
4
Autonomous Knowledge Discovery Based

on Artificial Curiosity-Driven Learning
by Interaction

K. Madani, D. M. Ramik and C. Sabourin

Images, Signals & Intelligent Systems Lab. (LISSI / EA 3956) University
PARIS-EST Créteil (UPEC) –Sénart-FB Institute of Technolog, Lieusaint,
France
Corresponding author: K. Madani <madani@u-pec.fr>

Abstract

In this work, we investigate the development of a real-time intelligent system
allowing a robot to discover its surrounding world and to learn autonomously
new knowledge about it by semantically interacting with humans. The learning
is performed by observation and by interaction with a human. We describe the
system in a general manner, and then we apply it to autonomous learning of
objects and their colors. We provide experimental results both using simulated
environments and implementing the approach on a humanoid robot in a real-
world environment including every-day objects. We show that our approach
allows a humanoid robot to learn without negative input and from a small
number of samples.

Keywords: Visual saliency, autonomous learning, intelligent system, artifi-
cial curiosity, automated interpretation, semantic robot-human interaction.

4.1 Introduction

In recent years, there has been a substantial progress in robotic systems able
to robustly recognize objects in the real world using a large database of
pre-collected knowledge (see [1] for a notable example). There has been,
however, comparatively less advance in the autonomous acquisition of such
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knowledge: if contemporary robots are often fully automatic, they are rarely
fully autonomous in their knowledge acquisition. If the aforementioned
substantial progress is commonsensical regarding the last-decades’significant
developments in methodological and algorithmic approaches relating visual
information processing, pattern recognition and artificial intelligence, the
languishing in the machine’s autonomous knowledge acquisition is also
obvious regarding the complexity of the additional necessary skills to achieve
such “not algorithmic” but “cognitive” task.

Emergence of cognitive phenomena in machines have been and remain
an active part of research efforts since the rise of Artificial Intelligence (AI)
in the middle of the last century, but the fact that human-like machine-cognition
is still beyond the reach of contemporary science only proves how difficult
the problem is. In fact, nowadays there are many systems, such as sensors,
computers or robotic bodies, that outperform human capacities; nonetheless,
none of the existing robots can be called truly intelligent. In other words, robots
sharing everyday life with humans are still far away. Somewhat, it is due to
the fact that we are still far from fully understanding the human cognitive
system. Partly, it is so because it is not easy to emulate human cognitive skills
and complex mechanisms relating those skills. Nevertheless, the concepts of
bio-inspired or human-like machine-cognition remain the foremost sources of
inspiration for achieving intelligent systems (intelligent machines, intelligent
robots, etc. . . ). This is the way we have taken (e.g. through inspiration
from biological and human knowledge acquisition mechanisms) to design the
investigated human-like machine-cognition based system able to acquire high-
level semantic knowledge from visual information (e.g. from observation). It
is important to emphasize that the term “cognitive system” means here that
characteristics of such a system tend to those of human cognitive systems. This
means that a cognitive system, which is supposed to be able to comprehend
the surrounding world on its own, but whose comprehension would be
non-human, would afterward be incompetent of communicating about it with
its human counterparts. In fact, human-inspired knowledge representation and
human-like communication (namely semantic) about the acquired knowledge
become key points expected from such a system. To achieve the aforemen-
tioned capabilities, such a cognitive system should thus be able to develop
its own high-level representation of facts from low-level visual information
(such as images). Accordingly to the expected autonomy, the processing from
the “sensory level” (namely visual level) to the “semantic level” should be
performed solely by the robot, without human supervision. However, this does
not mean excluding interaction with humans, which is, on the contrary, vital for
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any cognitive system, be it human or machine. Thus, the investigated system
has to share its perceptual high-level knowledge of the world with the human
by interacting with him. The human on his turn shares with the cognitive robot
his knowledge about the world using natural speech (utterances) completing
observations made by the robot.

