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Abstract

Vehicular networks might be deployed in the near future, and as a conse-
quence a potentially large number of exciting applications are expected to
enhance the human driving experience. Unless the security of such applica-
tions is guaranteed, however, such enhancements may be accompanied by
similarly powerful and yet undesired consequences in malicious behaviour.
While current research in the vehicular networks security area has recog-
nized conventional security and cryptographic threats, detailed modeling and
analysis of threats that are specific to vehicle traffic are rarely considered in
the literature. In this paper we lay ground for a comprehensive investigation
of “traffic-related” threats to vehicular networks. We study the problem of
modeling traffic-related attacks in these networks and present automatic and
efficient (i.e., no human intervention and no expensive cryptographic proto-
cols) yet general solutions to prevent or tolerate a number of these attacks.
Specifically, we propose techniques based on the capability of implementing
simple and non-interactive voting algorithms that use the mere participations
of vehicles to the network and, while doing that, attempt to maximize use
of already exchanged and relevant network data. We validate our techniques
by providing analysis results based on both simulated and real-life mobility
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data in typical urban environments. Previous work required interactive proto-
cols to implement voting or consensus techniques, and implicitly left open the
question we solve in this paper.

Keywords: vehicular networks, security, malicious data detection, voting
protocols.

1 Introduction

The likely entrance of vehicular networks in everyday lives may encourage the
development of applications in the areas of traffic safety, as well as location-
specific, traffic-related, and mobility-aware services (see, e.g., [17] and refer-
ences therein). For these and other applications, providing security guarantees
to their communication parties requires solution to a number of challenging
theoretical and practical research problems, as documented by the recent surge
of publications (see, e.g., references in [3]), challenge papers (see, e.g., [10]),
and projects (see, e.g., [1, 2]) in the area. In particular, a number of threats to
vehicular networks are expected to surface, originating from many types of
attackers with many types of goals. Current research in the vehicular networks
security area [3] seems to suggest that a large number of such threats are pre-
vented or tolerated with the use of public key infrastructures with added special
properties (most notably: vehicle privacy, malicious behaviour prevention and
detection). While current research has recognized conventional security and
cryptographic threats to a vehicular network, these efforts have so far fallen
short of investigating the types of concrete threats related to vehicle traffic,
that are expected from attackers in a vehicular network. Notable exceptions
are [4, 5, 8, 9, 10, 12, 13, 14], where some cases of traffic-related threats are
mentioned.

Our contribution. In this paper we begin a comprehensive investigation of
traffic-related threats and methods to detect, prevent and/or tolerate them.
Specifically, we consider attackers trying to use vehicle communications and
its interaction with various supporting sensors systems (e.g., time, position,
and speed sensors, as well as the certificate management cryptosystem) to
cause harm to other vehicles or the vehicular network. For example, attackers
could use vehicle sensors and software clients to raise false alerts and cause
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harm to the vehicular network operations. We discuss the likelihood of such
attacks, their impact, and how to deal with them. In particular, we investi-
gate the problem of modeling traffic-related attacks in vehicular networks and
presenting automatic (i.e., not relying on human intervention), time-efficient
(i.e., not requiring additional expensive cryptographic operations) and non-
interactive (i.e., not requiring additional message exchanges between vehicles)
solutions to detect, prevent or tolerate such attacks. Our techniques are based
on the capability of implementing elementary non-interactive voting methods
directly from the traffic statistics sent by vehicle software clients during their
mere participations to the vehicular network. Specifically, feedback about
the validity of a vehicle’s traffic data is derived from other vehicles’ traf-
fic data and combined via a non-interactive voting algorithm that allows to
determine whether its data was trustworthy or not. The question of whether
non-interactive voting algorithms could be used, which we solve in this paper,
was implicitly left open by research in recent works, such as [3, 11, 13], that
defined and analyzed interactive voting or consensus protocols to deal with
specific classes of traffic-related threats. Additionally, in previous work, inter-
active voting protocols were executed among neighbor vehicles, which were
not necessarily relevant to the traffic scenario at hand. In our protocols, we
restrict the set of protocol participants using a simple greedy algorithm that
optimize participant relevance and usage of traffic data from them. We stress
that in this context, given the challenging solution constraints due to vehicle
mobility and real-time effectiveness, both algorithm efficiency and simplic-
ity are very desirable properties. We first present general voting algorithms
that are applicable to a very large class of abuse cases, and then detail these
algorithms to specific abuse cases, such as false speeding, false congestion,
false braking, false timing and position data, and higher message frequency.
We present our analysis results for the seemingly most challenging abuse case
(i.e., false braking) for which, using simulated traffic mobility data on a real
geographic map as well as real-life traffic mobility data, we see that the voting
algorithms have high percentage of detecting abuses.

Organization of the paper. In Section 2 we present our modeling of traffic-
related threats, malicious behavior and a number of abuse cases of specific
interest. In Section 3 we present our general techniques to detect malicious
data, including our voting algorithm and our simple solution to the problem
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of selecting the most relevant set of neighbor vehicles whose traffic data can
be used in each vehicle’s voting algorithm. In Section 4 we detail these gen-
eral techniques for a number of concrete abuse cases of specific interest. In
Section 5 we present our analysis results for one specific abuse case, using
simulated traffic mobility data on a real geographic map as well as real-life
traffic mobility data.

