential distribution has Weibull 
distribution or Smallest Type III distribution. 

2.2.2 Data fitting and estimation procedures 

One of the estimation procedures of the distribution parameters is a Maximum 
Likelihood Estimation (MLE) technique, where covariance matrix of these estimates can be 
numerically calculated based on the Hessian matrix.  
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Based on 1 2, ,..., rx x x  realizations from the sample of size ‘n’ (assuming censoring is 
observed after the largest observation, so ‘n-r’ observations are right censored), the Weibull 
distribution MLE’s for shape and scale parameters are (see Appendix A): 

 



1

*

1

r

i
i

x

r

β
β

θ =

 
 
 =
 

∑
      (10) 

 
 ( )





*

1 1

*

1

( )
1

r r

i i i
i i

r

i
i

Ln x x Ln x

r x

β

β β
= =

=

= −
∑ ∑

∑
    (11) 

where *

1 1
( )

r r

i i r
i i

y y n r y
= =

= + −∑ ∑ ,  

 
and covariance matrix of the estimated MLEs from log likelihood function could be 
calculated via the Hessian matrix based on the following relationship: 
 

  [ ]

( ) ( )

( ) ( )

2 2

2
1

2

2

( , / ) ( , / )

,
( , / ) ( , / )

i i

i i

Ln L x Ln L x

Cov H
Ln L x Ln L x

θ β θ β
β β θ

β θ
θ β θ β
β θ θ

−

 ∂ ∂
 ∂ ∂ ∂   = − =   ∂ ∂
 

∂ ∂ ∂ 

  (12) 

 
where, 
 

( ) 2 22

2 2
1

( , / )
( )

r
i i i r r

i

Ln L x r x x x xLn n r Ln
β β

β β

θ β
β β θ θ θ θ=

∂       = − − − −      ∂       
∑  

 
( )2

2 2 2
1

( , / ) ( 1) ( )
r

i i r

i

Ln L x r x xn r
β β

β β

θ β β β β
θ θ θ θ θ=

∂  +
= − + − ∂  

∑  

 
( )

1 1

( , / ) 1 ( ) ( )
r r

i i r i i r r

i i

Ln L x x x x x x xr n r Ln n r Ln
β β β β

β β β β

θ β β
β θ θ θ θ θ θ θ θ θ= =

∂       = − + + − + + −      ∂ ∂       
∑ ∑  

 
Another technique to estimate distribution parameters is based on Least Square 

Estimation (LSE) technique via regression analyses (see Appendix B). Using the inverse 
transformation of the cumulative distribution function, the (linear) relationship between the 
observed and empirical cumulative probabilities is found. Non-parametric Kaplan-
Meier (see Appendix C for derivations) and / or Rank distribution (see Appendix E for 
derivations) methods could be used for the empirical cumulative probabilities estimation.  

The expected cumulative probabilities based on non-parametric Kaplan-Meier is given 
by: 



 

18 

 
1 ( )

1
xr I

n rF x
n r∈

−
− =

− +∏      (13) 

 
where, ‘r’ is the rank of the ordered uncensored observation, xI  is all positive integers ‘r’, 
such that ( )x r x≤  and ( )x r  is uncensored. 

Based on the Rank distribution, the expected cumulative probabilities could be 
estimated via mean rank or median rank and are given by, respectively: 

 


:( )
1r n

rF x
n

=
+

     (14) 

 



:

1
3( ) 1
3

r n

r
F x

n

−
≈

+
     (15) 

 
where, ‘r’ is the rank of the ordered uncensored observation and censoring is observed after 
‘r’.  

The (leaner) relationship is plotted against the data and LSE technique via regression 
analysis is carried out to estimate parameters and their correlations. It should be noted that 
reciprocals of the estimated variances of the empirically estimated cumulative probabilities 
might be used as weights and Weighted Least Square Estimation (WLSE) technique via 
regression analysis could be carried out for the parameters and correlation estimations. 

Based on 1 2, ,..., rx x x  realizations (in increasing order 1: 2: :, ,...,n n r nx x x ) from the sample 
of size ‘n’ (assuming censoring is observed after the  largest observation, so ‘n-r’ 
observations are right censored), for the defined Weibull distribution in (9) with shape ‘ β ’ 
and scale ‘θ ’ parameters (assuming the location parameter is zero), the leaner relations for 
direct and inverse regressions are: 

 
( )( ): :ln ln (1 ( ) ln ln( )i n i nF x xβ θ β− − = − +     (16) 

 
( )( ): :

1ln( ) ln ln ln (1 ( )i n i nx F xθ
β

= + − −     (17) 

 
where 1, ,i r=  , and ( ):1 ( )i nF x−  is empirically estimated via Kaplan-Meier by (13), or via 

mean rank / median rank of  :( )i nF x  by (14) or (15).  
Also, for the defined Gumbel (Type I) distribution defined by (4) with location ‘ u ’ and 

scale ‘ b ’ parameters, the leaner relations for direct and inverse regressions are: 
  

( )( )( ): :
1ln ln ( ( )i n i n

uG y y
b b

− − = − +     (18) 
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 ( )( )( ): :ln ln ( ( )i n i ny u b G y= + − −     (19) 

 
where 1, ,i r=  , and  :( )i nG x  is empirically estimated via one minus of Kaplan-Meier 

estimate by (13), or mean rank / median rank of   :( )i nG x by (14) or (15).  
The transformation between Gumbel (Type I) and Weibull distributions are based on the 

lnY X= −  relationship, with lnu θ= −  and  1b β= .     

Based on estimated (  ,θ β ) or (  ,u b ) parameters and their correlations, conditional and 
unconditional failure functions, as well as desired quantile levels are estimated.   

2.3 Structural Reliability Estimation Approaches  

Structural reliability approaches are based on the so-called limit state and design 
situation formulations. Limit state defines the boundary of separation between desired states 
from undesired states (success from failure event(s)) of the structure. While design situation 
is duration of time with physical conditions, during which the defined limit state of the 
structure is not exceeded.  

Based on ISO 2394 (General principles on reliability for structures), the following main 
types of limit states and design situations are defined: 
  

• Ultimate limit state: a state associated with collapse, or with other similar forms 
of structural failure. Ultimate limit states include failure modes such as:  

o Internal failure or excessive deformation of the structure or structural 
members, 

o Failure or excessive deformation of the ground / foundation, 
o Loss of static equilibrium of the structure, 
o Fatigue failure of the structure or structural members, 

• Serviceability limit state: a state that corresponds to conditions beyond which 
specified service requirements for a structure or structural element are no longer 
met, 

• Persistent situation: normal condition of use for the structure, generally related to 
its design working life, 

• Transient situation: provisional condition of use or exposure for the structure, 
• Accidental situation: exceptional condition of use or exposure for the structure. 

 
Further, the analysis is carried out with focus on probability estimation of the defined 

limit state during the selected design situation. Structural reliability estimation techniques 
for simple problems can be based on theoretical solutions. For more complicated problems 
(where computers are required to make calculations) simulation, first order or second order 
reliability approximation methods are generally used. The accuracy of the results depends 
on the non-linearity of the limit state equations, the distribution functions and the 
dependency structure of the random variables that constitute the limit state equation. 
Random variables are transformed into the standard normal random variables and 
dependences can be handled by the Nataf transformation (independent on ordering and 
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assuming normal copula structure between variables) or Rosenblatt transformation (assumes 
conditional structure and it depends on ordering).  

2.3.1 Reliability estimation by First and Second Order Reliability Methods 

In structural reliability theory, reliability is estimated based on the formulation of a 
failure function or limit state equation. The failure function (limit state equation) is a 
function that separates the space into two distinct subspaces, termed failure and survival 
subspaces. The failure function is typically formulated based on the strengths, the loads and 
the mechanisms of failure by taking into the account the physical, geometrical, mechanical, 
etc. properties of the component. The limit state equation becomes a function of the 
stochastic variables 1( , , )mX X=TX   and is denoted by ( )g X  such that the failure subspace 
is defined whenever ( ) 0g ≤X . It follows from the formulation of the limit state equation 
that the time-independent probability of failure is: 

 
[ ]( ) 0fP P g= ≤X      (20) 

 
The mathematical formulation of ( )g X  might not be unique, but the estimated 

probability of failure by (20) should be unique. ( )g X  might be transformed into the 
standardized Normal domain by some transformation function ( )T=X Z , where Z  is ‘m’ 
dimensional column vector of the mutually independent standard Normal random variables, 
so ( , ) 0 , ;  i jCov Z Z i j i j= ∀ ≠  . This means that the limit state equation can be represented in 
the 1( , , )mZ Z=TZ  standardized domain. Therefore, the probability of failure will be 
defined by: 

 
[ ] [ ]( ) 0 ( ( )) 0fP P g P g T= ≤ = ≤X Z     (21) 

 
Depending on the linearity of ( ( ))g T Z , the exact or an approximate probability of 

failure might be computed or estimated.    
If ( ( ))g T Z is linear, then the limit state equation represented by 1( , , )mZ Z=TZ   in 

standardized domain becomes a hyperplane in m
 , thus the limit state equation can be 

written:  
  

( ( ))g T β= − TZ α Z      (22) 
 

where β  is the reliability index and α  is a unit normal column vector directed towards to 
the failure subset, so 1=α . 

Expectation and variance of the linearly defined limit state equation ( ( ))g T Z  will be 
[ ]( ( ))E g T β=Z  and [ ]( ( )) 1Var g T =Z . 

The time-independent probability of failure, based on the linearly defined ( ( ))g T Z , 
becomes: 
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0 ( )fP P β β = − ≤ = Φ − 
Tα Z     (23) 

 
where ( )Φ is  the standard normal distribution function. 