In fact, if a humanoid robot is required to learn to share the living space with
its human counterparts and to reason about it in “human terms”, it has to face at
least two important challenges. One, coming from the world itself, is the vast
number of objects and situations the robot may encounter in the real world.
The other one comes from humans’ richness concerning various ways they
use to address those objects or situations using natural language. Moreover, the
way we perceive the world and speak about it is strongly culturally dependent.
This is shown in [2] regarding usage of color terms by different people around
the world, or in [3] regarding cultural differences in description of spatial
relations. A robot supposed to defeat those challenges cannot rely solely on a
priori knowledge that has been given to it by a human expert. On the contrary,
it should be able to learn on-line, within the environment in which it evolves
and by interaction with the people it encounters in that environment (see
[4] for a survey on human-robot interaction and learning and [5] for an
overview of the problem of anchoring). This learning should be completely
autonomous, but still able to benefit from interaction with humans in order
to acquire their way of describing the world. This will inherently require that
the robot has the ability of learning without an explicit negative evidence
or “negative training set” and from a relatively small number of samples.
This important capacity is observed in children learning the language [6].
This problem has been addressed to different degrees in various works. For
example, in [7] a computational model of word-meaning, acquisition by
interaction is presented. In [8], the authors present a computational model for
the acquisition of a lexicon describing simple objects. In [9], a humanoid robot
is taught to associate simple shapes to human lexicon. In [10], a humanoid
robot is taught through a dialog with untrained users with the aim to learn
different objects and to grasp them properly. More advanced works on robots’
autonomous learning and dialog are given by [11, 12].

In this chapter, we describe an intelligent system, allowing robots (as for
example humanoid robots) to learn and to interpret the world in which they
evolve using appropriate terms from human language, while not making use
of a priori knowledge. This is done by word-meaning anchoring based on
learning by observation and by interaction with its human counterpart. Our
model is closely inspired by human infants’early-ages learning behaviour (e.g.
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see [13, 14]). The goal of this system is to allow a humanoid robot to anchor
the heard terms to its sensory-motor experience and to flexibly shape this
anchoring according to its growing knowledge about the world. The described
system can play a key role in linking existing object extraction and learning
techniques (e.g. SIFT matching or salient object extraction techniques) on one
side, and ontologies on the other side. The former ones are closely related to
perceptual reality, but are unaware of the meaning of objects they are treated,
while the latter ones are able to represent complex semantic knowledge about
the world, but, they are unaware of the perceptual reality of concepts, which
they are handling.

The rest of this chapter is structured as follows. Section 4.2 describes
the architecture of the proposed approach. In this section, we detail our
approach by outlining its architecture and principles, we explain how beliefs
about the world are generated and evaluated by the robot and we describe
the role of human-robot interaction in the learning process. Validation of
the presented system on colors learning and interpretation, using simulation
facilities, is reported in Section 4.3. Section 4.4 focuses on the implementation
and validation of the proposed approach on a real robot in a real-world
environment. Finally, Section 4.5 discusses the achieved results and outlines
future work.

4.2 Proposed System and Role of Curiosity

Curiosity is a key skill for human cognition and thus it appears as an appealing
concept in conceiving artificial systems that gather knowledge, especially
when they are supposed to gather knowledge autonomously. Accordingly to
Berlyne’s Theory of human curiosity [15], two kinds of curiosities stimulate
the human’s cognitive mechanism. The first one is the so-called “perceptual
curiosity”, which leads to increased perception of stimuli. It is a lower-level
function, more related to perception of new, surprising or unusual sensory
input. It relates reflexive or repetitive perceptual experiences. The other
one is called “epistemic curiosity”, which is more related to the “desire
for knowledge that motivates individuals to learn new ideas, to eliminate
information-gaps, and to solve intellectual problems.

According to [16] and [17], the general concept of the presented archi-
tecture could include one unconscious visual level which may contain a
number of Unconscious Cognitive Functions (UCF) and one conscious visual
level which may contain a number of Conscious Cognitive Functions (CCF).
Conformably with the aforementioned concept of two kinds of curiosity,
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an example of knowledge extraction from visual perception, involving both
kinds of curiosity, is shown on Figure 4.1. The perceptual curiosity moti-
vates or stimulates what we call the low-level knowledge acquisition and
concerns “reflexive” (unconscious) processing level. It seeks “surprising”
or “attention-drawing” information in given visual data. The task of the
perceptual curiosity is realized by perceptual saliency detection mechanisms.
This gives the basis for operation of high-level knowledge acquisition,
which is stimulated by epistemic curiosity. Being previously defined as
the process that motivates to “learn new ideas, eliminate information-
gaps, and solve intellectual problems”: as those relating the interpretation
of visual information or the belief’s generation concerning the observed
objects.