History of results. This paper is the journal version of our preliminary confer-
ence publication [18], enhanced in a number of ways: we have significantly
improved our voting algorithm by considering the new problem of selecting
the set of neighbor vehicles so to optimize data relevance for a vehicle’s voting
algorithm; moreover, we have expanded our analysis results, previously only
based on simulated traffic mobility data on a real geographic map, by addi-
tionally using real-life vehicle mobility data.

2 Model, Malicious Behaviour and Abuse Cases

2.1 Vehicular Network Model

We consider the following entities: a large number of vehicles with On Board
Equipment (OBE) including time, position and speed sensors, and crypto-
graphic software and hardware; a limited number of Road Side Equipments
(RSE) that might act as servers and are situated in carefully-chosen geographic
locations so to be able to manage all vehicles in their pre-assigned geographic
area, using wireless communication. RSEs may, or, most likely, may not cover
the entire geographic map. Naturally, we also consider a backbone network
that communicates with RSEs and, in special situations with OBEs. We assume
that a public-key infrastructure is in place, and that the vehicle-to-vehicle com-
munication is authenticated using digital signatures and certificates managed
by a back-end certificate authority (CA), possibly using RSE as front-end CA
servers (see, e.g., [6] for more details on how such an infrastructure could be
deployed).

2.2 Traffic-Related Malicious Behaviour

Malicious OBE behaviors related to traffic activity include attempting to use
the compromised vehicle clients to send malicious messages to other vehicles
or RSEs; incapacitate crucial vehicular network functions (e.g., its key and
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certificate management system and its privacy preserving functions); harm,
disrupt, or destroy portions of the vehicular network, and public images of
network providers and vehicle manufacturers.

Scenarios for OBE Malicious Behavior. The following list focuses on spe-
cific malicious behavior from OBEs based on communication within the
vehicular network’s activities: (1) Sending probe/heartbeat messages that are
inaccurate or carefully modified so that: false announcements of traffic con-
ditions in a given area cause a redirection of traffic that benefits the attacker’s
business; incorrect driving conditions or patterns to create automobile acci-
dents, possibly motivated by potential insurance fraud or just sadistic pleasure;
government agency decisions on road improvements or traffic management are
affected; the attacker is given preferential treatment by the vehicular network
for the purposes of evading law enforcement, assisting in criminal operations,
or diverting attention from a primary attack; a new virus is launched or a
new vulnerability in the vehicular network is found. (2) Modifying the func-
tioning of a vehicle’s OBE to carry out attacks, such as one of the above
ones, or because of privacy concerns; specifically: modifying timing intervals
of multiple probe or heartbeat messages; delaying the delivery of probe or
heartbeat messages; sending more probe or heartbeat messages than the OBE
is supposed to; not sending probe or heartbeat messages for a long enough
time interval; disabling the functioning of a vehicle’s OBE because of privacy
concerns.

2.3 Concrete Abuse Cases

Naturally, it is of interest to consider some of the most important scenarios in
the above list and detail them into individual abuse cases, for which we can
carry out a formal and rigorous investigation of the problems of detection and
prevention of malicious behavior. As main examples in the rest of the paper, we
will use abuse cases based on malicious modifications of heartbeat data, such
as false speeding (e.g., vehicles pretending to be speeding on their lane), false
congestion (e.g., vehicles pretending that a certain geographic area is con-
gested), false braking (e.g., vehicles pretending to be abruptly braking), false
timing and position data (e.g., vehicles sending incorrect time and position
data in their heartbeat messages), and higher message frequency (e.g., vehicle
sending a higher number of heartbeat messages than they are supposed to).
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3 General Detection Techniques

We present formal modeling and formally defined techniques to efficiently
detect these malicious behaviors in all abuse cases mentioned in the previous
section. To better meet the communication challenges expected in vehicular
networks (i.e., ad-hoc connectivity, fast client mobility, partial or lack of server
coverage, etc.), our technique are specifically based on time-efficient and con-
ceptually simple tests that can be performed by an OBE, helped by vehicle
sensors, and possibly an RSE, or a network server connected to a RSE, using
data from a carefully selected set of neighbor vehicles.

3.1 An Informal Discussion

To clarify the difficulties that we face in coming up with such tests, consider, as
an example, the problem of detecting a vehicle that, while contributing traffic-
related data, triggers a false car accident alert in a given geographic position
at a given time. It would be very easy for other vehicle owners in the area to
take a look at the claimed geographic position, notice that actually no accident
has happened, and communicate this fact to the CA that would thus revoke
the attacker’s keys and eventually take appropriate actions against its vehicle.
Naturally, this solution is impractical, as it requires human intervention. Alter-
natively, one might want to let the vehicles in the area run a secure distributed
agreement protocol, where the vehicles agree on whether an accident really
happened or not. This idea is unlikely to result in a correct or feasible solu-
tion because of various difficulties, including the combination of limited radio
range and vehicle mobility, which prevent this protocol’s successful termi-
nation, and vehicle clients’ computational constraints. Thus, we investigate
the problem of presenting automatic (i.e., not relying on human intervention),
time-efficient (i.e., not requiring additional expensive cryptographic opera-
tions) and non-interactive (i.e., not requiring additional message exchanges
between vehicles) solutions to prevent or tolerate traffic-related attacks to
vehicular networks. Our solutions consider a two-phase approach to deal with
each specific abuse:

Alert Generation Procedure. In response to one or multiple probe or heartbeat
messages sent by neighbor vehicles, a vehicle uses this procedure to generate
an alert for its driver.
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Abuse Detection Procedure. In response to a generated alert, this procedure
carefully selects a set of neighbor vehicles to potentially detect whether the
alert was an abuse.

