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Abstract

The chapter presents two identification techniques which the authors found
most useful in examining the dynamic characteristics of a manipulator with
a parallel kinematic structure as an object of control. These techniques
emphasize a frequency domain approach. If all input/output signals of an
object can be measured, then the first one of such techniques may be used for
identification. In the case when all disturbances can’t be measured, the second
identification technique may be used.

Keywords: Manipulator with parallel kinematics, structural identification,
control system.

2.1 Introduction

Mechanisms with parallel kinematics [1, 2] compose the basis for the
construction of single-stage and multi-stage manipulators. A single-stage
manipulator consists of an immobile basis, a mobile platform and six guide
rods. Each rod can be represented as two semi rodsAij and an active kinematics
pair Bij (Figure 2.1).
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Figure 2.1 Kinematic diagram of single-section mechanism.

We will consider two systems of co-ordinates: inertial O0X0Y0Z0 with the
origin in the center of the base O0 and mobile O1X1Y1Z1, with the origin
O1 in the platform center of mass. From Figure 2.1 it is evident, that such
mechanisms consist of thirteen mobile links and eighteen kinematics pairs.
That is why, in accordance with [2], the number of its possible motions
equals six.

Let us propose the following definitions ( j∈[1:6]): l1j – length of rod
number j; Mx,My,Mz– projections of the net resistance moment vector on the
axes of the co-ordinate system O0X0Y0Z0.

Obviously, while lengths l1, j are changing, then the co-ordinates of the
platform’s center of mass and the projections of the resistance moment vector
are changing too.

From the point of view of automatic control theory, the mechanism with
parallel kinematics belongs to the array of mobile control objects with two
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multidimensional entrances (control signals and disturbances) and one output
vector (platform co-ordinates).

2.2 Purpose and Task of Research

The main purpose of this research is to construct a mathematical model
which characterizes the interrelation between control signals, disturbances and
co-ordinates of the platform center of mass on the base of experimental data.

If one assembles the length of rod changes in the vector of control signals
u1, the projections of force resistance moment changes in the disturbance
vector ψ and the coordinates of the platform center of mass changes in the
output vector x

u1 =

⎡
⎢⎣
l1,1

...
l1,6

⎤
⎥⎦ , ψ =

⎡
⎣ Mx

My

Mz

⎤
⎦ , x =

⎡
⎣ Xc
Yc
Zc

⎤
⎦ , (2.1)

then the block diagram of the mechanism with parallel kinematics can
be represented as shown on the Figure 2.2 where W u is an operator which
characterizes the influence of the control signals vector u on the output vector x
and Wψ is an operator which describes the influence of the disturbance vector
ψ on the output vector x. In this case, in order to find the mathematical model,
it is necessary to define these operators. If we want to find such operators

Figure 2.2 Block diagram of the mechanism with parallel kinematics.
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based on experimental data, then two variants of the research task can be
enunciated.

The first variant will be applied if the components of vectors u1, x and ψ
can be measured fully (the complete data). The second variant will be applied
in the case when only the components of vectors u1 and x can be measured
(the incomplete data).

So the research on the dynamics of the mechanism with parallel kinematics
can be formulated as follows: to find transfer function matrices Wu, Wψ and
also to estimate the influence of vectors u1 and ψ on vector x on the base of
known complete or incomplete experimental data.

The solution of such a problem has been found as a result of three stages of:

• The development of algorithms for the structural identification of a
multivariable Dynamic object with the help of complete or incomplete
data;

• Collecting and processing experimental data about vectors u1, x and ψ;
• The verification of the results of the structural identification.

2.3 Algorithm for the Structural Identification of the
Multivariable Dynamic Object with the Help of the
Complete Data

Let’s suppose the identification object dynamics is characterized by a transfer
function matrix Wob (Figure 2.2), which may have unstable poles. Suppose
that as a result of the processing of regular components of vectors u and x, the

Laplace transformations
�
Upand

�
Xp are defined

�
Up = L {u} = L

{[
u1
ψ

]}
,
�
Xp = L {x} . (2.2)

Thus, the Laplace transformation of output vector
�
Xp has unstable poles

of vector
�
Up and unstable poles of matrix Wob. Therefore, it is possible to

remove all unstable poles from
�
Xp[3] which differ from the unstable poles of

�
Up and to define a diagonal polynomial matrix W2 such as

�
Y p= W2·

�
Xp . (2.3)