The problem of learning brings an inherent problem of distinguishing
the pertinent sensory information and the impertinent one. The solution to
this task is not obvious even if we achieve joint attention in the robot.
This is illustrated on Figure 4.2. If a human points to one object (e.g. an
apple) among many others, and describes it as “red”, the robot still has to
distinguish which of the detected colors and shades of the object the human
is referring to.

To achieve correct anchoring in spite of such an uncertainty, we adopt the
following strategy. The robot extracts features from important objects found
in the scene along with the words the tutor used to describe the objects. Then,
the robot generates its beliefs about which word could describe which feature.
The beliefs are used as organisms in a genetic algorithm. Here, the appropriate

Figure 4.1 General Bloc-diagram of the proposed curiosity driven architecture (left) and
principle of curiosity-based stimulation-satisfaction mechanism for knowledge acquisition
(right).



78 Autonomous Knowledge Discovery Based on Artificial Curiosity-Driven

Figure 4.2 A Human would describe this Apple as “Red” in spite of the fact, that this is not
the only visible color.

fitness function is of major importance. To calculate the fitness, we train a
classifier based on each belief and using it, we try to interpret the objects the
robot has already seen. We compare the utterances pronounced by the human
tutor in the presence of each such an object with the utterances the robot would
use to describe it based on the current belief. The closer the robot’s description
is to the one given by the human, the higher the fitness is. Once the evolution
has been finished, the belief with the highest fitness is adopted by the robot
and is used to interpret occurrences of new (unseen) objects. On Figure 4.3,
important parts of the system proposed in this paper are depicted.

4.2.1 Interpretation from Observation

Let us suppose a robot equipped with a sensor observing the sur-
rounding world. The world is represented as a set of features I =
{i1 , i2 , · · · , ik} ,which can be acquired by this sensor [18]. Each time the
robot makes an observation o, a human tutor gives it a set of utterances Um

describing the important (e.g. salient) objects found. Let us denote the set of
all utterances ever given about the world as U. The observation o is defined as
an ordered pair o = {Il , Um} , where Il ⊆ I , expressed by Equation (4.1),
stands for the set of features obtained from observation and Um ⊆ U is a set of
utterances (describing o) given in the context of that observation. ip denotes
the pertinent information for a given u (i.e. features that can be described
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Figure 4.3 A Human would describe this Toy-frog as green in spite of the fact, that this is
not the only visible color.

semantically as u in the language used for communication between the human
and the robot), ii the impertinent information ii (i.e. features that are not
described by the given u, but might be described by another ui ∈ U ) and
sensor noise ε.The goal for the robot is to distinguish the pertinent information
present in the observation from the impertinent one and to correctly map the
utterances to appropriate perceived stimuli (features). In other words, the robot
is required to establish a word-meaning relationship between the uttered words
and its own perception of the world. The robot is further allowed to interact
with the human in order to clarify or verify its interpretations.

Il =
⋃
Um

ip (u) +
⋃
Um

ii (u) + ε. (4.1)

Let us define an interpretation X (u) = {u , Ij}of an utterance u an ordered
pair where Ij ⊆ I is a set of features from I. So, the belief B is defined
according to Equation (4.2) as an ordered set of X(u) interpreting utterances
u from U.
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B = {X (u1), · · · , X (un) } . (4.2)

According to the criterion expressed by (4.3), one can calculate the belief
B, which interprets in the most coherent way the observations made so far:
in other words, by looking for such a belief, which minimizes across all the
observations oq ∈ O the difference between the utterances UHq made by the
human, and those utterances UBq, made by the system by using the belief B.
Thus, B is a mapping from the set U to I : all members of U map to one or
more members of I and no two members of U map to the same member of I.

arg min
B

⎛
⎝

|O|∑
q=1

|UHq − UBq|
⎞
⎠ . (4.3)

Figure 4.4 gives, through example, an alternative scheme of the defined notions
and their relationship. It depicts a scenario in which two observations o1 and
o2 are made corresponding to two description U1and U2 of those observations,
respectively.

