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Abstract

Remote robot control (telecontrol) includes the solution of the following
routine problems: surveillance of the remote working area, remote operation
of the robot situated in the remote working area, as well as pre-training of the
robot. The current paper describes a new technique for robot control using
intelligent multimodal human-machine interfaces (HMI). The first part of the
paper explains the robot control algorithms, including testing of the results
of learning and of movement reproduction by the robot. The application of
the new training technology is very promising for space robots as well as for
modern assembly plants, including the use of micro-and nano-robots.

Keywords: Robot, telecontrol, task training by demonstration, human-
machine interfaces.

5.1 Introduction

The concept of telesensor programming (TSP) and relevant task-oriented
robot control techniques for use in space robotics was first proposed by
G. Herzinger [1].

1The paper is published with financial support from the Russian Foundation for Basic Research,
projects 14-08-01225-a, 15-07-04415-a, 15-01-02021-a.

Advances in Intelligent Robotics and Collaborative Automation, 95–122.
c© 2015 River Publishers. All rights reserved.



96 Information Technology for Interactive Robot Task Training

Within the framework of the ROTEX program, implemented inApril 1993
for the SPACE-LAB space station, a simulation environment for multisen-
sory semiautonomous robot systems, with powerful man-machine interfaces
(laser range finders, 3D-stereo graphics and force/torque effort reflection),
was developed. This allowed the space robot manipulator to be remotely
programmed (teleprogrammed) from Earth.

The solution for the problem of remote control under non-deterministic
delays in the communications channel is based on the use of TSP with training
by demonstration for the sensitized robot.

Tasks such as assembly, joining of connectors and catching flying objects
were practiced. Actually, it was the first time that a human remotely trained
a robot through direct movement demonstration using a graphic model with
robot sensor simulation.

The effectiveness of interactive control (demonstration training) is high-
lighted in all cases of the application of pre-training technology to space and
medical robots, as the most natural way to transfer the operator’s experience
(SKILL TRANSFER) in order to ensure autonomous robot manipulator
operation in a complex non-deterministic environment [2–5].

However, in these studies it was only possible to conduct training with
the immediate recording of the movement trajectory positioning data and the
possibility of motion correction as per the signals from the robot’s sensors.

These studies did not solve the problem of complex robot motion repre-
sentation as a certain data structure that is easily adjustable by humans, or
“independently” modified by the autonomous robot, depending on changes in
the remote environment.

The current paper describes a new information technology-based approach
for interactive training by demonstration of the human operator’s natural hand
movements based on motion representation in the form of a frame-structured
model (FSM).

Here, a frame means a description of the shape of motion with indications
of its metric characteristics, methods and sequence of execution of the
separate parts of the movement. Training by demonstration means intelligent
robot manipulator programming aimed at training the robot for autonomous
work with the objects (among the objects) without point-to-point trajectory
recording. That is, by providing only separate fragments of movement in the
training stage, and sequentially executing them, depending on the task.

In order to train a robot manipulator to move among objects it was
suggested to use a remotely operated camera, fixed to the so-called “sensitized
glove”. This allows not only the registration of position and orientation of the
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hand in space, but also the position of the object (experimental models) models’
characteristic points relative to the camera on the hand.

5.2 Conception and Principles of Motion Modeling

5.2.1 Generalized Model of Motion

A variety of robot motion types in the external environment (EE), including
manipulation of items (objects and tools) as well as the complexity and
variability of EE configurations, are typical for aerospace, medical, industrial,
technological and assembly operations.

Let us consider the problem of training the robot manipulator to perform
motion relative to EE objects in two cases: examination motion and manipula-
tive motion. The main issue in forming the motion patterns, set, in this case, by
the motions of the operator’s head and arm, is to have a method for recording
and reproducing the three-dimensional trajectories of the robot manipulator
grip relative to EE objects.

The problem of the alignment of the topology and the semantics of objects,
well known in geographic information systems (GIS), is basically close to the
problem of motion modeling and route planning in robotics.

In the case of navigational routing tasks using intelligent GIS, the authors
basically consider motion along a plane (on the surface of the sphere) or
several planes (echelon gratings). Moreover, in most cases, the moving
object is taken as a mathematical point, not having its own orientation in
space.

The motion path configuration in space often does not matter, so routing
is carried out over the shortest distance. Thus, while following the curvature
of the relief, the motion tracks its shape.

For object shape modeling and motion formation, we propose using a
common structured description language, which considers that the object
shape model is defined and described by a frame of its elements, and the motion
trajectory model is described by a frame of descriptions of the elementary
motions. It is important to note that the elementary motions (fragments) can
be given appropriate names and be considered to be the language operators,
providing the possibility of describing robot actions in a rather compact
manner.

For interactive motion demonstration robot training, we propose using a
combination of the EE (MEE) objects’ shape models and the motion shape
models (MFM). In this case, the generalized frame-structured model (FSM)
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is defined as a method for storing information not only about the shape of the
EE objects, but also about the shape of the motion trajectory.