The reliability index β  is defined as the shortest distance from the origin to the 
β − Tα Z  hyperplane, and it is known as Hasofer and Lind reliability index [Madsen et al., 
1986].  

If ( ( ))g T Z  is non-linear, then the limit state equation represented by 1( , , )mZ Z=TZ   in 
the standardized domain becomes a hypersurface defined in m

  and the smallest distance 
from the origin to the hyper-surface can be found by iteration algorithms. Next, the failure 
surface can be linearized in that point and this linear surface can be used as an 
approximation. This method is termed the First Order Reliability Method (FORM) and the 
estimated shortest distance is the reliability index. Thus, the formulation will be: 

 
( ( ))g T β≈ − TZ α Z      (24) 

 
[ ] [ ]( ) 0 ( ( )) 0 0 ( )fP P g P g T P β β = ≤ = ≤ ≈ − ≤ = Φ − 

TX Z α Z   (25) 
 
At the design point of a non-linear failure surface, ( ( ))g T Z  a second order Taylor series 

expansion could be performed as well, and the failure surface approximated by a 
paraboloid. This method is known as the Second Order Reliability Method (SORM). Based 
on an appropriate rotation of the coordinate system in standardized domain, the probabilistic 
content under the paraboloid can be calculated.  

Suppose the design point ( β=z* α ) is known or estimated by FORM, then the second 
order Taylor series expansion of the limit state equation at this point would be: 

 
1( ( )) ( ( )) ( ( )) ( ) ( ) ( )
2

T Tg T g T g T≈ +∇ +Z z* z* Z - z* Z - z* H Z - z*   (26) 

 
where ( ( )) 0g T =z* , ( ( ))g T∇ z* and H  are the gradient vector and the Hessian matrix of the 
limit state equation at the design point z * , respectively.  

 After some manipulation of (26), it becomes: 
 

 0
1( ( )) 2
2

Tg T a ≈ + + 
T
1Z a Z Z HZ     (27) 

 

where 2
0 2 ( ( )) ,  ( ( ))

( ( ))
a g T g T

g T
ββ β

 
= ∇ + = ∇ − 

∇ 

T T T
1z* α Hα a z* α I H

z*
. 

As far as the Hessian matrix is real and symmetric, then an orthogonal Eigen 
transformation based on TH = SΛS  will be Z = SY , and (27) can be written: 
 

0 1
1( ( )) 2
2

T Tg T a ≈ + + SY A Y Y ΛY     (28) 
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where, T=1 1A S a .  
The probability of failure by SORM will then be given by: 

 

[ ] ( )

( )

2 2

01/2
1 1

2 2

02 1/2
1 1

( ( )) 0
m m

i i i i
f

i ii i

m m
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i ii i

A Y AP P g T P a

A Y AP a

λ
λ λ

λ
λ

λ λ

= =

= =

 +   = ≤ ≈ ≤ − =    
 +   = ≤ −    

∑ ∑

∑ ∑

YZ

  (29) 
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i

A Yλ
λ
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is a r.v. with a non-central Chi-square distribution with 1 degree of 

freedom and non-centrality parameter 
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, while ( )2

2
1

n
i i i

i
i i

A Yλ
λ

λ=

+
∑ has a general Chi-

square distribution, see [Provost & Rudiuk, 1996], [Lee et al., 2012].  One of the 
approximations to the probability content defined by (29) is given by [Hohenbichler & 
Rackwitz, 1988] by: 

 
1/2

2

( )( ) 1
( )

m

f i
i

P kϕ ββ
β=

 −
≈ Φ − − Φ − 

∏     (30) 

 
where ik  is eigenvalues (principal curvatures) of the rotated paraboloid such that ‘ z * ’ is 
lying on the first axis. 

In cases when a non-linear failure surface is complicated (e.g. composed of islands), 
simulation techniques should generally be used, e.g. crude Monte Carlo Simulation. An 
efficient simulation method is the Importance Sampling technique, which is based on design 
point solution from the FORM. Sampling is done such that points are close to the design 
point and probability of failure is calculated using appropriate weights for each observation.  

For time-dependent reliability problems the probability of failure as a function of time, 
(20) should be reformulated to be dependent on time. If the limit state equation as a function 
of both time ‘t’ and stochastic variables 1( , , )mX X=TX  is denoted by ( , )g tX  and then the 
time-dependent ‘point-in-time’ probability of failure will be defined as: 

 
[ ] [ ]( ) ( , ) 0 ( ( ), ) 0fP t P g t P g T t= ≤ = ≤X Z     (31) 

  
In this formulation, the limit state equation depends on time explicitly (e.g. not through 

random processes).  All the above-mentioned procedures (FORM, SORM, simulation) will 
be performed in the same manner for each time step by fixing the time and treating it as a 
constant, and the corresponding reliability indexes and probabilities of failures as a function 
of time can be estimated. 

If e.g. the load is modeled by a stochastic process and failure is defined by the first time 
when the load exceeds the resistance, then probability of failure within a small time interval 
has to be estimated by solving a so-called first passage time reliability problem. This 
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reliability problem is generally very difficult to solve and instead an approximate failure 
probability can be estimated based on the out-crossing rate of the load exceeding the 
resistance.  The out-crossing rate might be estimated e.g. analytically, asymptotically or by 
PHI2 methods, see [Madsen et al., 1986], [Andrieu-Renaud et al., 2004].  
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CHAPTER 3. FATIGUE FAILURE 

3.1 Fatigue Reliability Estimation  

Fatigue failure is a failure type under cyclic loading of mechanical or thermal stresses. 
A significant property of fatigue failure is that the applied stresses are much lower in 
magnitude than those required to initiate a failure for a single cycle. Low cycle and high 
cycle  fatigues are termed to distinguish between fatigue failures that require few number of 
cycles to failure (usually 10-3) versus high number. The applied cyclic / alternating loading 
combined with a change of environmental temperature causes creep-fatigue failure. This 
fatigue failure mode can be critical for IGBTs solder joint crackling under the chip (more 
details are provided in the thesis).    

Fatigue failure mode is governed by fatigue cracking failure mechanism and divided 
into cyclic hardening / softening, crack nucleation, micro crack growth, macro crack growth 
and final failure stages, with crack initiation and prorogation periods or stages (see Figure 
9).  

 

 
Figure 9: Fatigue crack stages 

 
To quantify the material fatigue resistance, physical tests are often performed and the 

number of cycles versus load level are recorded. This approach is termed the S-N curve 
approach (see Appendix F). In the S-N curve approach no separation on crack nucleation 
and propagating periods and no crack growth information are recorded, only final times to 
fracture are recorded. Further, MLE or LSE methods could be used to estimate model 
parameters and their correlations, which can quantify the S-N curve model uncertainties. 

To estimate damage level from the given alternating stress history, the Palmgren-Miner 
accumulated linear damage rule (see Appendix F) can be applied. The drawback of this 
method is that sequence effects and interactions of consecutive loads are neglected. 
However, due to its simplicity it is widely used in reliability analysis. 

 Another approach to quantify the fatigue reliability is based on the Fracture Mechanics 
(FM) approach via crack propagation length. FM evaluates the crack growth rate in the 
presence of a crack or a flaw, where material conditions during fatigue crack growth are 
assumed to be linear elastic (Linear Elastic Fracture Mechanics), or if not, then elastic-
plastic FM approaches can be used. By this method, the stress intensity factor is estimated 
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and it is compared to the critical stress intensity factor CK  (J/m2), while exceedance results 
in unstable crack growth. Crack extension / growth is usually driven by the opening (Mode 
I), in plane shearing (Mode II) and tearing (Mode III) modes of stresses. Mode I is the most 
common in fatigue crack growth processes and its stress intensity factor IK  describes how 
fast the stress at the crack tip tends to infinity. 

Based on the FM approach, IK  is a function of the geometry function Y(a), the far field 
stress ‘σ ’ and the crack length ‘ a ’, and given by: 

 
( )IK Y a aσ π=      (32) 

 
As far as fatigue failure is a failure type under cyclic loading, then the stress range 

( max minS σ σ= − ) is used in (32) and stress intensity factor range in opening mode is 
obtained from:  

 
( )IK SY a aπ∆ =     (33) 

 
The applied stress ranges have influences on the number of cycles to failure, crack 

lengths at failure and crack growth rates. E.g. if two cyclic stresses with ranges 1S  and 2S  
are applied on identical specimens with the initial crack length 0a , such that 1 2S S> , then: 

 
• Failure times described by number of cycles to failure ( 1n  and 2n ) will be less 

1 2n n< ,  
• Crack lengths at failure will be shorter 1 2a a<   
• Crack growth rates at the given crack length will be higher  1 2da dn da dn> .  

 
 A log-log plot of crack growth rates versus Mode I stress intensity factor ranges reveals 

sigmoidal shape with three distinguished regions (see Figure 10).  
 

 
Figure 10: Sigmoidal behavior of fatigue crack growth rate 
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Region I is a near threshold region described by th
IK∆ , below which no crack growth is 

observed. Region II is described by linear log( )II
IK∆  behavior where crack growth rate is 

constant and Paris-Erdogan law can be applied in this region. Region III is governed by 
high stress intensity factor ranges with unstable fatigue crack growth rates if III

I ICK K∆ ≈ , 
where ICK is fracture toughness in opening mode. 

Paris and Erdogan crack grows equation suggests plotting crack growth rates versus 
stress intensity factor ranges based on the relationship: 

 

( )mda A K
dn

= ∆      (34) 

 
where A and m are experimentally estimated constants.  