3.2 Formal and Detailed Description

At any given time, each vehicle A sends a stream of probe or heartbeat mes-
sages, where each message is denoted as pm and contains, among other things,
a certificate cert and a tuple (t, sp, pos, dir), where t denotes a timestamp, sp,
pos, dir denote the vehicle’s claimed current speed,position, direction, respec-
tively. Some abuses would generate an ordered sequence of such messages.

Any message or sequence of messages may or may not generate an alert
depending on whether the Alert Generation Procedure finds something worth
generating an alert or not in them. If an alert is not generated, then nothing
happens. If an alert is generated, an abuse may or may not be detected, depend-
ing on whether the Abuse Detection Procedure finds that the alert was false
(and was thus an abuse) or not. Both the Alert Generation Procedure and the
Abuse Detection Procedure may be executed by each vehicle and may use all
the communication received by the vehicle from other vehicles in its radio
range (or a carefully selected subset of them).

We say that any message pm is an alert message if it causes the Alert
Generation Procedure to generate an alert and thus the execution of an Abuse
Detection Procedure. Similarly, we can define a sequence of alert messages.
For generality, in the rest of our discussion, we will only consider sequences
of alert messages.

Alert Generation Procedure: Upon receiving a sequence of messages
pm[1],…,pm[k], a vehicle may issue an alert to the driver or the vehicle
control systems if some specific (and anomalous) instances of the following
3 types of conditions are simultaneously satisfied: a speed condition (e.g., a
condition based on the values sp[1],…,sp[k]); a geography condition (e.g., a
condition based on the values pos[1],…,pos[k]); and a time condition (e.g.,
a condition based on the values t[1],…, t[k]).

If an appropriate combination of these conditions is satisfied (the details
of which may depend on the specific abuse), an alert is sent to the driver or
vehicle control system. This can happen in a few ways, according to how time,
speed and geography conditions are instantiated and according to whether
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the alert is generated with or without the help of an RSE. In the rest of the
paper, we consider the harder case where this happens without the help of
an RSE. Specifically, every vehicle v receiving a sequence of alert messages
pm[1],…,pm[k], issues an alert for its own driver after testing the time, speed
and geography conditions. In this mode, each vehicle needs to be able to
evaluate local time, speed, and geography conditions without any help from an
RSE. One can think of many ways for vehicles to enter false speed, geography
or time values in their messages, and thus to abuse such a mechanism into
causing the generation of false alerts. The following procedure attempts to
detect these situations.

Abuse Detection Procedure: This procedure is intended to evaluate whether the
above Alert Generation Procedure was the result of a real alert or of an abuse
and to identify the certificates used in the abuse, which can then be used to trig-
ger the certificate management system to revoke the certificates. While each
vehicle runs the Alert Generation Procedure on a single sequence of messages
(possibly sent by a single vehicle), in the Abuse Detection Procedure each
vehicle can use messages received from some or all of the vehicles in its radio
range, and can thus use additional information to come up with an improved
decision on whether the alert was real or not. The fundamental assumption we
make is that in any sufficiently large vehicle neighborhood, the majority of
the vehicles will return correct assessments showing that the alert generating
vehicle’s assessment is or is not a correct one. As with the Alert Generation
Procedure, the Abuse Detection Procedure can happen in a few ways, accord-
ing to how the time, speed and geography conditions are evaluated on each
vehicle and to which messages are received by each vehicle. Specifically, every
vehicle v that receives m sequences of messages pmseq[1],…,pmseq[s], such
that pmseq[j ] = pm[j,1], . . . ,pm[j,k], for j = 1, . . . , s (one or more of which
being sequences of alert messages), reaches a decision on whether the alerts
can be associated to an abuse or not. If yes, the certificates associated with
the abuse are deemed misused and treated as untrustworthy thereafter. Future
messages carrying an untrustworthy certificate can be discarded. When the
vehicle has connectivity with the infrastructure network and CA again, it will
report such certificates to the CA along with a transcript of the alert messages
pmseq[1],…,pmseq[m], which could in turn trigger the CA to revoke the cer-
tificates. This decision is then broadcast to all vehicles in the area along with a
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transcript of the alert messages pmseq[1],…,pmseq[m]. Here, the procedure
uses some type of (authenticated) voting scheme where messages from some
or all neighbor vehicles are used to produce a vote (one per vehicle) that all
together will confirm or refute the presence of an abuse. Should a more inter-
active variant be needed, this vote might also be expressed manually by the
vehicle driver (e.g., by clicking a yes/no button on the OBE), or sent by the
voting vehicle after specific vehicle behaviour happens or as a consequence of
the alert (however such level of interaction is not required in our protocols).
Finally, each vehicle will use all these votes to reach a decision on whether
the alerts can be associated to an abuse or not, and then use this decision for
its own safety purposes.