The description language used in FSM is a multilevel hierarchical sys-
tem of frames, similar to M. Minski frames [6], containing a description
of the shape elements, metric characteristics and methods and procedures
for working with these objects. MFM, as one of the FSM components,
stores the structure of the shape of motion trajectories demonstrated by the
human operator during the process of training the robot to perform specified
movements [7, 8].

The generalized FSM of the remotely operated robot IE includes:

• Object models, models of the objects’ topology (location) in a particular
IE (MIE);

• Models of different typical motions and topology models (interrelations,
locations) of these movements in a particular IE (MIE).

It is also proposed to store, in the MIE, the coordinates and images of
objects from positions convenient both for remote-camera observation (which
enables the most accurate measurement of the coordinates of the characteristic
features of object images) and for grabbing objects with the robot gripper
(Figure 5.1) [9].

Training of motion can be regarded as a transfer of knowledge of motor,
sensory, and behavioral skills from a human operator to the robot control
system (RCS), which in this case should be a multimodal man-machine
interface (MMI), developed to the greatest possible extent (intelligent) to
provide adequate and effective perception of human actions. Consequently,

Figure 5.1 Images of the Space Station for two positions: “Convenient for observation” and
“Convenient for grabbing” objects with the virtual manipulator.
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it is assumed that a generalized model of description of the robot knowledge
on the EE based on the FSM will be created, including the robot itself and its
possible (necessary) actions within it.

The preliminary results of the research on algorithms and technologies
for the robot manipulator task training by demonstration, using the motion
description in the form of MFM, are presented below.

5.2.2 Algorithm for Robot Task Training by Demonstration

In order to task-train the robot by demonstration, a special device, the so-
called “sensitized glove,” is put on the hand of the trainer. It is equipped with
a television camera and check points (markers) [10].

This allows the execution of two functions simultaneously (Figure 5.2):

• Using the television camera on the glove, record the image and determine
the coordinates of the objects’ characteristic points, over which the hand
of the human operator moves;

• Using the sensors of the intelligent MMI system, determine the spatial
position and orientation of the hand in the work location by means of
3–4 check points (markers) on the glove.

Considering the processes for task-training a robot to perform elementary
operations and reproducing these operations, an important feature is revealed.
This feature consists in the fact that algorithms for training and repro-
duction present fragments, which are used in different operations without

Figure 5.2 “Sensitized Glove” with a camera and the process of training the robot by means
of demonstration.
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modifications or with very minor changes, and may also be repeated several
times in a single operation.

From among the various movements of the robot manipulator, most of
them can be represented as a sequence of a limited number of elementary
motions (motion fragments), for example:

• Transfer motion of the gripper along an arbitrary complex trajectory
g = g(l) from the current position to a certain final position;

• Correction motion, using the sequence of characteristic points (CP) of
the EE objects’ images, as input information;

• Surveillance movement in the process by which the following are
sequentially created: matrices of the gripper position Tb, Tb1, Tb2, joint
coordinate vectors gb, gb1, gb2, and geometric trajectory g = g(l);

• Movement to a convenient position for surveillance;
• Movement to a convenient position for grabbing;
• Movement for “tracking” the object (approaching the object);
• Movement to grab the object.

In traditional training systems using one or the other method, a sequence of
points of the motion trajectory of the robot gripper is obtained. It can be
represented as a function of some parameter l, which can be considered as the
preliminary result of training the robot to perform the fragment of the gripper
movement from one position to the other:

g = g (l) , lb ≤ l ≤ le

gb = g (lb) , ge = g (le) ,

where: lb – parameter of the trajectory in the initial position, l – parameter
of the trajectory in the current position, le– parameter of the trajectory in the
final position.

In this case, the training algorithm for performing motions ensures the
formation of geometric trajectory g(l) and includes the following:

• Formation of a sequence of triplets of the two-dimensional vectors
ximb

(1), ximb
(2), ximb

(3); ximI
(1), ximI

(2), ximI
(3); . . . ; xime

(1), xime
(2),

xime
(3), conforming to the image positions of the 3 CP on the object

during training;
• Formation of the sequence Tb, TI , TII , . . . , Te of the matrices of the glove

position;
• Solution of systems of equations (5.1):

x
(i)
im = (x(i)

im1, x
(i)
im2) = k(i)T̂X(i), (5.1)
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where: k(i)is a variable scale, defined as: k(i) = f /d(i)-f, where d(i) is the
distance from the point to the TV camera showing the plane; f is the focal
distance of the lens, T̂ is a (2x4) matrix made up of the first two rows of matrix:

T =

∣∣∣∣
α Xn
0 1

∣∣∣∣, characterizing the rotation and displacement of the system of

coordinates (CS), in conjunction with the camera on the glove, relative to the
object CS, where a is the direction cosine matrix of the reference CS rotation
angle, Xn the displacement vector of the beginning of the CS and X(i) – the
two-dimensional vectors of the position of the image of the characteristic
points of the object in the image plane.