In this case, the interdependence between vectors
�
Y p and Up is expressed

with the help of equation
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�
Y p = F1p·

�
Up, (2.4)

where F1p is a transfer function matrix, all the poles of which are located
in the left half-plane (LHP) of complex variables. It is equal to

F1p = W2 ·Wob. (2.5)

Consequently, the identification problem consists in determining a physi-
cally implemented matrix F1p that minimizes a quality functional

J =
1

2 · π · j ·
∫ j∞

−j∞
tr(ε · ε∗ ·A) · ds, (2.6)

where ε – identification error, which is equal to

ε = F1p·
�
Up − �

Y p, (2.7)

A– is a positively defined polynomial weight matrix.
To solve this problem, the ratio (2.7) must be submitted in a vector-matrix
form

ε =
[
F1p −En

] ·
[ �
Up
�
Y p

]
. (2.8)

The Hermitian conjugated vector ε∗ from Equation (2.6) is equal to

ε∗ =
[
�
Up∗

�
Y p∗

]
·
[
F1p∗
−En

]
. (2.9)

After introducing the expressions (2.8) and (2.9) into the Equation (2.6),
the quality functional can be shown as follows:

J = 1
2·π·j ·

j∞∫
−j∞

tr

{[
F1p −En

] ×

×
[ �
Up · �Up∗

�
Up · �Y p∗

�
Y p · �Up∗

�
Y p · �Y p∗

]
·
[
F1p∗
−En

]
·A

}
· ds.

(2.10)

Thus, the problem of structural identification is reduced to the minimization
of the functional (2.10) on the class of a steady variation matrix of transfer
functions F1p. Such minimization has been carried out as a result of the
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application of the Wiener-Kolmogorov procedure. In accordance with such
procedure [5], the first variation of the quality functional (2.10) has been
defined as

δJ =
1

2 · π · j ·
∫
tr{A0∗ · [A0 · F1p ·D − (H0 +H+ +H−)] · L ·D∗

× δF1p∗ + δF1p ·D · L · [D∗ · F1p∗ ·A0∗ − (H0 +H+ +H−)∗]
× A0} · ds, (2.11)

whereA0 is a result of the factorization [4] of the matrix A the determinante
pf which has zeros with the negative real parts

A = A0∗ ·A0; (2.12)

D is a fraction-rational matrix with particularities in the left half-plane (LHP)
which is defined on the basis of the algorithms in articles [3, 4] from the
following equation

D · L ·D∗ =
�
Up · �Up∗, (2.13)

where L is a singular matrix, each element of which is equal to one; bottom
index * designates the Hermitian conjugate operation; H0+H++H− is a
fraction-rational matrix which is equal to

H0 +H+ +H− = A0·
�
Y p · �Up∗ ·D−1

∗ · L+; (2.14)

L+ is the pseudo inverse to matrix L [5]; matrix H0 is the result of the division;
H+ is a proper fractional rational matrix with poles that are analytic only in the
right half-plane (RHP); H−is a proper fractional rational matrix with poles that
are analytic in LHP. In accordance with the chosen minimization procedure,
a steady and physically realized variation F1p which delivers a minimum to
the functional (2.10) is equal to

F1p = A−1
0 · (H0 +H+) ·D−1. (2.15)

If one takes into account matrices W2, F1p from Equations (2.3) and (2.15),
then an unknown object transfer function matrix Wob can be identified with
the help of the following expression

Wob = W−1
2 · F1p. (2.16)

The separation [4] of the transfer function matrix (2.16) makes it possible to
find the unstable part of the object transfer function matrix with the help of
equation
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Wob2 = W−, (2.17)

where W− is a fraction-rational matrix with particularities in the RHP.
An algorithm for the structural identification of the multivariable dynamic

object with an unstable part on the base of the vectors u and x emplees the
implementation of the following operations:

• Search the matrix W2 as a result of the left-hand removal of the unstable
poles from Xp, which differ from the poles of Up;

• Factorization of the weight matrix A from (2.12);
• Identification of the analytical complex variable matrix D

Equation (2.13);
• Calculation of H0 + H+ as a result of the separation (2.14);
• Calculation of F1p on the basis of the Equation (2.15);
• Identifying Wob2 by the separation of the product (2.16).

In this way, we have substantiated the algorithm for the structural identification
of the multivariable dynamic object with the help of the complete experimental
data.