We now describe a generic voting scheme that can be used to support
Vehicle Abuse Self-Detection. The scheme can be presented into two variants:
(1) a non-interactive variant, where vehicles whose data is used in the voting
scheme do not need to send any additional communication message; and (2) a
one-round variant, where voting vehicles send one additional communication
message with respect to the usual heartbeat messages sent during their typical
vehicular network activity.

In what follows, we detail the non-interactive variant of the voting scheme,
and then in the next section we briefly describe the modifications needed to
obtain the one-round variant. We start with a simplified version of the scheme,
where data from all neighbor vehicles and thus all neighbor vehicles’ votes
are equally relevant.

Recall that in the above described Alert Generation Procedures, a vehi-
cle v receives from (at least) one vehicle a sequence of alert messages
pm[1], . . . ,pm[k], which trigger the voting procedure. After some time inter-
val T , the messages from the m vehicles in v’s neighborhood might contain
useful information to assess whether the alert was due to an abuse or not.
Then, based on certified messages (and included time, speed and geography
values) from vehicle i, the vehicle v may derive a 0/1 vote e[i] on whether the
alert was legitimate or not, respectively. In other words, this vote will indicate
whether, from the point of view of vehicle i (which may be different from all
other vehicles in the neighborhood because of radio range differences), the
alert was legitimate.

Let m be the number of votes derived by vehicle v using communication
by its neighbors; then v can use the following majority voting test to conclude
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that the alert is illegitimate:

e[1] + · · · + e[m] > cm,

for some confidence parameter c ∈ [0,1]. Possible approaches to choose c

include statistical studies depending on the abuse type and environment. If
the alert is concluded to be illegitimate, then certificate cert used in the alert
message is deemed misused.

As mentioned, the above test can be applied when all neighbor vehicles’
votes are equally relevant. In practice, this is not the case as vehicles in the
same radio range of vehicle v may be considered very far from v with respect
to many types of traffic events. These vehicles may be not so relevant to the
event generating the alert and thus it may be useless (or even misleading) to
use their data to generate a vote e[i] included in the above test. More generally,
one can have vehicles that are more or less relevant to the event generating
the alert, depending on their relative geographic position with respect to the
vehicle generating the alert. In our voting algorithm, we would like to use
as much as possible messages from relevant vehicles in v’s neighborhood to
assess whether the alert was due to an abuse or not. To formalize this problem,
we define the following quantities:

Relevance coefficient w: the coefficient w[i] is a value in [0,1] and captures
how relevant is the i-th vehicle in v’s neighborhood to assess whether the
alert was due to an abuse or not (here, 0 denotes no relevance and 1 denotes
the maximum possible relevance). Suitable values for w[i] can be estimated
empirically, perhaps starting from an analytical hypothesis. For instance, one
could set w[i] as a rapidly decreasing function of the distance of the i-th
vehicle from the position of the vehicle whose messages generated the alert.

Reliability coefficient x: the coefficient x[i] is a value in [0,1] and captures how
reliable is the data received from the i-th vehicle in v’s neighborhood to assess
whether the alert was due to an abuse or not (here, 0 denotes no reliability and
1 denotes the maximum possible reliability). Intuitively, the reliability of the
i-th vehicle is directly proportional to the number of heartbeat messages from
this vehicle that can be used to generate vote e[i].

We observe that while the relevance coefficients are essentially determined
by traffic, distance and geographic conditions, the reliability coefficients can be
chosen by the vehicle running the voting algorithm within the abuse detection
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procedure. Specifically, this vehicle can choose to allocate the (necessarily
limited) number of heartbeat messages that it can inspect within time T so to
maximize the relevance of the voting algorithm. This gives rise to the following
maximization problem:

Max

(
m∑

i=0

w(i)x(i)

)
s.t. : w(i) ∈ [0,1],

x(i) = u(i)

U
, u(i) ∈ {1, . . . ,U},

m∑
i=0

u(i) < W,

where u[i] is the number of heartbeat messages from the i-th vehicle that can
be used to generate vote e[i], U is the maximum number of such messages
that can be received by v within time T , and W is the maximum number of
heartbeat messages from all m neighbors of vehicle v that can be received by
v within time T .

This optimization problem is the knapsack problem with fractional weights
and discrete variables. Because of the structure of the discrete variables x[i],
the problem can be solved using a variant of the same simple greedy algo-
rithm that solves the fractional knapsack problem. Specifically, this algorithm
repeatedly chooses the max allowed value for the variable u[j ]where j is such
that w[j ]is the max weight yet unused, until the total number W of heartbeat
messages is allocated. We note the simplicity of this algorithm that is expected
to be effectively run in real-time from vehicles.