This data is sufficient to construct a sequence of matrices of the gripper
positions Tb, T1, TII , . . . , Teduring movement. The orientation blocks in these
matrices are matrices αb, α1, αII , . . . , αe. The block of the gripper pole
position corresponds to the initial position of the gripper. According to this
sequence, the geometric, and, in line with it, the temporal motion trajectory
of the gripper can be built.

When teaching this action, the operator must move his hand with the glove
on it in the manner in which the gripper should move during the process of
the surveillance motion, whereas the position of the operator’s wrist can be
arbitrary and convenient for the operator.

Furthermore, for each case of teaching a new motion, it is necessary to
memorize a new volume of motion information in the form of several sets of
coordinates mentioned above.

When teaching the motions, e.g. IE surveillance, it is necessary to store a
considerable amount of information in the memory of the robot control system
(RCS), including:

• Values of matrix T, which characterize the position and orientation
of the glove in the coordinate system of the operator’s workstation,
corresponding to initial Tb, final Te and several intermediate T1, TII , . . .
gripper positions, which it must take when performing movements;

• Several images of the object from the glove-mounted TV camera, cor-
responding to the various gripper positions, to control the accuracy of
training;

• Characteristic identification signs, characteristic points (CP) of the dif-
ferent images of the object, at different glove positions during the training
process;

• Coordinates of the CP of the images of the object in the base coordinate
system;
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• Parameters of gripper opening and the permissible compressive force
applied to the subject.

To reduce the amount of information and to present the motion trajectory in a
language is close to the natural one, it is suggested to use a frame-structured
description in the motion shape model (MFM), the basic principles of which
are described in the previous papers by the authors [11, 12].

5.2.3 Algorithm for Motion Reproduction after Task Training by
Demonstration

The specific feature of the robot’s motion reproduction in a real IE is that
fragments of elementary movements, stored during task training can follow
a different sequence depending on the external conditions when reproduced.
Due to the aforementioned features, it appears to be reasonable to teach the
robot to do different fragments of motion in various combinations of the given
fragments.

The number of applied elementary motions (fragments) increases along
with the number of reproduced operations. However, this increase will be
much smaller than the increase in the number of operations for which the
robot is used. It is important to note that proper names can be assigned to
the given elementary motions and they can be considered to be operators of
the language with the help of which the robot’s actions can be described in a
sufficiently compact manner.

On the basis of the frame-structured description of the MFM, obtained
during task training, the so-called “tuning of the MFM” for a specific task
is performed before starting the reproduction of motion by the robot in a
particular IE situation.

Practically, this is done by masking or selection of only those descrip-
tions of motion in the MFD that satisfy the conditions of the task and the
external conditions of the situation in the IE according to their purpose
and shapes (semantic and topological features). The selected movements are
automatically converted into a sequence of elementary movements g = g(l).

In the case of the reproduction of the elementary motion along the trained
trajectory g = g(l) in systems without sensor offsetting it is necessary to
construct a parameter change function l(t) in the area lb ≤ l ≤ le. Typically,
the initial and final velocities l(t)are known, and they are most commonly
equal to zero:

l′b = l′e = 0.
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In the simplest case of the formation of l(t), three intervals can be singled
out in it: the “acceleration” interval from the initial velocity (l′b) to some
permissible speed (l′d), the interval of motion at a predetermined speed and
the deceleration interval from the predetermined velocity to zero (l′e).

During acceleration and deceleration a constant acceleration (l′′d) must
take place. Its value should be such that the value of the velocity g′ and
acceleration g′′ vectors can be physically implementable under the existing
restrictions of the control vector (U) of the robot manipulator’s motors.

The values of these limitations can be determined based on the consider-
ation of the dynamic model (R) of the robot manipulator, which connects the
control vector (U) to the motion dynamics vectors (g, g′, g′′):

U = R
(
g, g′, g′′) .

In the case of the motion reproduction transfer of function l = l(t), it is defined
by the following ratio:

• During the acceleration interval (0 < t = t1), where t1 = sign (l′d)
|l′d|
|l′′d | ;• During the interval of motion at a constant velocity - (t1 ≤ t ≤ t2), where

t2 = t1 + |le−lb|
|l′d| − |l′′d |t21

|l′d| : l (t) = l′d (t − t1) + lb
sign(l′d)·t21

2|l′′d | ;

• During the deceleration interval (t2 ≤ t ≤ t3), where

t3 = 2t1 + |le−lb|
|l′d| − |l′′d |t21

|l′d| :

l (t − t1) = l′d (t − t1) + lb +
sign(l′d)t

2
1

2
− sign(l′d)l

′′
d(t − t2)
2

.

The reproduction of movement over time by the robot is carried out as per the
implementation of the obtained function l(t) in the motion trajectory g(l):

g = g (l (t)) .

To determine the drives’ control vector U = R (g, g′, g′′) the substitution of
values g, g′, g′′ by the values of function g = g (l (t)) is carried out. This results
in the formation of the control function of the motors of the robot manipulator
over time.