2.4 Algorithm for the Structural Identification of the
Multivariable Dynamic Object with the Help of
Incomplete Data

Let’s suppose that the identification object dynamics is characterized by
a system of ordinary differential equations with constant coefficients. The
Fourier transformation of such system, subject to the zero initial conditions,
can be shown as follows:

P · x = M · u1 + ψ, (2.18)

where P and M are polynomial matrices of the appropriate dimensions; ψ
is the Fourier image of a centered multivariable stationary random process
with the unknown spectral densities matrix Sψψ. Let us admit also that vectors
u and x are the centered multivariable stationary random processes with the
matrices of the spectral and cross-spectral densities Sxx, Suu, Sxu, Sux known
as a result of the experimental data processing. It is considered that the random
process ψ can be formed by a filter with the transfer function matrix Ψ and is
equal to
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ψ = Ψ · Δ, (2.19)

where Δ is the vector of the single δ-correlated “white” noises.
If one takes into account expression (2.19), then Equation (2.18) can be

rewritten as follows:

x = P−1 ·M · u1 + P−1 · Ψ · Δ (2.20)

and a transfer function matrix which must be identified can be defined as the
expression

φ =
[
φ11 φ12

]
=

[
P−1 ·M P−1Ψ

]
. (2.21)

So, the Equation (2.20) can be simplified to the form

x = φ · y, (2.22)

where y is an extended vector of the external influences

y =
(
u′ Δ′ )′

. (2.23)

Thus, the identification problem can be formulated as follows. Using the
records of the vectors x and y, choose the sectional matrix string φ (2.21)
that provides minimum to the following quality functional

J =
1
j

j∞∫
−j∞

tr{S′
εεR}ds, (2.24)

where J is equal to the sum of the identification errors variances as the
elements of the identification errors vector ε

ε = x− φ · y. (2.25)

S′
εε is a transposed matrix of the identification errors spectral densities

S′
εε = S′

xx − S′
yxφ∗ − φS′

xy + φS′
yyφ∗; (2.26)

S′
yx =

(
S′
ux S′

Δx
)
; (2.27)

S′
yy =

[
S′
uu Om×n

On×m S′
ΔΔ

]
, (2.28)
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S′
xx, S′

uu, S′
yy are the transposed spectral density matrices of the vectors x,

u, y; S′
xy, S′

yx, S′
ux is the transposed cross-spectral density matrices between

vectors x and y, y and x, u and x; S′
Δx is a transposed cross-spectral density

matrix which is found on the basis of the Wiener’s factorization [3] of the
additional connection equation

SxΔSΔx = Sxx − SxuS
−1
uu Sux, (2.29)

R is a positively defined polynomial weight matrix.
An algorithm for the set problem decision, which is grounded in [8] and

allows defining the sought after matrix φ which minimizes the functional
(2.24), has the following form

φ = R0(K0 +K+)D−1, (2.30)

in which matricees R0 and D are results of the Wiener’s factorization [3] of
matrices R and S′

yy so that

R0∗R0 = R;DD∗ = S′
yy; (2.31)

K0+K+ is a transfer function matrix with the stable poles, which is defined as
a result of the following equation right part separation [7]

K0 +K+ +K− = R0S
′
yxD

−1
∗ . (2.32)

An algorithm for the structural identification of a multivariable dynamic object
with the help of the stochastic stationary components of vectors u1 and x
implies the following operations:

• Search for the spectral and cross-spectral densities matrices Sxx, Suu,
Syy, Sux, Sxu on the base of the experimental data processing;

• Factorization of the weight matrix R from (2.31);
• Factorization of the additional connection Equation (2.29);
• Factorization of the transposed spectral densities matrix (2.28);
• The Wiener’s separation of the matrix (2.32);
• Calculation of matrix φ based on Equation (2.30);
• Identification of matrices φ11 and φ12with the help of Equation (2.21).

In this way, we substantiate the algorithm for the structural identification
of the multivariable object on the base of the incomplete experimental
data.
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2.5 The Dynamics of the Mechanism with a Parallel
Structure Obtained by Means of the Complete Data
Identification

To identify the models of a dynamics, we used tracks of changes in the compo-
nents of vectors u, ψ and x, obtained as a result of the behavior of a modeling
platform using a virtual model. The case was considered when the motion
platform center of mass O1 remained in the plane of the manipulator symmetry
O0X0Y0. Thus, it is evident that in this case, instead of six rods only three
(Figure 2.1) may be considered and the dimension of vector u (2.1) is equal 3.