On first observation, features i1 and i2 were obtained along with utterances
u1 and u2, respectively. Likewise for the second observation, features i3, i4
and i5 were obtained along with utterance u3. In this example, it is easily
visible that the entire set of features I = {i1 , · · · , i5} contains two sub-sets
I1 and I2. Similarly the ensemble of whole utterances {u1 , u2 , u3 } give the

Figure 4.4 Bloc-diagram of relations between observations, features, beliefs and utterances
in sense of terms defined in the text.
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set UH and their sub-sets U1 and U2 refer to the corresponding observations
(e.g. q ∈ {1, 2}). In this view, an interpretation X (u1) is a relation of u1 with
a set of features from I (namely I1). Then, a belief B is a mapping (relation)
from the set U to I. All members of U map to one or more members of I and
no two members of U are associated to the same member of I.

4.2.2 Search for the Most Coherent Interpretation

The system has to look for a belief B, which would make the robot describe a
particular scene with utterances as close and as coherent as possible to those
made by a human on the same scene. For this purpose, instead of performing
the exhaustive search over all possible beliefs, we propose to search for a
suboptimal belief by means of a genetic algorithm. For doing that, we assume
that each organism within it has its genome constituted by a belief, which,
results into genomes of equal size |U | containing interpretations X(u) of all
utterances from U. The task of coherent belief generation is to generate beliefs
which are coherent with the observed reality.

In our genetic algorithm, the genomes’ generation is a belief generation
process generating genomes (e.g. beliefs) as follows. For each interpretation
X(u) the process explores the whole the set O. For each observation oq ∈ O,
if u ∈ UHq then features iq ∈ Ij (with Ij ⊆ I) are extracted. As
described in (1), the extracted set contains pertinent as well as impertinent
features. The coherent belief generation is done by deciding, which features
iq ∈ Ij may possibly be the pertinent ones. The decision is driven by
two principles. The first one is the principle of “proximity”, stating that
any feature i is more likely to be selected as pertinent in the context of,
if its distance to other already selected features is comparatively small.
The second principle is the “coherence” with all the observations in O. This
means that any observation oq ∈ O, corresponding to u ∈ UHq, has to have at
least one feature i assigned into Ij of the current X (u) = {u, Ij} [19]. Thus,
it is both the similarity of features and the combination of certain utterances,
describing observations from O (characterized by certain features), that guide
the belief generation process. These beliefs may be seen as “informed guesses”
on the interpretation of the world as perceived by the robot.

To evaluate a given organism, a classifier is trained, whose classes
are the utterances from U and the training data for each class u ∈
U are those corresponding to X (u) = {u, Ij} , i.e. the features
associated with the given u in the genome. This classifier is used through
the whole set O of observations, classifying utterances u ∈ Udescribing
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each oq ∈ Oaccording to its extracted features. Such a classification results
in the set of utterances UBq (meaning that a belief B is tested regarding
the qth observation). The fitness function evaluating the fitness of each
above-mentioned organism is defined as “disparity” between UBq and UHq

(defined in the previous subsection) which is computed according to the
Equation (4.4), where v is given by Equation (4.5) representing the number
of utterances that are not present in both sets UBq and UHq, which means
that they are either missed or are superfluous utterances interpreting the given
features.

D (ν) =
1

1 + ν
(4.4)

ν =
∣∣∣ UHq

⋃
UBq

∣∣∣ −
∣∣∣ UHq

⋂
UBq

∣∣∣ . (4.5)

At the end of the above-described genetic evolution process, the globally best
fitting organism is chosen as the belief that best explains the observations O
made (by the robot) so far about the surrounding world.

4.2.3 Human-Robot Interaction

Human beings learn both by observation and by interaction with the world
and with other human beings. The former is captured in our system in
the “best interpretation search” outlined in previous subsections. The latter
type of learning requires that the robot be able to communicate with its
environment and is facilitated by learning by observation, which may serve
as its bootstrap. In our approach, the learning by interaction is carried out in
two kinds of interactions: human-to-robot and robot-to-human. The human-to-
robot interaction is activated anytime the robot interprets the world wrongly.
When the human receives a wrong response (from the robot), he provides the
robot a new observation by uttering the desired interpretation. The robot takes
this new corrective knowledge about the world into account and searches for
a new interpretation according to this new observation. The robot-to-human
interaction may be activated when the robot attempts to interpret a particular
feature. If the classifier trained with the current belief classifies the given
feature with a very low confidence, then this may be a sign that this feature is
a borderline example. In this case, it may be beneficial to clarify its true nature.
Thus, led by epistemic curiosity, the robot asks its human counterpart to make
an utterance about the uncertain observation. If the robot does not interpret
according to the utterance given by the human (the robot’s interpretation was
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wrong), this observation is recorded as new knowledge and a search for the
new interpretation is started.