As a consequence of these considerations, we modify our previous voting
test into the following. Let m be the number of votes derived by vehicle v

using communication by its neighbors; then v can use the following weighted
majority voting test to conclude that the alert is illegitimate:

w[1]x[1]e[1] + · · · + w[m]x[m]e[m] > c(w[1]x[1] + · · · + w[m]x[m]),
for a predetermined confidence parameter c ∈ [0,1], where w[i] and x[i] are
set as specified above (that is, w[i] is a decreasing function of the distance of
the i-th vehicle from the position of the vehicle whose messages generated
the alert, and x[1],…,x[m] are chosen so to maximize the above knapsack
problem).

One-round voting: An alternative approach to use a voting procedure to
detect abuses can be obtained if we add the ingredient of interaction between
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vehicles in the above paradigm. Specifically, instead of each vehicle deter-
mining whether received messages are anomalous enough to raise an alert,
one could design a scheme where any given vehicle can issue an alert, based
on received messages, to all of its neighbors. Then, upon receiving this alert,
vehicles will use their received messages to issue a vote and send it back to
the alert-generating vehicle. Finally, this latter vehicle will collect the votes
and run any one of the previously defined statistical tests. The recipient of
these votes will be able to link the votes to the previous alert messages, to
verify how it was generated and to verify its related authenticating signature.
To preserve anonymity, authenticating signatures of these voting messages are
conducted using the same data authentication protocol used for authenticating
probe and heartbeat messages (e.g., attaching and verifying signatures from
anonymous keys and certificates). One potential advantage of this scheme is in
the fact that voters can add received messages to the information used in abuse
determination. On the other hand, major disadvantages include the added inter-
action between vehicles, and the possibility of multiple votes from the same
malicious vehicle (that would require a separate security mechanism).

4 Detecting Specific Abuses: Methods and Analysis

Naturally, it is of interest to consider some of the most important individual
abuse cases, for which we can define formal and rigorous procedures for
detection and prevention of malicious behavior, as application examples for
the techniques in the previous section. In particular, we consider 5 abuse
cases, and describe case-driven factors instantiating the general approach in
the Section 3: time, speed and geography conditions used to generate an alert
from probe messages, and the algorithm used to derive a vote from each
vehicle’s heartbeat messages with respect to a given alert, during the abuse
detection procedure.

4.1 Abuse Case 1: False Speeding

Consider a 2-lane road where a vehicle on the right lane gets notified if a vehicle
beside or behind it on the left lane is traveling at a speed that is significantly
higher than expected. Such an alert would tell the driver on the right lane not
to switch to the left lane until the vehicle on the left lane moves away. If an
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attacker vehicle in the left lane can send false “high speed” alerts or make
otherwise misreport its presence, it may force vehicles on the right lane to
give way to the attacker vehicle.

False Speeding Alert Generation Procedure: Recall that upon receiving a
sequence of messages pm[1], . . . ,pm[k] related to a vehicle A, a vehicle v

may issue an alert to the driver or the vehicle control systems if some com-
bination of a speed condition, a geography condition, and a time condition is
satisfied. Also, recall that each value pm[i] contains a certificate cert[i] and a
tuple (t[i],sp[i],pos[i],dir[i]), where t[i] denotes a timestamp, sp[i] denotes
A’s claimed current speed, pos[i] denotes A’s claimed position, and dir[i]
denotes A’s claimed travel direction. In the abuse case of false speeding, a
speed condition can be set as follows: sp[i] > current-speed(v) + p(1), for
i = 1, . . . ,k, where p(1) is some safety parameter p(1),current-speed(v) is
vehicle v’s current speed value, and k may be set to a very small constant.
Then, a geography condition can be set as follows: values pos[i] and dir[i],
for i = 1, . . . ,k, reveal that vehicle A is proceeding in the left lane, behind
and towards vehicle v. Finally, a time condition can be set as follows: tuples
(t[i],sp[i],pos[i],dir[i]) contain increasing values t[1], . . . , t[k] where any
two consecutive values are almost equally distant. Several variants of this set-
ting are possible, based, for instance, on local speed limit, larger time gaps
between tuples due to reception problems, etc.

False Speeding Abuse Detection Procedure: In this procedure, upon receiving
a speeding alert, a vehicle also receives m sequences pmseq[1], . . . ,pmseq[m]
of messages, where pmseq[j] = pm[j,1],…,pm[j,k], for j = 1,…,m, that are
related to the alert of speeding from a single (for simplicity) vehicle A. Then
the vehicle has to reach a decision on whether the alert was false or not; that
is, whether all these messages can be associated to an abuse or not. To reach
this decision, the vehicle derives a 0/1 vote e[i] from each sequence pmseq[i]
by evaluating trajectory consistency with the speeding, geography and time
values for vehicle A. As an example, if according to the messages received, it
appears that the speeding vehicle is in the same position as other vehicles, then
a trajectory inconsistency is found and the alert is considered an abuse. Once
votes are obtained, the detection procedure continues as in the Abuse Detection
Procedure paradigm outlined in the previous section; i.e., using a statistical
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test on the sum of these votes to check whether the alert was legitimate, and
the previous analysis of the test success applies here as well.