As a result of the computational experiment, all the above vectors’
components were obtained and all graphs of their changes (Figures 2.3–2.5)
were built.

For solving of the identification problem, the control and perturbations
vectors were combined into a single vector u of the input signals

u =
[
l1,1 l1,2 l1,3 Mx My Mz

]T
. (2.33)

In this case, the identification problem is to estimate the order and
the parameters of a differential equations system which characterizes the
mechanism motion.

Figure 2.3 Graphs of changes in the length of the rods.
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Figure 2.4 Graphs of changes in the projections of the resistance moments.

Figure 2.5 Graphs of chances in the coordinates of the platform’s center of mass.
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The state space dynamic model of the mechanism is defined with the help
of the System Identification Toolbox of the Matlab environment. Considering
the structure of vector u, defined by (2.33), allows to obtain the equation of
the hexapod’s state as follows:

ẏ(t) = Ay(t) +Buu(t) +Bψψ(t),

x(t) = Cy(t) +Duu(t) +Dψψ(t), (2.34)

where the matrices Bu, Bψ, Du and Dψ are easily determined.
The analysis of the obtained model of dynamics shows that the moving

object is fully controllable and observable.
As a result, the Laplace transformation of the left and right parts of the

Equations (2.34) obtained the following relations{
(sEn −A)y(s) = Buu(s) +Bψψ(s)
x(s) = Cy(s) +Duu(s) +Dψψ(s), (2.35)

where y(s), x(s), u(s), ψ(s) – the Laplace image of the vector, En – the identity
matrix, s – the independent complex variable.

After solving the system of Equations (2.35) with respect to the vector
of the initial coordinates of the mechanism x, the following matrices of the
transfer functions Wu and Wψ (Figure 2.2) were obtained

Wu = C (sEn −A)−1Bu +Du, (2.36)

Wψ = C (sEn −A)−1Bψ +Dψ. (2.37)

Substituting the appropriate numerical matrices C, Bu, Bψ, Du, Dψ, in
expressions (2.36), (2.37) allowed determining that

Wu=

[ −0.37(s+1.606)(s2 +21.03s + 790.2)
(s + 1.55)(s2 + 3.463s + 117.8)

−0.599(s − 57.51)(s2 − 2.215s + 8.456)
(s + 1.55)(s2 + 3.463s + 117.8)

0.29(s + 2.232)(s2 + 21.65s + 529.7)
(s + 1.55)(s2 + 3.463s + 117.8)

2.23(s − 14.01)(s2 − 0.67s + 87.82)
(s + 1.55)(s2 + 3.463s + 117.8)

0.92796(s + 0.4741)(s2 − 8.066s + 404.6)
(s + 1.55)(s2 + 3.463s + 117.8)

0.36433(s + 75.92)(s2 − 2.029s + 91.39)
(s + 1.55)(s2 + 3.463s + 117.8)

]
, (2.38)
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Wψ=

[ −0.006(s−2.782)(s2 +10.9s+450.5)
(s + 1.55)(s2 + 3.463s + 117.8)

0.0023(s + 43.94)(s2 − 3.357s + 8.447)
(s + 1.55)(s2 + 3.463s + 117.8)

0.046892(s−10.1)(s2 +3.372s + 133.1)
(s + 1.55)(s2 + 3.463s + 117.8)

0.059(s + 0.162)(s2 − 2.875s + 124.3)
(s + 1.55)(s2 + 3.463s + 117.8)

0.0049(s + 57.79)(s + 8.592)(s − 2.702)
(s + 1.55)(s2 + 3.463s + 117.8)

−0.014(s + 22.92)(s2 + 1.572s + 174.3)
(s + 1.55)(s2 + 3.463s + 117.8)

]
. (2.39)

The analysis of the matrix structure of (2.38) and (2.39) and the Bode
diagrams (Figure 2.6) shows that this mechanism can be classified as a multi-
resistant mechanical filter with the input signals and the disturbances energy
bands lying in the filter spectral band pass. The eigen frequency of such a filter
is close to 11s−1 and depends on the moments of inertia and the mass of the
moving elements of the mechanism (Figure 2.1).