Using these two ways of interactive learning, the robot’s interpretation of
the world evolves both in amount, covering increasingly more phenomena
as they are encountered, and in quality, shaping the meaning of words
(utterances) to conform with the perceived world.

4.3 Validation Results by Simulation

In the simulated environment, images of real-world objects were presented
to the system alongside with textual tags describing colors present on each
object. The images were taken from the Columbia Object Image Library
database (COIL: it contains 1000 color images of different views of 100
objects). Five fluent English speakers were asked to describe each object
in terms of colors. We restricted the choice of colors to “Black”, “Gray”,
“White”, “Red”, “Green”, “Blue” and “Yellow”, based on the color opponent
process theory [20]. The tagging of the entire set of images was highly coherent
across the subjects. In each run of the experiment, we have randomly chosen
a tagged set. The utterances were given in the form of text extracted from the
descriptions. The object was accepted as correctly interpreted if the system’s
and the human’s interpretations were equal.

Figure 4.5 Upper: the WCS color table. lower: the WCS color table interpreted by robot
taught to distinguish warm (marked by red), cool (blue) and neutral (white) colors.
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The rate of correctly described objects from the test set was approximately
91% after the robot had fully learned. Figure 4.5 gives the result of interpre-
tation by the system of the colors of the WCS table regarding “Warm” and
“Cool” colors.

Figure 4.6 shows the learning rate versus the increasing number of
exposures of each color. It is pertinent to emphasize the weak number of
learned examples (required examples) leading to a correct recognition rate

Figure 4.6 Evolution of number of correctly described objects with increasing number of
exposures of each color to the simulated robot.

Figure 4.7 Examples of obtained visual colors’ interpretations (lower images) and corre-
sponding original images (upper images) for several testing objects from COIL database.
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of 91%. Finally, Figure 4.7 gives an example of objects’ colors interpretation
by the system.

4.4 Implementation on Real Robot and Validation Results

The validation of the proposed system has been performed on the basis
of both simulation of the designed system and by an implementation on
a real humanoid robot1. As real robot we have considered the NAO robot
(a small humanoid robot from Aldebaran Robotics) which provides a number
of facilities such as onboard camera (vision), communication devices and
onboard speech generator. The fact that the above-mentioned facilities were
already available offers a huge save of time, even if those faculties remain
quite basic in that kind of robot.

Although the usage of the presented system is not specifically bound to
humanoid robots, it is pertinent to state two main reasons why a humanoid
robot has been used for the system’s validation. The first reason for this is
that from the definition of the term “humanoid”, a humanoid robot aspires
to make its perception close to the human one, entailing a more human-like
experience of the world. This is an important aspect to be considered in the
context of sharing knowledge between a human and a robot. Some aspects
of this problem are discussed in [21]. The second reason is that humanoid
robots are specifically designed in order to interact with humans in a “natural”
way by using a loudspeaker and microphone set. Thus, required facilities
for bi-directional communication with humans through speech synthesis and
speech recognition are already available on such kinds of robots. This is of
major importance when speaking is a central item for natural human-robot
interaction.

4.4.1 Implementation

The core of the implementation’s architecture is split into five main units:
Communication Unit (CU), Navigation Unit (NU), Low-level Knowledge
Acquisition Unit (LKAU), High-level Knowledge Acquisition Unit (HLAU)
and Behavior Control Unit (BCU). Figure 4.8 illustrates the bloc-diagram
of the implementation’s architecture. The aforementioned units control NAO
robot (symbolized by its sensors, its actuators and its interfaces in Figure 4.8)

1A video capturing different parts of the experiment may be found online on:
http://youtu.be/W5FD6zXihOo
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Figure 4.8 Block diagram the implementation’s architecture.

through its already available hardware and software facilities. In other words,
the above-mentioned architecture controls the whole robot’s behavior.