4.2 Abuse Case 2: False Congestion

Consider vehicles approaching a fork in the road and receiving traffic adversary
messages from a backend network application (or from other vehicles). When
vehicles are informed by malicious traffic messages that congestion exists 1
mile down the right side of the fork, they will likely take the left path. One or
more malicious vehicles could trigger such congestion notifications to create
benefit for themselves, such as causing others to take a different route that the
one the attackers want to take.

We start by considering a number of vehicles A[1],…,A[u], that at a given
time send messages pm[1],…,pm[u], where the i-th message contains, among
other things, a certificate cert[i] and a tuple (t[i], sp[i], pos[i], dir[i]), where
t[i] denotes the timestamp for the i-th alert message, sp[i] denotes A[i]’s
claimed current speed of this vehicle, pos[i] denotes A[i]’s claimed posi-
tion, and dir[i] denotes A[i]’s claimed travel direction. Any such u−tuple of
messages can trigger an alert generation procedure and an abuse detection
procedure, which are now described in detail.

False Congestion Alert Generation Procedure: Given any messages
pm[1],…,pm[u], an alert may be somehow generated if a speed condition is
satisfied (e.g., sp(i) < p, for all vehicles A[i], i = 1,…,u, and for some param-
eter p, where sp(i) denotes vehicle A[i]’s current speed value) and a geography
condition is satisfied (e.g., values pos[1],…,pos[u] and dir[1],…,dir[u] reveal
that the associated vehicles A[1],…,A[u] are proceeding in the same direction
and in the same geographic area, and this area is accessible through only one
possible road at a fork) and a time condition is satisfied (e.g., the u messages
are all generated at relatively close times). Several variants of these example
conditions are possible, based, for instance, on local speed limit, larger time
gaps between tuples due to reception problems, etc.

False congestion Abuse Detection Procedure: This procedure detects whether
the above alert generation procedure resulted in an incorrect congestion alert
and thus identify and revoke the certificates that caused it. More precisely, the
procedure consists of a variant of a voting scheme, where messages from other
vehicles in the neighborhood are used to confirm or refute the presence of a
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congested area in the specific geographic area. Each one of these votes will be
directly derived by a vehicle’s messages, as a consequence of the generated
false congestion alert. Specifically, after a sufficiently long time interval T,
the vehicles A[1], . . . ,A[u] might be able to send additional probe/heartbeat
messages that help any other vehicle in determining whether the alert was
due to a congested area or not. Using speed, position and direction informa-
tion in additional probe/heartbeat messages from vehicles A[1], . . . ,A[u], any
other vehicle can implement a voting scheme, as follows. For i = 1, . . . ,m,
the vehicle associates to the i-th vehicle A[i] a 0/1 vote e[i], meaning that this
vehicle is approaching a congested area or not, implying that the congestion
alert was or was not legitimate. To obtain vote e[i], the vehicle can evaluate
trajectory consistency of the speeding, geography and time values for vehicle
A[i] with those for all other vehicles in A[i]’s neighborhood. As an example,
if according to the messages received, it appears that one or more among vehi-
cles A[1], . . . ,A[u] are in the same position as other vehicles, then a trajectory
inconsistency is found and the alert is considered an abuse. Once all votes are
obtained, the detection procedure continues as in the Abuse Detection Proce-
dure paradigm outlined in the previous section; i.e., by using a statistical test
on the sum of these votes to check whether the alert was legitimate or not, and
the previous analysis of the success of this test applies here as well.

4.3 Abuse Case 3: False Braking

Consider a sequence of cars driving on the same lane, and consider the rela-
tively frequent case of a vehicle in the sequence braking hard, possibly as a
result of a specific road condition, but at the same time creating a dangerous
situation to vehicles traveling behind. Naturally, most cars in this sequence
may have a limited visibility, of up to a few cars ahead of them, and it would
be desirable that the vehicular network has in place a mechanism that notifies
the cars in the subsequence behind the braking car with an associated alert
message. Now, this notification would effectively suggest these vehicles to
pay more attention, slow down and perhaps even brake, potentially generat-
ing smaller-impact danger situations. Thus, an attacker may be interested in
claiming the presence of an abruptly braking vehicle so to generate danger or
attempt to create an opening for a lane switch, even though the attacker may
not be traveling in this area or not braking at all.
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The basic idea for detecting a false braking attack is that, after a braking
alert message is generated, some feedback is obtained from vehicles that are
approaching the area of interest (just before the breaking vehicle) at about
the same time that the braking probe/heartbeat message generating the alert
was received. Again, this feedback is used as a vote in some kind of a voting
scheme, where other vehicles only confirm or refute the presence of a braking
vehicle. Interestingly, we observe that this feedback can be directly obtained
by the already existing vehicular network communication. For instance, such
a vote might be directly derived from the messages sent by vehicles directly
following the braking (or supposedly so) vehicle.