Combining (33) and (34) will give dn da  relationship and integrating it will give 
general fatigue life equation: 

 

 
( )00 2

1

( )

f fN a

f m m
m a

daN dn
Y u uAS π

= =∫ ∫      (35) 

 
where fN  is the number of cycles to failure and fa  is the crack length at failure, which 
could be determined by (33) and ICK for constant amplitude uniaxial cyclic loading: 

 
2

max

1
( )

IC
f

Ka
Y aπ σ
 

=  
 

     (36)   

 
It is seen from (35) that .m

fN S const=  at the failure time, which is in agreement with 
S-N curve approach, and variabilities / uncertainties of the parameters should be included 
into (35) for fatigue reliability analysis. 

The above mentioned methods could be used in relation to the power electronic 
components and they are applied for IGBT module reliability estimation. 

3.2 Linking Structural and Classical Reliability Approaches for Fatigue 
Reliability Estimation 

Usually, the statistical analysis of test data for modeling an S-N curve is carried out by 
regression analysis (see Appendix B). Thereby uncertainties can be included in a reliability 
analysis using a limit state equation based on the SN-curve. In general, the uncertainties are 
divided into aleatory and epistemic uncertainties. Aleatory uncertainty is an inherent 
variation associated with the physical system or the environment, and it can be 
characterized as irreducible uncertainty or random uncertainty. Epistemic uncertainty is 
uncertainty due to lack of knowledge of the system or the environment and includes model, 
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statistical and measurement uncertainties. It can be characterized as uncertainty, which can 
be reduced by better models, more data, etc. It is noted that some aleatory uncertainties 
“change” to epistemic uncertainties when the system is realized. 

 
 One of the models to incorporate these uncertainties is to define a limit state equation 

such that those uncertainties will be accounted. It is possible to define a limit state equation 
as: 

 

[0: )

( , , ) ( , )i
i t

g m t m d t
∈

∆ = ∆ − ∑X X     (37) 

 
where m∆  models the model uncertainty related to Miner’s rule, ( , )id tX  is a partial damage 
induced by the time ‘t’ and X  is a vector of random variables associated with the 
quantification of the partial damage. 

As far as Miner’s rule has the drawback of not accounting for the sequence and 
interaction effects of the stresses / loads, then the relevance to use it should be justified and 
uncertainties related to its shortcoming are supported by m∆ . Also, to increase estimation 
accuracy, in (37) some calibration parameters could be introduced. 

For the time dependent limit state equation (37), the unconditional failure rate at time t  
with reference time interval t∆  (typically one year) can be estimated by: 

 
( ) ( )( , , ) 0 ( , , ) 0

( , )
P g m t P g m t t

f t t
t

∆ ≤ − ∆ − ∆ ≤
∆ =

∆
X X    (38) 

 
and the corresponding conditional failure (hazard) rate at time t  for a given time interval 

t∆  given survival at time t  might be estimated by: 
 

( )
( , )( , )

( , , ) 0
f t th t t

P g m t t
∆

∆ =
∆ − ∆ >X

    (39) 

 
Generally, WT components are divided in two groups: 
 

• Electrical and mechanical components, where the reliability is estimated using 
either classical reliability models or physics of failure based models, 

• Structural members, such as tower, mainframe, blades and foundation, where 
limit state equations can be formulated by defining failure or unacceptable 
behavior. E.g. Failure of the foundation could be overturning, failure of a blade 
could be large deflections with nonlinear effects and delamination. 

 
Failure of electrical and / or mechanical components can influence failure of structural 

components, since the loads on these can increase dramatically. E.g., loss of torque due to 
failure in control system may cause problems in blades or tower-nacelle motion, which 
again may imply large edgewise vibrations in the blades. Therefore, the reliability of 
electrical and / or mechanical components should be included in a reliability assessment of 
the whole WT system. 

In this research, faults of the converter system are considered. Converter system failure 
causes grid connection failure (grid loss), such that it is indirectly causing an increase of the 
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damage level of the structural components (e.g. fatigue failure) or provide a risk for extreme 
failure, which is critical for offshore WT applications.  

In general, if the annual failure probability of the i -th failure mode of a selected 
structural component is defined by ( )i ip P F=  such that i jF F∩ =∅  for all i j≠ , and a 

partition of the sample space of failure for the considered component is { }1 2, , , nF F F F=  , 
then by considering the annual probability of grid loss, the annual probability of failure of 
the selected structural component will be given by: 

 

( ) ( )  F i annual
i

P P F grid loss P grid loss 
= ⋅ 
 
∑     (40) 

 
where ( ) annualP grid loss is estimated by (38) with one year reference period, 1t∆ =  year. 

Alternatively, if the mean annual failure rate 
 grid loss

mλ of grid loss is estimated by a 
classical reliability approaches, then the mean annual failure rate of the considered 
structural component 

 F grid loss

mλ
∩

 at the time of the grid loss, by considering mean wind speed 
( )W  and the blade positions ( )Pos , is estimated by: 

 
( )
( ) ( )  

grid loss
F grid loss grid loss

I I
i i

I I
i i im m

I Ii W W Pos Pos i i

P F W W Pos Pos

P W W P Pos Pos
λ λ

∩
∈ ∈

  ∩ ∈ ∩ ∈ ×  =  
 ∈ ∈   

∑ ∑ ∑  (41) 

 
where IW is a wind speed interval, which could be obtained by discretization, e.g. 
[ )0 :15 [15 : 25) [25 : )∪ ∪ ∞  [m/s]; IPos  is the blades position ( )Pos  sample space, which  
is determined by the relative angle ( )θ of a blade to the tower, ~ [0 : 2 ]Uθ π . θ  also could 
be discretized by disjoint intervals e.g. with 4π  steps. The mean annual failure rate of grid 
loss 

 grid loss

mλ  should be estimated based on the observed data and it can be highly site 
dependent. 

The annual failure probability of the considered component can then be approximately 
estimated based on the mean annual failure rate 

 F grid loss

mλ
∩

by: 
 

( ) 
1 exp

F grid loss

m
FP λ

∩
= − −     (42) 

 
The above mentioned approaches might be used for consideration of failures in power 

converter systems, resulting in grid loss, particularly due to the failures of IGBTs. The 
developed IGBTs reliability estimation methods can be used together with the structural 
components reliability estimation models to estimate the reliability of the structural 
components under the grid loss situations. 
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CHAPTER 4. RELIABILITY ON SYSTEMS LEVEL 

4.1 Background for Systems Configuration 

Systems, where components / subsystems are in parallel arrangement, are termed as 
parallel systems. Such a system can be represented by time-independent or time-dependent 
models. In the time-independent model representation, the components / subsystems 
reliabilities are considered constant with time, and some base period is implied for modeling 
of the uncertainties. Whereas, representing the system reliability by time-dependent model 
indicates that components / subsystems reliabilities are varying as a function of time. 

A parallel system with ‘n’ components is a system, which fails if all ‘n’ components / 
subsystems fail(s). For the time-independent model, the parallel system unreliability 
consisting of ‘n’ components is given by: 

 
[ ]. 1 2

p
unrel nP P E E E=         (43) 

 
where iE  is the event that thi  subsystem / component operates unsuccessfully. 

For the time-dependent model, the parallel system unreliability consisting of ‘n’ 
components is given by: 

 
[ ]. 1 2( ) ( ) ( ) ( )p

unrel nP t P E t E t E t=       (44) 
 

where ( )iE t  is the event that thi  subsystem / component operates unsuccessfully by the time 
‘t’ (from zero till time ‘t’ ). 

A series system with ‘n’ components is such system, which fails if at least one of the 
components / subsystems fail(s). If series system unreliability consisting ‘n’ components are 
considered, then time-independent and time-dependent models will be given by: 

 
[ ]. 1 2

s
unrel nP P E E E= ∪ ∪ ∪    (45) 

 
[ ]. 1 2( ) ( ) ( ) ( )s

unrel nP t P E t E t E t= ∪ ∪ ∪   (46) 
 
where iE  is the event that thi  subsystem / component operates unsuccessfully, and ( )iE t  is 
the event that thi  subsystem / component operates unsuccessfully by the time ‘t’. 

The assumption, that the lifetime of each component follows some continuous 
cumulative distribution function (c.d.f.), is implying that continuous damage accumulation 
exists and cumulative damage increases by the usage time propagation. Let iY  be the 
random lifetime of the component ‘ i ’ with ( )

iYF t  c.d.f., implying that: 
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[ ]( ) ( ) ( )
iY i iF t P Y t P E t= ≤ =     (47) 

 
and 0 ( ) 1

iYF t≤ ≤ for any 0t ≥ . 
If two or more components comprise the parallel system, then the parallel system 

unreliability by the time ‘t’ will be given based on the components failure joint distribution 
function defined as: 

 

1. , , .( ) ( , , ) ( )
n

p p
unrel Y Y unrelF t F t t P t= =



    (48) 
 
If two or more components comprise the series system, then the series system 

unreliability by the time ‘t’ will be given via the components survival joint distribution 
function defined as: 

 

1. , , .( ) 1 ( , , ) ( )
n

s s
unrel Y Y unrelF t F t t P t= − =



     (49) 
 
where 

1, , ( , , )
nY YF t t =



 [ ]1 2 nP Y t Y t Y t> > >     is components survival 
joint distribution function. 