The purpose of NU is to allow the robot to position itself in space with
respect to objects around it and to use this knowledge to navigate within
the surrounding environment. Capacities needed in this context are obstacle
avoidance and determination of distance to objects. Its sub-unit handling
spatial orientation receives its inputs from the camera and from the LKAU.
To get to the bottom of the obstacle avoidance problem, we have adopted a
technique based on ground color modeling. Inspired by the work presented
in [22], color model of the ground helps the robot to distinguish free-space
from obstacles. The assumption is made that obstacles repose on ground
(i.e. overhanging and floating objects are not taken into account). With this
assumption, the distance of obstacles can be inferred from monocular camera
data. In [23], some aspects of distance estimation from a static monocular
camera have been mentioned, proffering the robot the capacity to infer
distances and sizes of surrounding objects.

The LKAU ensures gathering of visual knowledge, such as detection
of salient objects and their learning (by the sub-unit in charge of salient
object detection) and sub-recognition (see [18, 24]). Those activities are
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carried out mostly in an “unconscious” manner, that is, they are run as
an automatism in “background” while collecting salient objects and learn-
ing them. The learned knowledge is stored in Long-term Memory for
further use.

The HKAU is the center where the intellectual behavior of the robot is
constructed. Receiving its features from the LKAU (visual features) and from
the CU (linguistic features), this unit processes the belief generation, the most
coherent beliefs emergence and constructs the high-level semantic represen-
tation of acquired visual knowledge. Unlike the LKAU, this unit represents
conscious and intentional cognitive activity. In some way, it operates as a
baby who learns from observation and from verbal interaction with adults
about what he observes developing in this way his own representation and his
own opinion about the observed world [25].

The CU is in charge of robot communications. It includes an output
communication channel and an input communication channel. The output
channel is composed of a Text-To-Speech engine which generates human
voice through loudspeakers. It receives the text from the BCU. The input
channel takes its input from a microphone and through an Automated Speech
Recognition engine (available in NAO) the syntax and semantic analysis
(designed and incorporated in BCU) it provides the BCU labeled chain of
strings representing the heard speech. As it has been mentioned, the syntax
analysis is not available on NAO. Thus it has been incorporated in BCU. To
perform syntax analysis, the TreeTagger tool is used. Developed by the ICL at
University of Stuttgart, the TreeTagger tool is a tool for annotating text with
part-of-speech and lemma information. Figure 4.9 shows, through a simple
example of an English phrase, the operational principle of syntactic analysis
performed by this tool. “Part-of-speech” row gives tokens explanation and the
“Lemma” row shows lemmas output, which is the neutral form of each word in
the phrase. This information along with known grammatical rules for creation
of English phrases may further serve to determine the nature of the phrase as

Figure 4.9 Example of English phrase and the corresponding syntactic analysis output
generated by treetagger.
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declarative (for example: “This is a Box”), interrogative (for example: “What
is the name of this object?”) or imperative (for example: “Go to the office”).
It can be also used to extract the subject, the verb and other parts of speech,
which are further processed in order to make emerge the appropriate action
by the robot. Figure 4.10 gives the flow diagram of communication between
the robot and a human as it has been implemented in this work.

The BCU plays the role of a coordinator of robot’s behavior. It handles data
flows and issues command signals for other units, controlling the behavior of
the robot and its suitable reactions to external events (including its interaction
with humans). BCU received its inputs from all other units and returns
its outputs to each concerned unit including robot’s devices (e.g. sensors,
actuators and interfaces) [25].

4.4.2 Validation Results

A total of 25 every-day objects was collected for experimental purposes of
(Figure 4.11). They have been randomly divided into two sets for training and
for testing. The learning set objects were placed around the robot and then a
human tutor pointed to each of them calling it by its name. Using its 640x480
monocular color camera, the robot discovered and learned the objects from its
surrounding environment containing objects from the above-mentioned set.

Figure 4.10 Flow diagram of communication between a robot and a human which is used in
this work.
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Figure 4.11 Everyday objects used in the experiments in this work.

The first validation involving the robot has aimed at verifying the leaning,
color interpretation, interaction with human and description abilities of the
proposed (e.g. investigated) system. To do this, the robot has been asked to
learn a subset of the 25 objects: in terms of associating the name of each
detected object to that object. At the same time, a second learning process has
been performed involving the interaction with the tutor who has successively
pointed the above-learned objects describing (e.g. telling) to the robot the
color of each object. Here below, an example of the Human-Robot interactive
learning is reported:

• Human: [pointing a red aid-kit] “This is a first-aid-kit!”
• Robot: “I will remember that this is a first-aid-kit.”
• Human: “It is red and white.”
• Robot: “OK, the first-aid-kit is red and the white.”