It should be noted that a man performs natural motions with constant accel-
eration, in contrast to the robot manipulator, whose motions are characterized
by a constant rate (speed). Therefore, the robot has to perform its motions as
per its own dynamics, which differ from the dynamic properties of the human
operator.
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5.2.4 Verification of Results for the Task of Training the
Telecontrolled (Remote Controlled) Robot

Remotely operated robots must be sufficiently autonomous and trainable to be
able to efficiently perform operations in remote environments distant from the
human operator. Naturally, task training for space robots must be performed
in advance right here on Earth, and medical robots shall be trained out of the
operation theaters.

At the same time, a possibility for the remote correction of training
outcomes must be provided, for possible additional training by the human
operator, located at a considerable distance from the robot in space or from a
remotely controlled medical robot.

For greater reproduction reliability, it is necessary to implement an auto-
mated process control over motion reproduction by the remotely controlled
robot using copies of the MFM and MEE from the RCS. Remote control
over the robot movements by a human operator must be carried out using
prediction, taking into consideration the potential interference and time delays
in the communications channel.

Actual remote control of the space robot or the remotely operated medical
robot must be carried out as follows:

• With some time advance (prediction), simultaneously with working
motion execution by the robot, control over the current robot motion
is performed on the simulator, which includes the MEE, MFM and the
intelligent MMI system;

• Data from the RCS, arriving with delay, is reflected on the MEE and
MFM and is compared to the predicted movement in order to provide the
possibility of emergency correction;

• The trajectory of motion relative to the real location of the MEEs is
automatically adjusted by the RCS as per sensor signals;

• By human command (or automatically by the RCS) correction of param-
eters and operational replacement of the motion fragments are carried
out in accordance to the pre-trained alternative variants of the working
motion.

After the execution by the robot of the regular working movement, actual
motion trajectories in the form of a description in the language of MFM,
compiled after an automatic motion analysis in the RCS, are transferred from
the RCS to the human operator in the modeling environment. This information,
together with the results of the real EE scanning by the robot during the robot’s
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execution of the working movement, is to be used for correction of the MFM
and MEE.

In the absence of significant corrections in the process of executing the
working movement, the training is considered to be correct, understanding
between the human operator and the RCS is considered to be adequate, and
the results of the robot task training can be used in the future.

5.2.5 Major Advantages of Task Training by Demonstration

The proposed algorithm for task training by demonstration of the motion
has a number of advantages over conventional methods of programming
trajectories or motion copying, when the operator, for example, moves in
space the manipulator’s gripper along the desired trajectory with continuous
recording of the current coordinates in the memory of the robot. Let us list the
main ones.
Using the professional skills and intuitive experience of the human being.
The human being, using his professional skills and intuitive experiences,
demonstrates motions by hand, which are automatically analyzed by the MMI
(for configuration acceptance and safety) and are conveyed to the robot in the
form of a generalized MFM description. Conventional means of supervisory
control, in which remote control or a joystick, are used to set the generalized
command, are further developed in this case.
Simplicity and operational efficiency of training. Training is performed
by simple movements of the human hand without any programming of the
complex spatial displacements. It is more natural and easier for the human
being to control the position of his hand during the execution of movement,
than doing the same using the buttons, mouse or joystick. Experiments
have shown that practically everyone can learn to control a robot through
hand motion and it can be done in just a few hours. Time and cost of
personnel training, for the control and training of robots are significantly
reduced.
Relaxation in the requirements for motion accuracy. Instead of the exact
copying and recording of arrays of coordinates of the motion trajectory during
robot manipulator training, the operator gives only assignment (name) and
shape of the spatial motion trajectory, including the manipulation of items,
tools and EE objects. The free movement is set by the human being and is
reproduced by the robot at a certainly safe distance from the objects; therefore,
minute accuracy of such movements is not required. In the case where the robot
gripper approaches the object, the motion is automatically adjusted according
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to information from the sensors, including the force-torque sensing. There is
no need to copy the exact motions by the remotely operated robots, which
are commonly used in partially nondeterministic EE, when there is no precise
information about the location of the robot and obstacles.
Reliability of control over the autonomous robot. One of the advantages
lies in the fact that there is no need for the operator to be close to the working
area or to be present in the working area of the remotely operated robot, for
example, inside the space station, or on the outer surface of the orbital station
for operational intervention in the robot’s actions, avoiding therefore delays
and interferences in the communications channels. Based on the descriptions
of the MFM and MEE, the intelligent RCS can automatically adjust the shape,
and even the sequence of the trained motions of the robot.
Ease of control, correction and transfer of motion experience. The visual
appearance of motion presentation in a MFM, its proximity to natural language
of the frame structured movement description, allow reliable checking, in-flow
change of composition, sequence and shape of the complex working move-
ments directly according to the motion description text using the graphical
model of robot manipulator, as well as a human model (“avatar”) [13].