4.2 Systems Reliability Estimation by Classical Reliability Approach  

Systems reliability estimation by the classical reliability approach is generally based on 
the assumption of statistical independence. Thus, it is assumed that components / 
subsystems failure times (lifetimes) are statistically independent among each other and no 
influence is considered upon of failure of either one. This implies that all subsystems are 
activated when system is activated and failures do not influence on the reliability of 
survived components / subsystems. It should be noted that by classical reliability approach, 
the independence assumption applies to both time-independent and time-dependent models. 
Based on independence assumption, the parallel (48) and series (49) systems unreliability 
by the time ‘t’ will be given by:  
 

.
1

( ) ( )
i

n
p

unrel Y
i

P t F t
=

=∏      (50) 

 

( ).
1

( ) 1 1 ( )
i

n
s

unrel Y
i

P t F t
=

= − −∏     (51) 

4.3 Systems Reliability Estimation by Structural Reliability Approach  

Structural reliability estimation is based on the mathematical formulation of the failure 
event by the time ‘t’ via limit state equation. If i -th component failure event by the time ‘t’ 
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is defined by the limit state equation ( , )ig tX , where  1, ,i n=  , the parallel (44) and series 
(46) systems unreliability by the time ‘t’ will be given by:   
 

{ }.
1

( ) ( , ) 0
n

p
unrel i

i

P t P g t
=

 = ≤ 
 

X


    (52) 

 

{ }.
1

( ) ( , ) 0
n

s
unrel i

i

P t P g t
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X


    (53) 

 
If the limit state equation ( , )ig tX  is linearly defined and based on an independent 

random vector X , then exact probabilities are calculated by (114) and (118) (see Appendix 
G). If independence of the random vector X  is not satisfied, but marginal distributions and 
linear correlations are available, then e.g. the Nataf transformation can be applied.   

If the limit state equation ( , )ig tX  is not linearly defined, then FORM, SORM or 
simulation methods could be used to evaluate (52) and (53) probabilities. E.g. FORM 
approximate solution to the systems unreliability will be given by: 

 
( )( )

. ( ) ( ),p t
unrel mP t t≈ Φ −β ρ      (54) 

 
( )( )

. ( ) 1 ( ),s t
unrel mP t t≈ −Φ β ρ     (55) 

 
where ( ) ( ) ( )t t t= Tρ α α , (see Appendix G for derivation and details). 
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CHAPTER 5. RELIABILITY AND OPERATION & MAINTENANCE 

5.1 Reliability Estimation Procedures Aimed for Operation & 
Maintenance Strategies Development 

The environment and loads under which the components are utilized are directly 
influencing the reliability of the components. Thus, it is important to build reliability 
models, which take into account loads and environmental conditions, and can be used as a 
basis for optimal O&M strategies development.  

The general framework and procedure for such type reliability modeling is illustrated in 
Figure 11. The first step is to identify failure modes for the corresponding system.  Failure 
modes are type of failures, which have been observed, perceived and seen (e.g. mechanical 
failure modes are fatigue, corrosion, wear, erosion, etc.). The next step is to understand 
failure mechanisms for each failure mode, which are processes that govern the failures (e.g. 
crack initiation and propagation, etc.). Next step is the mathematical modeling of the 
selected failure mechanism for the observed failure mode by considering material, 
geometry, interaction, physical properties and affects.  

Further step is to use the mathematical model to establish limit state equations based on 
degradation or damage models. Next step is to expose the site-specific loads and stresses to 
the limit state models and analyze outputs by structural reliability methods (e.g. FORM, 
SORM, etc.), resulting in reliability levels determination. 

If the goal is to develop reliability estimation models aiming for O&M strategy 
development, then each component / system in the WT should be considered. This will 
require enormous time and financial resources, thus this research was focused on 
developing reliability estimation models for the WT critical components. 
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Figure 11: Reliability estimation procedure by considering loads 

 

5.2 Risk Based Operation & Maintenance Planning 

At the design stage, a decision on the optimal, initial design parameters ( )1,..., Nz z=z  is 
made which generally should maximize the total expected benefits minus costs during the 
whole lifetime such that safety requirements are fulfilled at any time. In practice, 
requirements from standards and actual costs of materials are used to determine the optimal 
design. Further, upon implementation of it into and usage during WT lifetime, a continuous 
monitoring of WT critical components or details is performed. The critical components are 
subject to (correlated) uncertain exposure / quantities such as wind and wave climate loads, 
strengths, degradation parameters, model and measurement uncertainties and be modeled by 

( )1,..., nX X=X stochastic variables. Thus, it is necessary to identify the O&M strategy 
parameters (see Figure 12), which could be: 

 
• Total number of inspections N  during the service life LT ,  
• Actual times 1 2( , ,..., )NT T T=T of each inspections,  
• The inspection methods (qualitative measures) 1 2( , ,..., )Mq q q=q   
• Possible maintenance actions (assuming as good as new after maintenance), 

which are modeled by a decision rule ( )d S , based on anticipated inspection 
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observations ( )1,..., MNS S=S , which are emerged due to realizations of the 

( )1,..., nX X=X  stochastic variables.  
 

 
Figure 12: Decision tree for optimal O&M planning, [Sørensen, 2009] 

 
Thus, at time zero no information about the system is available, and it is necessary to 

identify the above-mentioned O&M strategy parameters, written as ( , )N=e T,q . Based on 
[Sørensen, 2009], a risk based O&M strategy might be determined via the following 
optimization problem: 
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   (56) 

 
where, ( , , )W z de  is the total expected capitalized benefits minus costs in the service 
lifetime LT , B  is the expected benefits, IC  is the initial costs, INC  is the expected 
inspection or service costs, REPC  is the expected costs of maintenance or repair action, FC  
is the expected failure costs, ,F tP∆  is an annual probability of failure in the year t , max

FP∆ is 
a maximum acceptable annual (or accumulated) failure probability (which are restrictive 
measures and identified by standards and codes).  

Solution to (56) might be achieved based on yearly failure probabilities (or reliabilities), 
estimated by structural reliability methods and via stochastic variables distributions, 
estimated based on experience and historical data. That is why developing methods for the 
components / systems reliability estimation are critical for O&M planning strategy 
determination. 
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CHAPTER 6. RESEARCH OUTCOMES 

6.1 Reliability Models for IGBTs and Wind Turbine Systems 

The aim of this research was to develop reliability model(s), which will be integrated 
into O&M strategies planning and development. This means that reliability models should 
be formulated such that failure could be described via critical thresholds of the accumulated 
damage or degradation paths, and the failure probability as function of time could be 
estimated.  

Development of a reliability model for IGBT application is described in Paper 1. In late 
90s by [Held et al., 1997], an extensive test was performed to investigate the solder fatigue 
cracking failure mechanism due to fluctuating temperature cycles. Failure was defined by a 
predetermined percentage increase in collector-emitter voltage and lifetime dependency 
from both mean temperatures (by a thermally activated mechanism) and temperature range 
for the selected IGBT module was observed. Later, in [Lu et al., 2007] a lifetime model was 
proposed by considering accumulated plastic strain per cycle and number of cycles of 
failure, where the chip interconnected area degradation was defined as failure criteria 
(represented by a crack length). In addition, model parameters were estimated for 20% 
interconnected area shrinkage used as failure criteria. In [Yin et al., 2008] a finite element 
model was used to estimate the accumulated plastic strain per cycle for a variety of 
combinations of temperature means and temperature ranges.  

In this research, the development of a failure model was based on the consideration that 
it should result in failure criteria to allow for O&M strategy development. Therefore, the 
model should be based on accumulated plastic strain per cycle, mean temperatures as well 
as temperature ranges and failure criteria will be defined by chip interconnected area 
degradation. Combining these, a model was developed and presented in Paper 1. This model 
was coupled with Rainflow counting [Nieslony, 2009] and Miner’s rule for linear damage 
accumulation and a limit state equation was proposed. Some parameters in a model were 
estimated via published data, while assumptions were made regarding others where no data 
was available. 

 Further, an application of the developed model for reliability analysis was described in 
Paper 2. At this stage, a simulation based approach was used to estimate reliability via 
structural reliability methods. A detailed reliability research was conducted including 
censored data and the results were analyzed based on non-parametric reliability approaches. 
In addition, an application was explored for using structural reliability approaches for safety 
factor calibration, including the effect of changes in load profile behavior on reliability 
levels and damage accumulation. 

Next, First Order Reliability Method (FORM) was applied and an extensive computer 
code in MATLAB environment was developed for this purpose. Comparison of the results 
from (crude Monte Carlo) simulation and FORM were presented in Paper 3. Close 
agreement of the reliability estimates were observed. This indicates that FORM is an 
efficient tool for such type problems reliability assessment and the developed MATLAB 
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code is valid. Further, the advantage of FORM over (crude Monte Carlo) simulation in short 
computational times was observed. Next, the ability to integrate the code with the WT 
operating system was proposed, which will allow estimating current reliability level of the 
component from the measured load history and indicate the state of the risk, which is a 
direct application for O&M strategy development.   

In Paper 4, representative temperature loads were estimated for grid side IGBTs in a 
variable speed layout for a full power converter system for 2.3MW WT. Junction 
temperatures were estimated and presented as a function of wind speeds. Based on the 
estimated load profiles, grid side IGBT’s chip solder joint reliability was estimated. It was 
noted that the model parameters need to be estimated accurately and junction temperatures 
should be considered in shorter time steps in order to obtain sufficient accurate reliability 
estimates.       

Further, if IGBT module be considered as a parallel system consisting of IGBT chips 
then system level reliability estimation needs to be developed. Distinguish difference of this 
system is that it is a load sharing system. Upon failure of either component, the load on 
surviving components will be redistributed and consequently will be much higher. In Paper 
5, such a situation was considered. It was assumed that the three parallel connected IGBT 
chips comprise the IGBT module and upon failure of either chip a 20% of load increase 
would be observed on each survived chips. An approximate method was proposed for the 
system reliability estimation. The proposed method is simple and has advantage of 
providing conservative estimate of the system reliability. 