After learning the names and colors of the observed objects, the robot is
asked to describe a number of objects including also some of the already
learned objects but in a different posture (for example the yellow chocolate
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box presented in reverse posture, etc.) and a number of still unseen objects
(as for example a red apple or a white teddy-bear). The robot has successfully
described, in coherent linguistics, the presented seen and unseen objects. Here
below is an example of Human-Robot interaction during the recognition phase:

• Human: [pointing the unseen white teddy-bear]: “Describe this!”
• Robot: “It is white!”
• Human: [pointing the already seen, but reversed, yellow chocolate box]:

“Describe this!”
• Robot: “It is yellow!”
• Human: [pointing the unseen apple]: “Describe this!”
• Robot: “It is red!”

Figure 4.12 shows two photographs of the above-reported experimental vali-
dation, where the robot completes its knowledge by interacting with a human
and learning from him. Figure 4.13 shows another two photographs where
the robot describes different objects it could detect within its surrounding
environment.

In another experiment, taking into account the previously learned objects,
among which the robot has detected and has learned a black book (the only
available book in the learning set), the robot has been asked to search for the
book in a new (e.g. unseen) environment where a number of different objects,
including the above-mentioned black book, have been placed with two new
books (unseen) as well as other objects looking similar to a book. The robot’s
behavior and Human-Robot interaction during this experiment is given here
below:

• Human: “Go find the book!”
• Robot: “OK, I am searching for the book!”

Figure 4.12 Tutor pointing an aid-kit detected by robot describing its name and color to the
robot (left-side picture). Pointing, in the same way, another visible objects detected by robot,
tutor describes them to the robot (Right-Side picture).
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Figure 4.13 Tutor pointing a yellow chocolate box which has been seen, interpreted and
learned (by the robot) in terms of colors then asking the robot to describe the chosen object
(left-side picture). Tutor pointing an unseen white teddy-bear asking the robot to describe the
chosen object (right-side picture).

• Robot: [after visually exploring the new surrounding environment]: “I
can see three books!”

• Human: “Get the red one!”
• Robot: [after turning toward the “red and grey” book and after walking

and reaching the aforementioned book’s location] “I am near the red
book!”

Figure 4.14 shows two photographs of the robot during its searching for the
required “red” book. Besides the correct recognition of the desired object
(asked by the tutor), what is pertinent and interesting to note is that the robot
also found two other unseen books. What is also very pertinent to emphasize,
and very interesting, is that even if there is no “red” book in that environment,
the robot has correctly interpreted the fact that the red book required by the
human was the “red and grey” book: the only book that may coherently

Figure 4.14 Images from a video sequence showing the robot searching for the book
(left-side picture) and robot’s camera view and visualization of color interpretation of the
searched object (right-side picture).
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be considered as “red” by the human. A video showing the experimental
validation may be found on http://youtu.be/W5FD6zXihOo. More details of
the presented work with complementary results can be found in [19, 25].

4.5 Conclusions

This chapter has presented, discussed and validated a cognitive system for
high-level knowledge acquisition from visual perception based on the notion
of artificial curiosity. Driving as well the lower as the higher levels of the
presented cognitive system, the emergent artificial curiosity allows such a
system to learn in an autonomous manner new knowledge about the unknown
surrounding world and to complete (enrich or correct) its knowledge by inter-
acting with a human. Experimental results, performed as well on a simulation
platform as using the NAO robot, show the pertinence of the investigated
concepts as well as the effectiveness of the designed system. Although
it is difficult to make a precise comparison due to different experimental
protocols, the results we obtained show that our system is able to learn
faster and from significantly fewer examples than most of more-or-less similar
implementations.

Based on the results obtained, it is thus justified to say that a robot
endowed with such artificial curiosity-based intelligence will necessarily
include autonomous cognitive capabilities. With respect to this, the fur-
ther perspectives regarding the autonomous cognitive robot presented in
this chapter will focus on integration of the investigated concepts in other
kinds of robots, such as mobile robots. There, it will play the role of an
underlying system for machine cognition and knowledge acquisition. This
knowledge will be subsequently available as the basis for tasks proper for
machine intelligence such as reasoning, decision making and an overall
autonomy.
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