We start by considering a vehicle A, that at any given time sends valid
messages pm[1], . . . ,pm[u], where the i-th alert message contains, among
other things, a certificate cert[i] and a tuple (t[i],sp[i],pos[i],dir[i]), where
t[i] denotes the timestamp for the i-th message, sp[i] denotes A’s claimed
current speed of this vehicle, pos[i] denotes A[i]’s claimed position, and dir[i]
denotes A[i]’s claimed travel direction. Any such u-tuple of messages can
trigger a false braking alert generation procedure and a false braking abuse
detection procedure, which are now described in some detail.

False Breaking Alert Generation Procedure: Given any messages
pm[1], . . . ,pm[u], an alert may be somehow triggered if a speed condition
is satisfied (e.g., sp(i) < sp[i − 1], and sp[i] < p for i = 1, . . . ,u, and for
some parameter p, where sp(i) denotes vehicle A’s speed value in the i-th
message sent while abruptly braking) and a geography condition is satisfied
(e.g., values pos[1], . . . ,pos[u] and dir[1], . . . ,dir[u] reveal that the vehicles
to be alerted are proceeding towards the braking vehicle A; here, this condition
can be strengthened by evaluating the number of vehicles with larger speed in
a sufficiently small geographic area of interest with respect to the area where
the abrupt braking occurred; if this number is not 0, then this is an indication
that the braking did not occur, for instance because the vehicle claimed to be
braking is actually in a different geographic area). As for the previous abuse
cases, several variants of these example conditions are possible.

False Braking Abuse Detection Procedure: We only sketch this procedure as
it is again based on a variant of a voting scheme. Specifically, this procedure
is intended to detect whether the above alert procedure resulted in an incor-
rect braking alert and thus identify and revoke the certificates that caused it.
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More precisely, the procedure consists of a variant of a voting scheme, where
messages from other vehicles are used to confirm or refute the presence of
an abruptly braking vehicle. A more specific scenario is considered in greater
detail in the simulation results of next section. As for the previous abuse cases,
all obtained votes are used and proved to be effective as in the Abuse Detection
Procedure paradigm outlined in the previous section.

4.4 Abuse Case 4: False Timing and Position Data

More generally, at any given time and on any kind of street, a vehicle may
obtain different types of notifications from the vehicular network infrastructure
triggered by other vehicles’ probe or heartbeat messages. These notifications
may cause these vehicles to take specific actions, such as taking a different
route. Here, an attacker may be interested in generating false notifications even
just for the sake of creating a nuisance to other vehicles or, more generally,
because it increases the success probability of concrete traffic-related attacks.
While in the previous abuse cases, we focused on attackers sending incorrect
speed information in their probe or heartbeat messages, it remains of interest to
consider the case of misrepresented values for other data, such as timestamps,
position, travel direction, etc. For instance, an attacker indirectly involved in
an accident, and sharing part of the guilt for it, would be very interested in
sending probe or heartbeat messages with incorrect position data, signaling
that the attacker’s vehicle was in a different area at the time when the accident
occurred. We only give an informal treatment here as a more formal treatment
can be derived as done in the previous sections.

False timing information is actually easy to detect from a vehicle that puts
sufficient trust in its own timing information. False position information is also
easy to detect in one particular case, where the malicious vehicle claims to be
in an area geographically outside of the radio range of a detecting vehicle. The
following case is somewhat harder: a malicious vehicle traveling in position
pos within the radio range of the detecting vehicle, claims to be traveling
in position pos’ that is still within radio range of the detecting vehicle. One
hopes here that at the same time another vehicle is traveling in position pos’,
thus resulting in a trajectory inconsistency. The detection of false direction
information can be analyzed similarly as done for the detection of false position
information as long as the detecting vehicle has the capability of tracking a
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given malicious vehicle (possibly without violating its anonymity) for a limited
amount of time and space.

4.5 Abuse Case 5: Higher Message Frequency

Typical “traffic-safety” vehicular network activity requires vehicles to send
probe or heartbeat messages with a pre-specified time frequency. An attacker
could increase the frequency of its messages, especially if some of these mes-
sages contain false information, as specified in the previous abuse cases. For
instance, in abuse cases 2 and 3, an attacker being able to send messages at
higher frequency will be much more effective in reaching her goal. Another
scenario where this may be of interest to an attacker is in performing a “denial
of service attack” both against another vehicle or an RSE. Here, the attacker’s
goal is to prevent another vehicle from performing basic functions, such as
functions related to certificate management, which may impact the vehicle’s
security and anonymity properties. Our techniques to detect these attacks vary
depending on specific properties of the certificate management scheme used
and are omitted here.

5 Detecting Specific Abuses: Analysis Results

To validate our voting algorithm in Section III, we have analyzed its effective-
ness (i.e., whether some vehicles can reliably detect abuse data) on the abuse
cases in Section IV using both simulations and real data. We have focused
our analysis results on the false braking abuse case, but an analogue analysis
for the two main other cases of false speeding and false traffic congestion did
provide strictly better results. We have considered the following basic scenario
for the false braking abuse case: a sequence of vehicles, denoted as A, B, C,
D, and E, proceeds along the same lane in a 2-way road (see Figure 1).