As it has been discussed in Chapter 3, another important aspect of WT reliability 
estimation is the situation where a fault occurs e.g. due to grid loss resulting from the 
converter system failure. Reliability of structural components was examined under such 
situations and theoretical background was developed in Paper 6. Such situations are quite 
common and have vital importance especially for off-shore WTs.  

Advancing the topic of dependent / load sharing system reliability estimation, a 
theoretical background was developed. A method was proposed based on the sequential 
order statistics theory. This is an ongoing research and some preliminary result on reliability 
estimation of the components from load sharing system is presented below. 

6.2 Depended Systems Reliability Estimation by Structural Reliability 
Approaches 

Correlations between components may have significant influence for systems reliability 
estimation. The classical reliability approaches often assume that components / subsystems 
are statistically independent and upon failure, no influence will be impacted on the survived 
components / subsystems. However, in many real world systems this is not true. An 
example for a structural system could be suspension or cable-stayed bridges where failure 
of any cable will increase the load on the remaining cables and increase the hazard of 
failure. Examples utilizing mechanical systems could be twin-engine tanks or helicopters 
considered as a system, or suspension systems in mechanical vehicles. An example in 
electrical systems could be wire-bonding lift-off failure modes (on chips or processors). For 
WT systems, it could be bolts or welded joints failures, or mooring cables failures in 
floating wind turbines applications, etc. As it is seen, many real world systems require a 
more detailed approach for the system reliability modeling taking correlation into account. 
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Correlation between components / subsystems can be taken into account through 
statistical correlation and by mechanical (physical failure-effect) dependency. In this 
investigation, the statistical correlation was assumed negligible and only physical failure 
effect correlation is considered. This type of correlation is modeled by sequential order 
failure system and combined by structural reliability approaches for subsequent failure time 
estimation. It is assumed that the component / subsystem fails due to fatigue (or generally 
by a continuously increasing damage function), governed by the accumulated damage 
during the usage time. Thus, the lifetime of each component / system will follow some 
continuous and non-negative cumulative distribution function. 

6.2.1 Theoretical Background for Ordinary and Sequential Ordered Random 
Variables 

Ordered random variables are a special class of random variables in statistical and 
probability theory. Behavior of such a random sample has been studied throughout the 
years. It has applications in description of engineering systems and reliability estimation of 
the so-called ‘r-th out n’ systems, non-parametric distribution estimations, etc. However, 
the derivation of the distribution of order random variables assumes identical distribution 
and independence within the sample (see Appendix D). These assumptions lead to the class 
of ordinary order statistics [David & Nagaraja, 2004], [Balakrishnan & Cohen, 1991], 
[Bartoszynski & Niewiadomska-Bugaj, 2007].   

The distribution function of the ordered random variable r:nX , from 

( )1 2, ,..., nX X X random sample, where iX ’s are independent and identically distributed 
from parent distribution function ( )XF t  and corresponding density function ( )Xf t , is given 
by (see Appendix D): 
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where ( , )pI α β is a regularized incomplete beta function and ( )Γ  is a gamma function. 

The joint density function of the ordered random variables ( )1: 2: :, ,...,n n r nX X X from the 
parent distribution ( )XF t will form a multinomial distribution and can be written as: 
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Given information on preceding failure times { }: 1 / 1, , ( 1)r i n iX t i r− −= = − , the 
conditional distribution of :r nX  given the preceding failure times is only depending on 

{ }1: 1r n rX t− −= . This means that ordinary order statistics form a Markov chain with transition 
probabilities: 
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X r
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X r
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− −
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   (60) 

 
In ordinary order statistics, it is assumed that failure of either component does not 

influence on the life of the surviving components. If a failure in the sample influencing on 
the reaming components / subsystems lifetime, then the scheme of sequential order statistics 
is used to represent this pattern. The concept of sequential order statistics was introduced by 
Udo Kamps.  In this paper, the logic and derivation of sequential order statistics are 
described in more details, see [Kamps, 1995], [Kamps, 1996]. 

Introducing the random sample of size ‘n’ by ( )(1) (1) (1)
1 2, ,..., nX X X  where all (1)

iX are 

independent and identically distributed (i.i.d) and continuous random variables with (1) ( )
X

f t  
probability density function (p.d.f) and (1) ( )

X
F t  cumulative distribution function (c.d.f.), 

respectively. After failure of the minimum ( )(1) (1) (1) (1)
1: 1 2min , ,...,n nX X X X=  in the sample of 

( )(1) (1) (1)
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1 2 1, ,..., nX X X −  and their distribution function is assumed to be 

conditional on (1)
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failure time on the remaining lifetimes is specified. So, conditional on 
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1, 1, , 1iX s i n> = − , the distribution function of i.i.d. (2) , 1 1iX i n= − , is: 
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Next, the second failure corresponding to the minimum 

( )(2) (2) (2) (2)
1: 1 1 2 1min , ,...,n nX X X X− −= , where ( 2) (1)

11:

. . .
(2)

1/
~ ( / )

n

i i d

i X X s
X F t s

=
 1 1i n= − , is taken into 

account. Observe that cumulative distribution function of the minimum 
( )(2) (2) (2) (2)

1: 1 1 2 1min , ,...,n nX X X X− −=  from the ( 2) (1)
11:

1/
( / )

nX X s
F t s

=
 parent distribution function is: 

 

( ) ( 2 )

( 2 ) (1) ( 2 ) (1)
1 11: 1 1: 1:

( 2 )

1
1

1 1/ /
1

1 ( )
( / ) 1 1 ( / ) 1

1 ( )n n n

n
n

X
X X s X X s

X

F t
F t s F t s

F s−

−
−

= =

 −
= − − = −   − 

 (62) 

 
The sample ( )(3) (3) (3)

1 2 2, ,..., nX X X −  of size ‘n-2’ from the remaining components lifetimes 
is constructed after the second failure. The distribution function of the i.i.d. 
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(3)
2 1, 1, , 2iX s s i n> > = −  is conditional on (2)

1: 1 2nX s− =  only (portraying the Markov 
property). 

The sequential failures are continued until the last component ( )( )
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distribution of the first ‘r’ sequential order statistics 
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where, 1 2 rt t t< < < , (1)0 0,  ( ) 0,  ( ) 1- ( )

X
s F s R F= −∞ = =  . 

6.2.2 Systems Reliability in Sequential Order Representation by Structural 
Reliability Approach 

A truncated distribution function in sequential order representation will be given by: 
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where, (1)

0
1: 1 0 0 11 ,  ,  ( ) 0,  ,  ( ) 1- ( )n iX

i n X s F s s t R F+ −= = = −∞ = < =   . 
Thus, the distribution function of the corresponding sequential order statistic is given 

by: 
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where, (1)

0
1: 1 0 0 11 ,  ,  ( ) 0,  n iX

i n X s F s s t+ −= = = −∞ = < . 
Observe that (60) with ‘r=1’ is comparable with  (66). However the sample size in (60) 

when ‘r=1’ will be changed with each observed sequential order failure. This leads to the 
formulation: if an i.i.d. sample ( ) ( )

1 1, ,i i
n iY Y − +  with size ‘ 1n i− + ’ was selected from ( )iY

F  at 

level ‘ i ’, 1 ,i n=   such that ( ) ( )( ) 0i i
k mP Y Y= =  where k m≠ , 1, , 1k n i= − +  and 

1, , 1m n i= − + , then the distribution function of the sequential order statistic ( )
1: 1

i
n iX − +  at 

level ‘ i ’ based on the ( )iX
F  parent distribution function, such that ( ) ( )i iX Y

F F= , and given 
that failure at level ‘ 1i − ’ was 1is −  ( 0s = −∞ ), can be written as: 
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This relationship has an important representation in methodical sense and its application 

from structural reliability viewpoint is explored in the following: Left side of (68) describes 
the distribution function of the minimum distribution from the truncated c.d.f. based on the 

( )iX
F  parent distribution (see left side of Figure 13), whereas right side of (68) describes the 
distribution function of the truncated distribution from the minimum c.d.f. based on the 

( ) ( )i iY X
F F=  parent distribution (see right side of Figure 13). 

This result is useful in failure dependent system applications as far as estimation of the 
parent distribution function in sequential order representation is hard to achieve in practice, 
whereas estimation of the minimum c.d.f. is practically observable. It is proposed that the 
distribution function of the minimum in sequential order representation to be computed / 
estimated by a series system representation. The series systems reliability estimation by 
structural reliability approaches is proposed to be used for these purposes, see Figure 13. 
This estimation procedure is non-destructive and robust, as far as it is based on limit state 
equations, describing each component / subsystem failure behavior and it allows estimating 
reliability in engineering designs by parameters / variables modification or introduction of 
new parameters.   
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Figure 13: Illustration of the procedure defined by (68) 

 
Thus in summary the following approach is formulated: suppose a load sharing system 

from ‘n’ components is considered at time ‘0’ and level ‘1’. Exactly after ‘ 1i − ’ total 
failures, the new load sharing system will be formed from the ‘ 1n i− + ’ survived 
components at level ‘ i ’. Next, the failure time in the parallel system from ‘ 1n i− + ’ 
components is modeled by the truncated distribution function of the series system from 
‘ 1n i− + ’ components at level ‘ i ’. The estimation of the series system probability of failure 
is carried out by structural reliability approaches, see Appendix G. The failure time at level 
‘ i ’ is predicted from the estimated truncated distribution for the desired quantile and it is 
used to estimate the subsequent truncated distribution, as well as the desired quantile time at 
level ‘ 1i + ’. The procedure is continued until the truncated distribution at level ‘n’ is 
estimated, which corresponds to the lifetime distribution of the initial ‘n’ component load 
sharing system (failure-effect correlated components). 