The ordinary differential equations dynamics model of the system can
be obtained if you present the transfer function matrices Wu and Wψ as a
product of the polynomial matrices P, M and Mψ with the minimum order
polynomials:

Wu = P−1M, (2.40)

Wψ = P−1Mψ. (2.41)

To find the polynomial matrices Pand M with the minimum order polynomials,
we propose the following algorithm:

• By moving the poles to the right [3], the transfer function matrix Wu

should be introduced as follows:

Wu = NRD
−1
R (2.42)

and the diagonal polynomial matrix DR should be found;

• On the basis of the polynomial matrices NR and DR found by the CMFR
algorithm, substantiated in [7], the unknown matrices P and M should
be identified

P−1M = NRD
−1
R ; (2.43)

• From Equation (2.41) and the known matrices P and Wψ the polynomial
matrix Mψ should be found

Mψ = PWψ. (2.44)
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Figure 2.6 Bode diagrams of the mechanism with a parallel structure.
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Figure 2.7 Block diagram of the mechanism with a parallel kinematics.

The application of the algorithms (2.42) and (2.43) to the original data
represented by expressions (2.38), (2.39) made it possible to obtain the
polynomial matrices P, M, Mψ. Then, application of the inverse Laplace
transform under the zero initial conditions allowed determining the following
system of ordinary differential equations

P0ẍ+P1ẋ+P2x = M0ü+M1u̇+M2u+Mψ0ψ̈+Mψ1ψ̇+Mψ2ψ, (2.45)

where Pi, Mi, ψi – the numeric matrices.
Representing the dynamic model (2.45) allowed to reconstruct a

block diagram of a parallel kinematics mechanism in the standard form
(Figure 2.7), where P−1 is an inverse of matrix P.

2.6 The Dynamics of the Mechanism with a Parallel
Structure Obtained by Means of the Incomplete
Data Identification

The incomplete experimental data arises when not all entrance signals of
vector u (Figure 2.2) can be measured and recorded. Such a situation appears
during the dynamics identification of a manipulator with controlled diode
motor-operated drive (Figure 2.8). In this case, only signals of the platforms
center of mass set position which form vector u1 and signals of the platform’s
center of mass current position which form vector x are accessible for
measuring. Thus, the task of the identification is to define matrices φ11, φ12
from Equation (2.21) by records of vectors u1 and x.
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Figure 2.8 Manipulator with a controlled diode motor-operated drive.

Solving this task is achieved as a result of algorithm (2.30–2.32) applied
to the estimations of the spectral and cross-spectral density matrices Suu, Sxx,
Sux and SΔx. For the illustration of this algorithm application, we used the
records of the «input-output» vectors u, x with the following structure

u =

⎡
⎣ u1
u2
u3

⎤
⎦ ;x = [Zc] , (2.46)

where u1 – the required value of the manipulators’ platform center of mass
O1 projection on the axis O0X0 (Figure 2.1); u2 – the required value of the
manipulators platform center of mass O1 projection on the axis O0Y0; u3 – the
required value of the manipulators’ platform center of mass O1 projection on
the axis O0Z0 (Figure 2.1).

As a result of the experiment, all the above vectors’ (2.46) components
were obtained and all the graphs of their changes (Figures 2.9, 2.10) were built.
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Figure 2.9 Grapas of the vector u componente changes.

Figure 2.10 Grapas of vector x component changes.

In accordance with this algorithm (2.26–2.32) on the first stage of the
calculations, estimations of matrices Suu, Sxx, Sux were found.

Approximation of such estimations made it possible to construct the fol-
lowing spectral densities matrices with the help of the logarithmic frequency
descriptions method [4]
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S′
uu =

⎡
⎢⎢⎢⎣

7.87|s+0.12|2
|s2+0.29s+0.034|2

0
12(−s+0.095)(s+0.15)

|s2+0.29s+0.034|2

0 12(s+0.095)(−s+0.15)
|s2+0.29s+0.034|2

45.5|s+0.075|2
|s2+0.64s+0.16|2 0

0 2.88|s+0.095|2
|s2+0.29s+0.034|2

⎤
⎥⎥⎥⎦ ;

S′
xx =

4.59 |(s+ 0.08) (s+ 1.3)|2
|(s+ 0.8) (s2 + 0.29s+ 0.034)|2 ;

S′
ux =

[
4.89(−s+0.1)(s+0.2)(−s+2.1)

(s+0.8)|s2+0.29s+0.034|2 0

1.2 (s+ 3) |s+ 0.095|2
(s+ 0.8)|s2 + 0.29s+ 0.034|2

]
. (2.47)

The introduction of the found matrices (2.47) into the Equation (2.29) and
its factorization made it possible to find the cross spectral density SΔx

SΔx =
0.89 (s+ 1.6) (s+ 0.031)