5.3 Algorithms and Models for Teaching Movements

5.3.1 Task Training by Demonstration of Movement among
the Objects of the Environment

Robot task training and remote control is performed using the modeling
environment, which contains an EE model (MEE), a model of the shape of
motion (MFM) and an intelligent system for the multimodal interface (IMI),
creating the so-called human “presence effect” in a remote EE using the
three-dimensional virtual models and images of real items. Using the IMI,
the operator can observe 3-D images on either side, like in holographs, can
touch or move the virtual objects, feeling with his hand the tactile and force
impact through simulations of object weight or its weight in zero-gravity
environment [14, 16].

Instead of real EE models the virtual MEE image can be used, as well
as a computer hand model, controlled by the hand position tracking system
(HPTS), included in the IMI [17].

The process of training the robot to move among OE objects implies that
the operator’s hand, dressed in a sensitized glove, executes the motion in OE
space that must be subsequently performed by the manipulator gripper. In
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order to do this, it is necessary to perform the following operations (in on-line
mode) in the training stage:

• Demonstrate a fragment of the operator’s hand motion among objects of
the OE model or of the virtual hand model in the graphical model of the
OE (MOE);

• Register through the IMM system and store in memory the fragment of
motion containing the timestamps and a corresponding vector (X) of 6
dimensions (x = x (l), y = y (l), z = z (l)) and orientation (ϕx = ϕx(l),
ϕy = ϕy(l), ϕz = ϕz(l)) of the operator’s hand;

• Recognize the motion shape through the IMI system and record the results
in the form of a frame-based description in MFM;

• Record the images of objects, obtained through the TV camera on the
glove in the process of moving the hand and carry out recognition,
identification and measurement of the coordinates of the characteristic
points of the objects’ images and enter this data into the MOE;

• Add to the MFM the information about the location of MOE objects
relative to the glove at the moment of execution of the fragment of
movement.

The position of the sensitized glove relative to objects of the EO model is
determined during the process of training by demonstration by solving the
so-called “navigation task”. This research offers a unique solution of the
navigation task for the given case [18].

While training the robot by means of demonstration, the objects (models)
of the OE come in view of the TV camera fixed on the sensitized glove. There
can be objects of manipulation or foreign objects (obstacles).

For the industrial and aerospace application of robots, the objects generally
have regular geometric shapes, angles and edges, which may be used as
characteristic features and characteristic points.

Characteristic points (CP) can be small-sized (point) details of objects,
which can be easily distinguished on the image, as well as special marks
or pointed sources of light. These points are the easiest way to determine
the position and orientation of the camera on the sensitized glove relative to
the OE objects, that is, to solve the so-called “navigation problem” during the
process of robot task training.

Let us consider a case, where the position vectors of the object’s CP X(i),
(i = 1, 2, 3 – No. of CP) in a coordinate system associated to the object
(CS) are known beforehand. Images of 3 CPs of the object (Xim

(1), Xim
(2),

Xim
(3)) on the TV camera’s image surface are projections of the real points



108 Information Technology for Interactive Robot Task Training

(CP1 ... CP3) on this plane in a variable scale k(i)=f /d(i)-f, inversely
proportional to the distance d(I) from the point to the imaging plane of the
lens, where f is the focal length of the lens.

Let us assume that the CS, associated with the camera lens, and, therefore,
with the glove, is located as shown in Figure 5.3, i.e. axes x1 and x2 of the
CS are located in the image plane, x3 is perpendicular to them and is directed
away from the lens towards the object. In Figure 5.3: x1, x2, x3 are the axes of
the coordinate system associated with the object; x(1), x(2), x(3) are the vectors
defining the position of characteristic points in the coordinate system of the
camera lens; xim

(2)
1, xim

(2)
2 are 2 projections of the vector from the center

of the CCD matrix to the image of point 2 (this can also be shown for points
1 and 3).

Then, distance d(i) is equal to the projection of the i-th CP on the third axis
of the CS associated with the camera: d(i) = xim3

(i), and the location of the
object X(i) in the image plane will be represented by two-dimensional vectors:

x
(i)
im = (x(i)

im1, x
(i)
im2) = k(i)T̂X(i), (5.2)

Figure 5.3 Formation of images of 3 characteristic points of the object.
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where: T̂ is a (2×4) matrix made up of the first two rows of matrix

T =

∣∣∣∣
α Xn
0 1

∣∣∣∣characterizing the rotation and displacement of the CS asso-

ciated to a camera on the glove, relative to the CS of the object, where a is a
direction cosine matrix relative to the turning angle of the SC and Xn = (Xn1,
Xn2, Xn3) is the displacement vector of the SC’s origin,

X(i) = (x(i)
1 , x

(i)
2 , x

(i)
3 , 1).

Then: d(i) = xim3
(i)= T3. x(i), where T3 is the third row of matrix T.

It is obvious that matrix T completely determines the spatial position of
the glove in the CS associated to the object, and its elements can be found as
the result of solving the abovementioned navigation problem of determining
the spatial position of the glove during training.