6.2.3 Example of Sequential Order Representation by Structural Reliability 

A small illustrative example of the application of the above theory is presented in the 
following. Suppose a three-component load sharing system is under the consideration. 
Failure of either component is due to the cumulative damage and might be represented by a 
limit state equation. The limit state equation will be formulated to describe a component 
failure time, which is a time when the load is higher than the strength of the component. It 
will be assumed that the component strength degrades by the usage time and a constant load 
(stochastic but time invariant) is applied on the component. Upon failure of the weakest 
one, the survived components will be exposed a higher load level (by load redistribution), 
thus three load levels will be considered. In this example, it is assumed that information on 
the first (weakest) failure under load level ‘1’ is observed at time ‘200’. As far as this 
example is for an illustration purposes, no units are attached to the variables. An objective is 
to use this information to estimate the next (2nd ) failure in the system, the corresponding 
distribution function and to use its median time (50% quantile) to estimate subsequent (3rd ) 
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failure distribution. The latter will describe an anticipated failure distribution of the three 
component load sharing system given that the first component fails at the time ‘200’ and the 
second component fails at its median time. 

Let the random variables 1, 2, 3, 4, 5, 6X X X X X X  define the limit state equations for 
each component in the following way: 
 

1 1 4( ( ), , )) ( ) ( )g t t LoadLevel X t X LoadLevel= −X     (69) 
 

2 2 5( ( ), , )) ( ) ( )g t t LoadLevel X t X LoadLevel= −X    (70) 
 

3 3 6( ( ), , )) ( ) ( )g t t LoadLevel X t X LoadLevel= −X    (71) 
 

where distributions and parameters of  1, 2, 3, 4, 5, 6X X X X X X  are defined in Table 2. It is 
assumed that all stochastic variables are statistically independent of each other, for the sake 
of simplicity.  

 
Note: ‘t’ represents time and ‘L’ 

represents load level={1,2,3} Distribution Mean Coefficient of 
Variation 

X1, X2, X3 Normal 150*exp(-0.002*t) 0.2*exp(0.0002*t) 
X4, X5, X6 Normal 50+10*(L-1) 0.2 

Table 2: Parameters of the stochastic variables 
 
 

 
Figure 14: Illustration of density functions of loads and strengths as function of time 

 
The random variables 1, 2, 3X X X  are describing the strength of the material for each 

component and they are functions of time ‘t’. By the usage time, their expected values are 
decaying and coefficients of variations are increasing (see Figure 14 and Table 2). The 
random variables describing loads are 4, 5, 6X X X , with increasing mean values as a 
function of load level and constant coefficients of variations, see Table 2. Thus, the limit 
state equations will be functions of load levels and time.  
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Step 1: Parent Distributions 
It is expected that the probability of failure should increase by the increase of load 

levels. Using the FORM (structural reliability) method (with difference quotient in 
numerical differentiation and error for reliability index estimation of 10-8 and 10-5, 
respectively), the component probability of failure for each load level at a given time step 
was estimated (see Figure 15). It is seen that probability of failure is increasing by the 
increase of load levels, which is typical behavior of load sharing (failure dependent) 
systems.  
 

 
Figure 15: Parent distributions 

 
To estimate representative probabilistic distributions and associated parameters, a 

classical reliability analysis was performed. An adequate fit was obtained using the Normal 
distribution (as it was expected, as far as the limit state equations are linear combination of 
Normal random variables). The Anderson-Darling (AD) test statistics p-values were 
reported with high level of significance. The location and scale parameters for the parent 
distributions were estimated (see Figure 16).  

 

 
Figure 16: Parent distributions represented as a Normal 
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Estimation of representative probabilistic distributions are not necessary in practice, as 

soon as parent distributions are estimated. It is done to clarify and lead the reader to the 
sequential order statistics formulation. 

Next, a load sharing parallel system comprised of three components is formed at load 
level ‘1’. Once a failure of the weakest component out of three components at load level ‘1’  
is observed ( (1)

1:3X ), the parallel system composed of the two survived components will be 
formed and undergo to the load level ‘2’. The second failure time will be determined within 
the two component parallel system, which is the failure of the weakest component out of 
two at load level ‘2’, ( (2)

1:2X ). Once (2)
1:2X  is observed, the last component undergoes to the 

load level ‘3’ and its failure time will be defined by (3)
1:1X , which is the third failure time. So, 

based on sequential order statistic theory, the failure times (1) (2) (3)
1:3 1:2 1:1, ,X X X  will form the 

sequential order statistics based on the distributions (1) ~ (549.6;150.2)
X

F N , 

( 2) ~ (458.8;148.6)
X

F N  and ( 3) ~ (382;147.3)
X

F N .    
 
Step 2: Illustration of the relationship in (68) and Figure 13 

Suppose the weakest component out of three components at load level ‘1’ fails at the 
time ‘200’. So, this failure time corresponds to (1)

1:3 1 200X s= = .  
Left side of (68): Based on the parent distribution function ( 2)X

F  (see I in Figure 17), the 

distributions of (2) (1)
1:3/ 200X X =  and (2) (1)

1:2 1:3/ 200X X =  are computed by (64) and (66) (see 
II and III in Figure 17 and left side of Figure 13).  

Right side of (68): Based on the parent distribution ( 2)X
F  and using  (57) the distribution 

of (2)
1:2X  is computed. Then, based on the (2)

1:2X  distribution, the distribution of 
(2) (1)
1:2 1:3/ 200X X =  is estimated via (60) (see IV and V in Figure 17 and right side of Figure 

13).  
As it is seen from Figure 17, the truncated distributions are identical and this is due to 

the relationship illustrated by (68). 
 

 
Figure 17: Estimated probability of failure distributions based on order statistics 
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Step 3: Series systems for the minimum distribution estimation 

Next, series system structural reliability techniques are applied (see Appendix G). 
Particularly using (116) and implementing FORM for the two component series system, the 
probability of failure under load level ‘2’ for each time step was estimated (see I in Figure 
18). Also, based on the parent distribution ( 2)X

F  and using  (57) the minimum distribution at 
load level ‘2’ was estimated (see II in Figure 18). It is seen that they are identical and thus 
the series system structural reliability techniques are proposed to be used for the minimum 
distribution estimation for the given load level.  
 
Step 4: Estimation of the consecutive failure times or load sharing system lifetime 

The minimum distribution at load level ‘2’ was estimated based on the two component 
series system by structural reliability method in Step 3 (see I in Figure 18). If it is assumed 
that the weakest component out of three components at load level ‘1’ fails at time ‘200’, 
then based on the minimum distribution at load level ‘2’ the truncated distribution of 

(2) (1)
1:2 1:3/ 200X X =  is estimated (see III in Figure 18, also identical with both III and V in 

Figure 17). The median time for the next failure is estimated to be 390 (see III in Figure 18), 
also any desired reliability level quantiles for the next failure time could be estimated from 
the graph. 

Further, the distribution of (3) (2)
1:1 1:2/ 390X X =  is estimated via the above described 

procedures where the parent distribution is ( 3)X
F  (see IV in Figure 18), and it is lifetime of 

three component parallel system with failure-effect correlated components, given that the 
first component fails at the time ‘200’ and the second component fails at its median time.  
 

 
Figure 18: Estimated probability of failure distributions based on structural reliability 

approach 
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6.2.4 Conclusion 

In section 6.2, it is shown how the reliability of a load sharing systems can be estimated. 
The aspect of not taking into account failure dependencies is the main deficiency of 
classical reliability theory in systems reliability estimation. The sequential orders of failures 
were considered and the influences from the load changes were taken into account. It was 
assumed that components are statistically independent and share the dependences only by 
mechanical structure, termed as mechanical correlation or failure effect correlation. An 
important representation in methodical sense was revealed, which is expressing next failure 
time in a parallel system (with failure effect correlations) at the given load level by a 
truncated distribution of the series system distribution. Where, the latter is estimated by 
structural reliability methods for the given load level. The parent distribution at the given 
load level is not necessary to be known, even though it is possible to estimate. The 
described technique could be used for calibration of limit state equations based on the test 
data availability. It could be used for the decision-making and residual life estimation for 
dependent systems as well as implemented for the optimal operation and maintenance 
strategy determination considering both the severity of system failures and data from 
service visits and / or condition monitoring systems, etc. A limitation of this study is that 
only failure effect correlation is considered and for further development of this work, the 
statistical correlation together with failure effect correlation should be considered. Also for 
further research, it is possible to use the estimated probability of failures from the truncated 
distribution as weights for estimating the subsequent components failure distributions. 

 



 

47 

CHAPTER 7. CONCLUSIONS AND FURTHER RESEARCH 

Reliability estimation procedures for WT components divided in structural and electrical 
/ mechanical components are discussed. The main concepts of two different approaches 
were presented, one was structural reliability methods and the other one was classical 
reliability estimations approaches. A definition of failure was required for the reliability 
analysis, especially when the goal was to develop optimal O&M strategies. Widely held 
reliability models aiming for O&M strategies development should follow the procedure 
described in Figure 11. Application and methods used to achieve reliability models 
incorporating loads and environmental conditions were applied in this research. Fatigue 
reliability has been investigated for the component level reliability, and comprehensive 
models linking classical and structural reliability approaches was presented. 