At some time, vehicle A shows in its heartbeat messages some traffic-
related data showing evidence that it is braking hard (and eventually stopping),
thus creating a potential danger situation for all 4 vehicles right behind. If this
braking claim is true, vehicles B, C, D, and E will eventually stop as well.
On the other hand, if the claim is false, it would be desirable that as many as
possible vehicles in the sequence quickly (i.e., before an accident is created)
realize that A’s claim was a false alert, using our voting technique. In this
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Figure 1 In a 2-way road, A’s heartbeat data suggests A is suddenly braking and, using heartbeat data
from B and C, vehicles D and E need to have enough reaction time to judge whether the braking claim is
true or not.

example, D and E can non-interactively run our voting algorithm based on the
heartbeat data received from A, B and C. Here, note that (a) if the braking
claim is true, then B and C will also necessarily brake and eventually stop
by the time they get to A’s position, while (b) if the braking claim is false,
then B and C will drive across and past A’s position, which reveals a trajectory
inconsistency. The key observation we make here is that the position and speed
values in the heartbeat data sent by A, B, and C suffice to indicate which of the
implied conditions in (a) or (b) holds, thus allowing D and E to accordingly
conclude whether A’s claim was true or false by the time C arrives in A’s
position. Most likely, by that time, D and E have enough reaction time to
prevent an accident, and the likelihood of that is increased by the fact that no
additional messages need to be exchanged between the parties (assuming that
B and C, the majority in this example, send honestly computed heartbeat data;
we have generalized the example to higher honesty thresholds, omitted here).
In our analysis, we have measured D’s reaction time (see left histogram in
Figure 2 for the simulated data analysis and left histogram in Figure 3 for the
real data analysis) as the inter-arrival time between vehicles C and D at A’s
claimed braking position. Similarly, we have measured E’s reaction time (see
right histogram in Figure 2 for the simulated data analysis and right histogram
in Figure 3 for the real data analysis) as the inter-arrival time between vehicles
C and D at A’s claimed braking position.

Our simulation was generated, using Simulation of Urban Mobility [15]
software, as follows. First of all, 504 vehicles are initially randomly placed
in a 0.9 times 0.9 miles area in a typical urban environment in Chicago, IL,
with two-way traffic roads. Each vehicle moves according to a car-following
mobility model, as specified in the software used, and turns left, turns right or
goes straight at an intersection with equal probability. The maximum speed
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Figure 2 Histogram of vehicle D’s (left) and vehicle E’s (right) reaction times in 24 time slots (using
simulated data).
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Figure 3 Histogram of vehicle D’s (left) and vehicle E’s (right) reaction times in 24 time slots (using
real-life data).

is about 35 mile/hour, the average speed is about 15 mile/hour; and the total
simulation time is 2000 seconds. In this time, a random vehicle is chosen
as generating a false braking alert (i.e., vehicle A), resulting in about 1700
non-interactive elections, where the reaction time of vehicles D and E (see
Figure 1) is measured.

In the left part of Figure 2 an histogram of the reaction time of vehicle D
is shown, where y is the percentage of elections where D’s reaction time fell
into the x-th time slot, for x = 1, . . . ,24, where the time interval containing
99% of the data was divided into 24 equal-size time slots. Under the rather
conservative assumption that the running time of the election algorithm is
completed at the end of the first time slot, we derive that vehicle D has a 71%
chance of successfully detecting and ignoring A’s false braking alert. In the
right part of Figure 2 we show the analogue histogram for vehicle E, from
which we derive that vehicle E has a 94% chance of successfully ignoring A’s
false braking alert.

Our real-life data analysis was based on the traffic data collected in [19]
from a multi-lane highway in Pasadena, CA, at one fixed monitoring station
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on Nov 11, 2010. As before, the time interval containing 99% of the data was
divided into 24 equal-size time slots, and under the same assumption that the
election algorithm’s running time is completed by the end of the first time slot,
we derive that vehicle D and E have a 62% and 86% chance, respectively, of
successfully detecting A’s false braking claim.

For both analysis, our conservative assumptions included time estimates
on the running time that vehicles take to cryptographically verify that the
received heartbeat messages were sent by authorized, non-revoked, vehicle
OBEs. These assumptions can be weakened by considering results and analy-
sis from [5, 12], possibly implying improved reaction time results. Simulation
variants based on different parameters and modeling approaches, including
alternative honesty thresholds, mobility models, and statistic measures, pro-
vided similarly positive reaction time results.

6 Conclusions

Traffic-related malicious behavior in vehicular networks is especially worth
investigating because of its very undesirable consequences (i.e., fatal acci-
dents). Protecting against traffic-related malicious behavior is very challenging
as, for instance, it may have short time duration and it may involve only a small
number of vehicles whose communication is challenged by high mobility and
radio constraints. Some previous work provided elegant protocols based on
voting or consensus techniques to evaluate the surrounding driving scenario.
In this paper we show that interaction is not necessary: voting algorithms can be
implemented non-interactively by a vehicle, based on the already exchanged
vehicular network communication. This has a significant positive impact on
improving vehicle reaction time in the presence of these attacks. More gen-
erally, we proposed a framework for investigating traffic-related threats and
efficiently securing vehicular networks against them, a highly desirable feature
of future networks. More work remains to be performed to provide efficient
solutions against all concrete instances of these attacks.
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