During the CP image processing, vectors xim
(i), i = 1, 2, 3 are determined,

so the left side of Equations (5.2) is known, and these equations represent a
system of six equations concerning 12 unknown elements of matrix T, which
are the three components of vector Xn and nine elements of matrix a.

Since the elements of matrix a are linked by six more equations of
orthogonality and orthonormality, there are a total of 12 equations, that is,
as many as the unknowns. These are obviously sufficient to determine the
desired matrix T.

During the “training” motion of the operator’s hand at a given frequency,
a procedure involving an operation for the selection of the object’s CP image
and an operation for calculating the values of two-dimensional vectors xim

(i),
i = 1, 2, 3 and their position in the image plane must be performed.

As a result of these actions, a sequence of values of the vector triplets
from the starting one Ximb

(i = 1,2,3) to the finishing one xime
(i = 1,2,3):

(ximb
(1), Ximb

(2), Ximb
(3)); (ximI

(1), XimI
(2), XimI

(3)); (ximII
(1), XimII

(2),
XimII

(3)); . . . (xime
(1), Xime

(2), Xime
(3)) is accumulated in the IMI database,

corresponding to the sequence of the glove’s positions during the movement of
the operator’s hand, which will be later reproduced by the robot. Each element
of this sequence carries enough information to solve the navigation task,
that is, to obtain the sequence Tb, TI , TII , . . . , Te of the matrix values, which
is the result of training.

After training, the robot reproduces a gripper motion based on sequence
Tb, TI , TII , . . . , Te using a motion correction algorithm based on the signals
from the camera, located in the gripper, by solving the so-called “correction
task” of the gripper relative to real OE objects.
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5.3.2 Basic Algorithms for Robot Task Training by Demonstration

The most typical example of the robot’s interaction with OE objects is the
manipulation of arbitrarily oriented objects. In practice, the task of grabbing
objects has several cases. The simplest case is when there is one known object.
The robot must be trained to perform an operation of grabbing this object
irrespective of any minor changes in its position and orientation.

A more complicated case is when the position and orientation of a
known object are not known beforehand. The most typical case is when
there are several known objects with a priori unknown positions and ori-
entations. And an even more complex task is when among the known
objects there are unknown objects and obstacles that may hinder the grabbing
procedure.

5.3.3 Training Algorithm for the Environmental Survey Motion

During the training to perform the environmental survey motion, the operator’s
hand executes one or more types of search movements: rotation of the hand at
two angles, zigzag motion, etc. Information about the typical search motions
is recorded in the MFM. Survey motion may consist of several fragments of
different movements. The sequence and shape of these motions, dependent
on the task, are determined during the training phase and stored in the MFM.
After the execution of separate motion fragments, a break can be taken for
further analysis of the OE objects’ images.

Any OE object recognition algorithm suitable for a particular purpose can
be used, including a structural recognition algorithm [19].

It is necessary to note that object image analysis must include the
following:

• Recognition of the target subject through a set of characteristic features
(XT1, XT2, . . . XTk) that are sufficient to identify it using the description
stored in the MOE;

• Selection of a set of reference points (XT1, XT2, . . . XTn) that are
sufficient for navigating the robot gripper in the space of the real OE,
from among a set of points (XT1, XT2, . . . XTk), usually no more than
n = 4–6, depending on their location.

If the number of CPs observed on the object is insufficient (k < n), it is
necessary to perform the following search motions:

• Change the position or orientation of the camera on the glove so that
k = n or change the CP filter parameters in the recognition algorithm;
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• Change the observation conditions or camera parameters for reliable
detection of CP, such as lighting of the operator workstation or focus of
the camera lens:

• Add artificial (contrasting, color) marks on the graphical model or
on the object model to recommend the use of these marks on real
objects;

• If k ≥ n, it is possible to skip to the calculation of the spatial position
and orientation of the glove relative to the object in accordance to
the algorithm of the “navigation task” (see above).

Once the specified object is detected and identified and the position and
orientation of the hand (glove) relative to this object is determined, the training
to execute the first survey motion is deemed finished.

The purpose of the next motion the robot is trained to execute involves a
gripper motion to the so-called “convenient for observation” position. In this
position, the maximum identification reliability and measurement accuracy of
the gripper position relative to the object are achieved.

The variants of the shift from the starting point of object detection to
the position which is “convenient for observation” must be shown by the
movement of the operator’s wrist using his intuitive experience.

There is also an option of task training by demonstration, for survey
movement, performed through natural head movements. In this case, the
camera with a reference device is fixed on the operator’s head.

The training process ends automatically, for example, upon a signal
from the IMI system after reaching the specified recognition reliability and
measurement accuracy parameters for the position of a hand or a head relative
to the OE object. A training halt signal can be given by voice (using the speech
recognition system of the IMI) or by pressing the button on the glove. In this
case, the object coordinates defined by its image are recorded in the MFM as
a vector of coordinates (X0).