A collection of papers was presented for the IGBT solder cracking fatigue failure mode 
analysis. The developed limit state equations might be extended and adjusted for different 
thermally activated mechanisms for fatigue reliability estimation. The reliability models 
were based on Miner’s rule for linear damage accumulation, where physical and model 
uncertainties were incorporated. The limitation of Miner’s rule, in a context of neglecting 
load interactions and sequence effects, was imitated by introducing a stochastic variable for 
the Miner’s rule uncertainty. The advantages of the proposed methods were discussed 
especially for the physics of failure based reliability modeling, where variations of loads / 
stresses were directly affecting the reliability assessment. 

The considered reliability models were applied for one failure mode and other 
dominating failure modes should be considered in future research. However, the proposed 
procedures and logic might be extended for these purposes. 

 Failed WT components / subsystems might significantly damage other systems / 
subsystems, even when the WT is parked. Such a situation was considered and a general 
model was developed.  

System interaction via load sharing systems was considered. Reliability estimation 
procedures and methods for such situations are under investigation. Some preliminary 
results were discussed and presented on this topic.   

Priorities of concentrating efforts on different subsystems reliability assessments could 
be different depending on WT type (on-shore vs. off-shore) and O&M costs would be 
different as well. It is mainly explained by the load / stress changes and the high costs of 
transportation, prolonged by environmental barriers. In general, WT operators collect data 
on failure statistics conditional on the exploitation environment. After data analysis, it is 
possible to prioritize systems and subsystems for the further reliability centered analysis. 
Unfortunately, revealing outcomes from this stage to the research community has a weak 
link in current days.     
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APPENDICES 

Appendix A: Maximum Likelihood and Covariance (Hessian) Matrix 
Estimation for the Weibull Distribution Parameters in a Group with Type 
II Right Censored Data 

 
Let 1 2, ,..., rx x x  be the ‘r’ realization of the test of ‘n’ components from Weibull distribution 
defined in (9) with shape ‘ β ’ and scale ‘θ ’ parameters. Rearranging the realizations in 
order of magnitude the  1: 2: :, ,...,n n r nx x x  sample will be denoted. 
Then the likelihood function will be defined as: 
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Taking the natural logarithm of the likelihood function (Ln LF) we will have: 
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Differentiating of the Ln LF with respect to θ and equating to zero will lead to: 
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Differentiating of the Ln LF with respect to β  and dividing by r , substituting (74) and 
equating to zero will lead to: 
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So, MLEs for β  and θ  are given in (75) and (77). Procedure is the following, one should 

use (77) to find the closest value for the MLE of β , then by using the estimated β  in (75) 

the MLE of θ  is found. 
Covariance matrix of the estimated MLEs from Ln LF could be calculated via Hessian 
matrix based on the following relationship: 
 

  [ ]

( ) ( )

( ) ( )

2 2

2
1

2

2

( , / ) ( , / )

,
( , / ) ( , / )

i i

i i

Ln L x Ln L x

Cov H
Ln L x Ln L x

θ β θ β
β β θ

β θ
θ β θ β
β θ θ

−

 ∂ ∂
 ∂ ∂ ∂   = − =   ∂ ∂
 

∂ ∂ ∂ 

  (78) 

 
where, 
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Appendix B: General Linear Regression Model 

 
A model with intercept is given by: 
 

1 11n n p np× × ××
Y = X β + ε      (79)  

 
where, Y is a vector of responses, X is a matrix of constants, β is a vector of parameters and 
ε  is a vector of independent Normally distributed random variables with, expectation 
[ ] 0E =ε and covariance matrix [ ] 2Cov σ=ε I . 

 
Least square estimator of β is ( ) ( )-1' 'b = X X X X Y , where [ ]E b = β and 

[ ] ( )2Cov σ=
-1'b X X , and 2E MSEσ  =   (Mean Square Error or Residual Mean Square). 
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1
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 =  
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variance  ( )2
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Appendix C: Non-Parametric Kaplan-Meier Estimates (Product Limit 
Estimates) 

 
Let 1, , nt t  be a random sample of size ‘n’ with survival function ( )S t . Recall that an 
estimate of survival function is: 
 


1Number of ( , , )( ) nt t tS t

n
≥

=
        (80) 

 
For estimating ( )S t for cases including ties (more than one observation at time ‘t’ ) and 
censoring (right), the Kaplan-Meier estimation method might be used to estimate empirical 
cumulative survival function. It will be derived based on the following simple example.  
Suppose sample of 10 products are tested during 2-year period. During 1st year, 6 items 
were failed and during 2nd year 3 items were failed. In addition, at the end of 1st year the 
second sample of 20 items were placed on test, and during the following year, 15 items 
were failed. One possible estimate of the survival function might be so called ‘reduced 
sample estimate’, which will ignore information form the second sample and an estimated 
survival function for the 2nd year will be (2) 1 10 0.1S = = . To include the second sample 
information the following events might set up:  


( ) ( )( ) ( )

(2) (item survives 2 years) (item survives 1  year item survives 2  year)=
= (item survives 1  year)* (item survives 2  year / item survives 1  year)=

= 4 5 / 10 20 * 1 4 0.075

S P P st nd
P st P nd st

= ≥ = ∩

+ + =

 

By generalizing the above logic, the following product limit estimate could be introduced 
for censored and tied data. First, the 1, , , ,r kt t t   observed failure times from the sample of 
‘n’, k n≤ , are putted in increasing order and 1: : :, , , ,n r n k nt t t   is obtained. If uncensored 
and censored data are tied, then the uncensored data should appear first and its rank is used 
for calculations. If two or more observations are uncensored and tied, then the rank of the 
highest one is used for the calculations. An estimated empirical cumulative survival 
function is given by: 
 

( )
1

tr I

n rS t
n r∈

−
=

− +∏      (81) 

 
where, ‘r’ is the rank of the ordered uncensored observation, tI  is all positive integers ‘r’, 
such that ( )t r t≤  and ( )t r  is uncensored. 
This technique is appealing due to the fact that Kaplan-Meier estimates are MLEs of ( )S t . 
Also, it should be noted that if the highest observation is censored then Kaplan-Meier 
estimates is defined only up to this last observation. Estimated ( )S t  by (81) is 
asymptotically Normal distributed, with expectation and variance of: 
 

( ) ( )E S t S t  ≈        (82) 
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 ( )2 1( ) ( )
( )( 1)

tr I
Var S t S t

n r n r∈

  ≈  − − +∑    (83) 

 
If no censored observation is exist in the sample, then Kaplan-Meier estimates are given by: 
 

( ) n rS t
n
−

=       (84) 

 
In this case (no censored observation is exist in the sample), the rank distribution is more 
appropriate to use and the estimated expectation and variance of ( )S t are exact values.  
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Appendix D: Cumulative Probability or Probability Distribution 
Functions of the ‘r-th out of n’ Order Random Variable 

 
Let the random sample of size n be 1, , nt t , where all t ’s are independent, identically 
distributed and continuous random variables with f(t) probability density and F(t) 
cumulative distribution functions, respectively (parent distribution).  
Consider the vector 1: :, ,n n nt t  of random variables, which is composed of the t ’s random 
variables, where :i nt  is the i-th in magnitude, so that 1: :, ,n n nt t≤ ≤ . Then the 1: :, ,n n nt t  
random variables would have : ( )r nG t  cumulative distribution and : ( )r ng t probability density 
functions, respectively, where : :( ) ( ) ,  rr n r nG t P t t n= ≤ ≤ .    
 
If the condition is :r nt t≤ , so ‘r’ or more elements from 1, , nt t  sample should satisfy the 
condition it t≤  and since each it t≤  has a binomial distribution with the probability of 
success of ( )F t P( )it t= ≤ , then: 
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To find : ( )r ng t , the derivative of : ( )r nG t with respect to ‘t’ should be taken and using the 
properties that 

( ) ( )f t dF t dt=  and ( ) ( )duv dx v du dv u dv du= + , the : ( )r ng t will be given by: 
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Note that for the second term ‘w=r:n-1’, the variable ‘w’ can be changed to ‘v’, so that 
‘v=r+1:n’. 
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To summarize the above statement, if 1, , nt t  are each independent, identically distributed 
and continuous random variables with f(t) probability density and F(t) cumulative 
distribution functions respectively, then the  order random variable :r nt  would have : ( )r ng t  
probability density and : ( )r nG t cumulative distribution functions, given by (86) and (85). 
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Appendix E: The Rank Distribution 

 
Given that the parent distribution ( ), ( )T TF t f t  and consecutively probability distribution as 
well as density functions of the r-th order statistic out of n are known and may be 
represented by (86) and (85). Let cp be the percentage of the population below some time 

ct , that is ( )c cp P T t= ≤ . If :  c r nt t= then : :( )r n r np P T t= ≤ would be the percentage of 
population below the observed r-th out of n ordered variable. If the r-th out of n ordered 
variable :  r nt is not known (suppose the sample is not observed yet), then it will be treated as 
a random variable :r nT  and : :( )r n r np P T T= ≤  becomes a random variable as well. Also, 
holding the reverse relationship that 1

: :( )r n T r nT F p−= .  
Observing that:  
 

( ) ( )1
: : : : :( ) ( ) ( ) ( ) ( )r n r n T r n r n T r n aG a P T a P F p a P p F a Q p−= ≤ = ≤ = ≤ =   (87) 

 
where ( )a Tp F a= .  
From (86) it follows that:  
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Let ( ) ( )Tp P T t F t= ≤ = , then ( )Tdp f t dt= , also passing the limits as ,  0t p= −∞ => =   
and ,  at a p p= => = , then based on (87) and (88) it becomes, 
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and 
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where : ( )r n aQ p and : ( )r n aq p are cumulative distribution and probability density functions of 
the random variable :r np , and  it is defined within :0 1r np≤ ≤ . 
One could recognize that : ( )r n aq p  is the well known Beta distribution given by:  
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XF x u u duα βα β
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1 1( )( ) (1 )
( ) ( )Xf x x xα βα β
α β