(s+ 0.8) (s2 + 0.29s+ 0.034)
. (2.48)

The factorization [4] of the transposed spectral densities matrix S′
yy from

expression (2.31) allowed finding the following matrix D

D =

⎡
⎢⎢⎢⎣

8.87(s+0.1)
s2+0.29s+0.034

0
1.34(s+0.11)

s2+0.29s+0.034
0

0
6.75(s+0.075)
s2+0.64s+0.16

0
0

−0.54
s2+0.29s+0.034

0
1.04(s−0.057)
s2+0.29s+0.034

0

0
0
0
1

⎤
⎥⎥⎥⎦ . (2.49)

Taking into account the dimension of the output co-ordinates vector x
(2.46), we have accepted that matrix R is equal to the identity matrix. At
that rate matrix R0 also equals 1. Substitution of the results (2.47–2.49) in
expression (2.32) and its separation allowed defining that

K0 +K+ =

⎡
⎢⎢⎢⎢⎣

−0.44(s−2.57)(s+0.12)
(s+0.8)(s2+0.29s+0.034)

0
1.95(s+1.16)(s−0.04)

(s+0.8)(s2+0.29s+0.034)
0.89(s+1.6)(s+0.03)

(s+0.8)(s2+0.29s+0.034)

⎤
⎥⎥⎥⎥⎦

′

. (2.50)
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Substitution of matrices (2.49), (2.50) in expression (2.30) and taking into
account the vectors u and x made it possible to solve the problem and to find
such matrices φ11 and φ12 as

φ11 =

⎡
⎢⎣

−0.33(s+0.61)(s−0.034)
(s+0.03)(s+0.8)

0
1.87(s+1.12)(s−0.008)

(s+0.03)(s+0.8)

⎤
⎥⎦

′

; (2.51)

φ12 =
0.89 (s+ 1.6) (s+ 0.031)

(s+ 0.8) (s2 + 0.29s+ 0.034)
(2.52)

Taking into account the flow diagram on Figure 2.2 and the physical sense
of matrices φ11 and φ12 made it possible to formulate the equation

Wu = φ11; Wψ = φ12. (2.53)

For the definition of the incomplete data identification error, the
Equation (2.26) is used and the error spectral density is found in the form
which is shown below:

S′
εε =

0.023
|s+ 0.037|2 . (2.54)

The identification error mathematical mean is equal to zero and its relative
variances is equal to

Eε =

j∞∫
−j∞

Sεεds

j∞∫
−j∞

Sxxds

= 0.0157. (2.55)

Obviously it is clear that the main part of the error ε oscillations power
density is concentrated in the area of the infrasonic frequencies. The presence
of such an error is explained by the limited duration of the experiment.

2.7 Verification of the Structural Identification Results

Verification of the identification results was implemented with the help of
the modeling tool SIMULINK from Matlab. The principle of the verifica-
tion of the identification results exactness was based on the comparison
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of vector x records to the results of the platform center of mass position
simulation.

On Figure 2.11, the simulation model block u is designed to create the
set of the input signals. The block m generates a set of projections of the net

Figure 2.11 The scheme simulation model of the mechanism with parallel kinematics.

Figure 2.12 Graphs of the change of coordinates X of the center of mass of the platform.
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Figure 2.13 Graphs of thee changes of Y coordinates of the center of mass of the platform.

resistance moment vector on the axis of the co-ordinate system O0X0Y0Z0.
The output of the block xy formed the vector x of records. The blocks Wu
and Wpsi are designed for storing the matrices of the transfer functions
Wu and Wψ.

According to the simulation results, the grapas (Figures 2.12 and 2.13) are
built. Analysis of these graphs show that they are close enough.

2.8 Conclusions

The conducted research on the mechanism with a parallel structure dynamics
made it possible to obtain the following scientific and practical results:

• Substantiate two new algorithms for the structural identification of the
multivariable moving object dynamic models. The first one of them
allows to define the structure and parameters of a transfer function matrix
of the object with unstable poles using the regular vectors "input-output".
The second one allows identifying not only the model of a mobile object
but also the model of the non-observed stationary stochastic disturbance;

• Three types of models which characterize the dynamics of the manipula-
tor with a parallel kinematics are identified. This allows to use different
modern multidimensional optimal control systems synthesis methods for
designing the optimal mechatronic system;
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• It is shown that the mechanism with a parallel kinematics as an object of
control is a multi-resistant mechanical filter.
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