5.3.4 Training Algorithm for Grabbing a Single Object

In this case, the grabbing process consists of three movements:

• Gripper motion from the initial position to the “convenient for grabbing”
the object position;

• Object gripping motion, for example, a simple translational motion along
the gripper axis;

• Object grabbing motion, such as a simple closing of the gripper, exerting
a given compression force.
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Let’s consider the task training to perform only the first action, where the oper-
ator freely moves his hand, with sensitized glove on it, to the object (model)
from the initial position at the most convenient for grabbing side and sets it
at a short distance from the object with the desired orientation. Information
about the motion path and the hand position relative to the object, at least
at the end point of the motion, is memorized in the MFM through the IMI
system, which is necessary for adjusting the robot’s gripper position relative
to the object during the motion reproduction. It’s also desirable that at least
1 or 2 CPs of the object’s image get into the camera’s view in the “convenient
for grabbing” gripper position, so that the grabbing process can be supervised.

The training of the grabbing motion is performed along the easiest path, in
order to reduce the guidance inaccuracy. If the gripper is equipped with object
detection sensors, then the movement ends upon receiving signals from these
sensors.

During the training to grab objects, it is necessary to memorize the
transverse dimensions of the object at the spot of grabbing and the gripper
compression force, sufficient for holding the object without damaging it.
This operation can be implemented using additional circuit-torque and tactile
sensors in the robot gripper.

In case of the presence of multiple OE objects, the training implies a more
complex process of identification of the objects’ images and the necessity
to train additional motions, such as obstacle avoidance, changing of altitude
convenient for survey in case of any shading, flashing and interference to
image recognition by the camera on the glove, as well as for the camera in the
robot manipulator’s gripper, during the reproduction of movements.

5.3.5 Special Features of the Algorithm for Reproduction of
Movements

As a result of performing the required number of training movements by the
human hand, “motion experience” is formed, which is accumulated in the
form of a frame-structured description in the MFM, stored in the memory of
the intelligent IMI system.

The transfer of the “motion experience” from the human to the robot
occurs, for example, by simply copying the MFM and MEE from the IMI
memory to the RCS memory or even by transferring this data to the remotely
controlled robot over communications channels. Of course, preliminary
checking of training outcomes is performed, for example, on a graphical model
of the robot.
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Prior to the robot performing the trained movements, in accordance to the
assigned task and the EE conditions, the MFM is tuned, as already mentioned
(in Part I of the current paper), for example, by masking (searching) among the
total volume of the MFM data for the required types of motions. Descriptions
of motions, selected according to the intended purpose and shape of the
trajectory, are converted by the RCS into typical motion trajectories for their
reproduction by the robot in real EE.

When the robot-manipulator reproduces motions in a real EE, after training
by demonstration, it is possible to execute, for example, the following typical
motion trajectories:

• Survey movement in combination with EE image analysis in order to
identify the object to be taken;

• Shifting of the gripper into the “convenient for observation” position;
• Corrective gripper movement relative to the object based on the signals

from the robot’s sensors;
• Shifting of the gripper to the “convenient for taking” position;
• Motion for grabbing the real object;
• Motion for taking the object.

Before the work starts, a complete check of the TSHPoperation and telecontrol
system is carried out. Then, operation of the TSHP is checked using a graphical
model (GM) at the control station without using a robot and exchanging infor-
mation over the communications lines. Checks of the training outcomes are
performed using the surveillance MFM or manipulation MFM, located in the
RCS, without switching on the robot at this moment. If necessary, additional
adjustment of the MFM is performed through task training by demonstration of
the natural human-hand movements and their storage in the MFM of the RCS.

The robot is switched on and it executes motions in terms of the orig-
inal EE inspection, selection of objects, position selection, convenient for
grabbing or convenient for visual control over object grabbing and manipula-
tions, as well as safe obstacle avoidance, before a transition to remote control
mode is performed.

The human operator sits in front of the monitor screen, which displays a
graphical model or a real object image, and controls the robot through natural
movements of the head and hand with the glove.

5.3.6 Some Results of Experimental Studies

The effectiveness of the proposed training technology using demonstrations
of the movements, the algorithms and theoretical calculations was tested on
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the basis of the “virtual reality” environment at the laboratory of Information
Technology in Robotics, SPIIRAS (St. Petersburg) [20].

The hardware-software environment includes:

• Two six-stage robotic manipulators of the «Puma» class, equipped with
remotely operated stereo cameras and force-torque sensing;

• Models of the fragment of the space station surface, two graphic stations
to work with three-dimensional models of the external environment
(MEE);

• Intelligent multimodal interface (IMI) with a system for tracking hand
movements (TSHP) and a system for tracking the head motions (THM)
of the human operator.