− −Γ +
= −
Γ Γ

    (92) 

where 0 1X≤ ≤ .  
Expectation, median and variance of Beta distributed ‘X’ random variable are give by: 
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Using the fact that (n)=(n-1)! Γ and letting ,  1r n rα β= = − + , then (89) and (90) becomes 
Beta distribution.  Expectation, median and variance of :r np  random variable will be 
defined: 
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Application of the Rank distribution is found in computing the order statistic time for a 
desired quantile.  If one would like to know the (1 α− ) level quantile ‘a’ of the ‘r-th out of 
n’ order statistic from parent distribution ( ), ( )T TF t f t , that is: : :1 ( ) ( )r n r nP T a G aα− = ≤ = , 
then the inverse transformation of (85) might be applied, 1

: (1 )r na G α−= − . This calculation is 
difficult to do manually and is more suitable to a computer algorithm. Another approach is 
to use the Rank distribution. Recall that (90) is a Beta distribution and ap  can be computed 
for a (1 α− ) quantile level if an inverse transformation of the incomplete Beta distribution 
defined in (89) is applied: 
 

1
: (1 )a r np Q α−= −      (99) 

     
but  ( ) ( )a Tp P T a F a= ≤ = , therefore the inverse of  it will be: 
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1( )T aa F p−=       (100) 

       
which is the (1 α− ) level quantile of the the ‘r-th out of n’ order statistic with parent 
distribution ( ), ( )T TF t f t . 
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Appendix F: S-N Curve Approach and Miner-Palmgren Rule 

 
Usually forces are described through the stresses ranges (S), while fatigue life is described 
by the resistance of metal to some stress level. S-N curve (also known as Wöhler curve) is 
widely used to portray resistance and endurance of metal to stress level (see Figure 19: S-N 
Curve).  

 

 
Figure 19: S-N Curve 

 
Endurance limit SL considers a limit for a stress range, bellow which no failure occurs and 
component life is infinite (or at least very long in comparison with component intended 
usage life). Any stress range above SL limit will initiate a fatigue or damage accumulation, 
which eventually will cause a component to fail.  
Let’s define Si and Ni=Ni(Si) as an arbitrary stress range level and corresponding number of 
cycles at which a component will fail based on its S-N curve. “Work” that enough to cause 
a failure is a function of stress range and number of cycles. As far as the failure of 
component is possible to formulate in many S and N pairs and assuming that energy 
function causing a failure has a form of ( )* mE N S S= , then a product of any load level (S) 
with its corresponding number of cycles to failure (N) will be determined by the following 
relationship: 

 
( )* ( )*m m

i i i L L LN S S N S S=     (101) 
 

where ‘ m ’ is a slope of S-N curve in log representation. The notation of ( )i iN S  was 
intentionally used to emphasis that the number of cycles to failure iN  determines from the 
stress range level iS . 
In practice, there are situations where random loads or stresses are observed and a 
component is still working and has not fail. These stresses have exhausted the component 
and accumulated fatigue process has started. Useful information would be to know how 
much these stress ranges damage the component and how long it might last for some fixed 
stress range level. 
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Miner’s and Palmgren rule states that if some stress range iS occurs in times and the number 
of cycles to failure for that stress level is iN , then partial damage produced on the 
component determines by: 

 
( )
( )

i i
i

i i

n Sd
N S

=      (102) 

 
Some of partial damages will determine the total cumulative damage caused by different 
stress range levels, thus the cumulative damage would be defined as: 

 
( )
( )

i i

i i i

n SD
N S

=∑      (103) 

 
Failure occurs if accumulated damage will exceed unity. 
 
From (101) and (103) it follows  
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Many techniques are developed to amount the damage level from observed stress range 
history e.g. the number of cycles in at stress range level iS . 
The ( )* m

i i i
i

n S S∑ is a cumulative fatigue damage during the observed time. This might be 

equivalent to fatigue determined by some stress range level cS and the number of cycles to 
failure ( )c cN S from S-N curve. Of course this assumption is valid if c LS S> . Then, 
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Usually, it is assumed that values for ( )c cN S are 65*10  or 710 . This allow to compare 
different cS ’s from different materials and / or different designs by: 
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Also, ( )c cN S might be represented from frequency stand point and if it is assumed that 1 
full cycle occur in 1 unit time (second), then 1 Hz frequency would be a conversion unit and 

( )c cN S T= . 
The assumption that cumulative fatigue might be represented by stress range level cS and 
the number of cycles to failure ( )c cN S from S-N curve leads to relative damage distribution. 
 
From (101) and (102)  
 

( ) ( )*
( ) ( )*

m
i i i i i

i m
i i L L L

n S n S Sd
N S N S S

= =     (108) 

 
And from (106) and (108) follows that: 

 
( )* ( )*( )**
( )* ( )* ( )*

m mm
i i i i i i iL L L

rel m m m
L L L c c c c c c

d n S S n S SN S Sd
D N S S N S S N S S

= = =   (109) 

 
If we assume 1 Hz frequency per unit time, then (109) becomes: 

 
*( )
*

m
i i

rel m
c c

t Sd t
t S

=      (110) 

 
where ‘ t ’ represents duration of the observed stress range S .  
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Appendix G: Structural Reliability Approaches for Systems Reliability 
Estimation 

 
Parallel systems reliability estimation by structural reliability approach 

 
If the parallel system consisting of ‘n’ subsystems / components is considered and the time-
dependent limit state equation for each component is defined by ( , )ig tX  where 1, ,i n=   
and it is based on the same random vector 1( , , )mX X=TX  , then system unreliability 
defined by (44) will be defined as: 
 

{ }.
1

( ) ( ( ), ) 0
n

p
unrel i

i

P t P g T t
=

 = ≤ 
 

Z


   (111) 

 
As it was mentioned, if ( ( ), )ig T tZ  is linearly defined then in standardized domain it 
becomes a hyperplane in m

 , and will be defined as: 
 

( ( ), ) ( ) ( )i ig T t t tβ= − T
iZ α Z     (112) 

 
So, (111) will be written as: 
 

{ }.
1

( ) ( ) ( )
n

p
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i
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T
i-α Z



   (113) 

 
The expectation, correlation and covariance of linearly defined ( )tT

i-α Z  will be 

( ) 0E t  = 
T
i-α Z , ( ) 1Var t  = 

T
i-α Z , ( )( ) , ( ) ( ) ( )

T
Cov t t t t  =  

T T T
i j i j-α Z -α Z α α . 

 
By introducing [ ]1 2( ) ( ) ( ) ( ) T

nt t t tβ β β=β  and 
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, correlation matrix  

 
will be determined as ( ) ( ) ( )t t t= Tρ α α  and (113) will be given as:  
 

( )( )
. ( ) ( ),p t

unrel mP t t= Φ −β ρ      (114) 
 
where is ( )mΦ  m-dimensional multivariate standard normal distribution. 
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Based on (114), the generalized parallel system reliability index ( )p
G tβ  will be introduced 

and be written as: 
 

( )( )( ) ( ),p t
G mt tβ  = −Φ Φ − β ρ     (115) 

 
If the limit state equations ( , )ig tX  for 1, ,i n=   in parallel system are not linearly defined, 
then FORM or SORM (Second Order Reliability Method) approximation method might be 
used to determine system unreliability for the given time step and corresponding 
generalized parallel system reliability index ( )p

G tβ .  
 
 

Series systems reliability estimation by structural reliability approach 
 
A series system consisting of ‘n’ subsystems / components is considered and the time-
dependent limit state equation for each component is defined by ( , )ig tX  where 1, ,i n=   
and it is based on the random vector 1( , , )mX X=TX  . If X be transform to the 
standardized domain by some transformation function, ( )TX = Z , such that Z  is ‘m’ 
dimensional column vector of the mutually independent standard normal random variables, 
then system unreliability by the time ‘t’ defined by (46) can be written as: 
 

{ }.
1

( ) ( ( , ) 0
n

s
unrel i

i

P t P g T t
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 = ≤ 
 

Z


   (116) 

 
(116) will be written for the linearly defined (112) as: 
 

{ }.
1

( ) 1 ( ) ( )
n

s
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T
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   (117) 

 
The expectation, correlation and covariance of ( )tT

iα Z  will be ( ) 0E t  = 
T
iα Z , 

( ) 1Var t  = 
T
iα Z , ( )( ) , ( ) ( ) ( )

T
Cov t t t t  =  

T T T
i j i jα Z α Z α α . It is seen that the correlation 

matrix will not be changed and can be determined by ( ) ( ) ( )t t t= Tρ α α . 
So, unreliability of the series system as well as the generalized ( )s

G tβ reliability index will 
be given by: 

( )( )
. ( ) 1 ( ),s t

unrel mP t t= −Φ β ρ     (118) 
 

( )1 ( )( ) 1 ( ),s t
G mt tβ −  = −Φ −Φ β ρ    (119) 
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If ( ( )), )ig T tZ  is non-linearly defined then FORM or SORM approximation method can be 
used and unreliability of the series system for the given time step and corresponding 
generalized series system reliability index ( )s

G tβ  can be determined 
In many instances from the real life problems, the formulation of the limit state equations 
such that all the failure mechanisms are incorporated is a challenging task. This requires 
multidisciplinary understanding of the failure modes and modeling of primary failure 
mechanisms (corrosion, erosion, fatigue and overload) that causes to failure through 
deterioration processes. However, test data might be collected for the leading failure modes 
and the described limit state equations of the failure mechanisms could be calibrated such 
that accurate estimations are achieved. 
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