The “Virtual reality” environment enables the performance of experimental
studies of various information technology approaches for remote control and
task training of robots:

• “Immersion technologies” of the human operator in the remote environ-
ment using the robot-like device that moves surveillance stereo cameras
in the room with models of the fragment of the space station surface and
containers for scientific equipment;

• “Virtual observer” technologies using the model of the freely flying
machine (equipped with the surveillance camera, which allows the exam-
ination of the three-dimensional graphical model of the space station),
as well as the simulation of an astronaut’s work in outer space;

• Technologies for training and remotely controlling a space (medical)
robot manipulator with a force-torque sensing system, which provides
operational safety during manipulative operations, reflection of forces
and torques on the control handle, including when working with virtual
objects.

Experimental studies were performed on some algorithms for training by
demonstration and remote control of a robot manipulator, including:

• Training of the robot manipulator to execute survey motions through
motions of the human head;

• Scanning the surroundings by the robot and remotely operated camera
on the glove;

• Using the IMI for training by demonstration of hand movements and
human voice commands;

• Training the robot manipulator to grab items by demonstration of the
operator’s hand movements.
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The motion reproduction of the robot manipulator among the real EE objects
based on the use of the virtual graphical models of the EE and the robot
manipulator with force-torque sensing system was also practiced in the
experimental environment.

5.3.7 Overview of the Environment for Task Training by
Demonstration of the Movements of the Human Head

A functional diagram of the equipment for remotely monitoring the EE is
shown on Figure 5.4.

The operator, located in the control room, sets coordinates and orientations
of the manipulator gripper and remotely operated camera on it using the
tracking system for head position (THM). He observes the obtained EE image
on the monitor screen.

Figure 5.4 Functional diagram of robot task training regarding survey motions and object
grabbing motions using THM and RCS.
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Before starting, the human operator must be able to verify the THM in an
off-line mode. For this purpose, a graphical model (GM) and a special com-
munications module for controlling 6 coordinates were developed. Training
the robot manipulator to execute EE surveillance motions by demonstration
is carried out in the following way (Figure 5.5).

The human operator performs the EE inspection based on his personal
experience in object surveillance. The robot repeats the action, using the
surveillance procedure and shape of the trajectory of the human head move-
ment. In this case, the cursor can first be moved around the obtained panoramic
image, increasing (decreasing) the scale of separate fragments, and then,
after accuracy validation, the actual motion of the robot manipulator can be
executed.

5.3.8 Training the Robot to Grab Objects by Demonstration of
Operator Hand Movements

There are several variations of the implementation of the “sensitized glove”
(Figure 5.6): a remote-operated camera in the bracelet with control points
and laser pointers, bracelet with active control points (infrared diodes),
manipulation object - stick with the active control points [21].

When training by demonstration of human hand movements, through a
sensitized glove with camera and control points, a greater range and closeness
to natural movements is achieved, as compared to the use of joysticks or handle
like “Master-Arm» (Figure 5.7).

This provides for the natural coordination of movements of the hand
and head of the human operator. Using the head, the human controls the
movement of the remotely operated surveillance camera, fixed, for example,

Figure 5.5 Robot task training to execute survey movements, based on the movements of
the operator’s head: Training the robot to execute survey motions to insect surroundings (a);
Training process (b); Reproduction of earlier trained movements (c).
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Figure 5.6 Variations of the “Sensitized Glove” construction.

Figure 5.7 Using the special glove for training the robot manipulator.

on an additional manipulator, and with the hand he controls the position and
orientation of the main robot gripper (Figure 5.8).

Figure 5.8 Stand for teaching robots to execute motions of surveillance and grabbing objects.
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The coordination of simultaneous control using the operator’s hand and
head during training and remote control through natural human operator
movements was put into practice in order to control the complex objects
(Figure 5.9).

A new prototype of the intelligent IMI equipment with recognition of
the operator’s hand without markers, while performing manual control and
training by demonstration of natural hand movements, was experimentally
studied (Figure 5.10). In the future it is planned to continue research on new
algorithms for training and remote robot control of intelligent mechatronic
systems based on the use of advanced intelligent multimodal human-machine
interface systems and new motion modeling principles using frame-structured

Figure 5.9 Training of motion coordination of two robot manipulators by natural movements
of human head and hand.

Figure 5.10 Training with the use of a system for the recognition of hand movements and
gestures without “Sensitized Gloves” against the real background of the operator’s work station.
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MFM descriptions, including for medical robots, mechatronic systems and
telemedicine [22].

5.4 Conclusions

A new information technology approach for training robots (mechatronic
systems) by demonstration of movement is based on the use of a frame-
structured data representation in the models of the shape of the movements
that makes it easy to adjust the movement’s semantics and topology both for
the human operator and for the autonomous sensitized robot.

Algorithms for training by demonstration of natural movements of the
human operator’s hand using a television camera, fixed on the so-called
“sensitized glove”, allow not only the application during the training process
of graphical models of objects in surroundings but also of full-scale models,
which enables the operator the possibility to practice optimal motions of the
remote-controlled robots under real conditions.

It is sufficient to demonstrate the shape of a human hand movement to
the intelligent system of the IMI and to enter it into the MFM, and then this
movement can be executed automatically, for example, by a robot manipulator
with adjustment and navigation among the surrounding objects based on the
signals from the sensors.
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