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Abstract

The increased complexity of artificial intelligence (AI), machine learning
(ML) and deep learning (DL) methods, models, and training data to satisfy
industrial application needs has emphasised the need for AI model providing
explainability and interpretability. Model Explainability aims to commu-
nicate the reasoning of AI/ML/DL technology to end users, while model
interpretability focuses on in-powering model transparency so that users will
understand precisely why and how a model generates its results.

Edge AI, which combines AI, Internet of Things (IoT) and edge com-
puting to enable real-time collection, processing, analytics, and decision-
making, introduces new challenges to acheiving explainable and interpretable
methods. This is due to the compromises among performance, constrained
resources, model complexity, power consumption, and the lack of bench-
marking and standardisation in edge environments.

This chapter presents the state of play of AI explainability and inter-
pretability methods and techniques, discussing different benchmarking
approaches and highlighting the state-of-the-art development directions.

Keywords: edge AI, AI explainability, AI interpretability, explainable AI,
XAI, trustworthy edge AI.
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9.1 Introduction

Explainability and interpretability are terms used to describe how under-
standable edge artificial intelligence (AI), machine learning (ML), and deep
learning (DL) models provide insight into their decision-making, as their
complexity and opacity otherwise make it challenging to comprehend their
behaviour. This is required to get confidence that edge AI models are depend-
able (e.g., reliable, resilient, secure, safe), trustworthy, and adhere to ethical
principles appropriate to context, while ensuring that they are minimised. It
is necessary to distinguish between explainability and interpretability to help
developers and users in determining an AI/ML approach meets particular use
cases.

Explainability is the ability to explain the decision-making process in
terms that are understandable to the end user. An explainable model provides
a clear and intuitive explanation of the decisions made, enabling users to
understand why the model has produced a particular result; it focuses on why
an algorithm has made a specific decision and how that decision can be jus-
tified. It requires a straightforward and intuitive presentation of information
using an ontology familiar to the user. It is particularly valuable and beneficial
in the case of deep neural networks, where the models are difficult to interpret
due to the convoluted structure and complex internal interactions.

Interpretability is the ability to understand the decision-making process of
an edge AI model. An interpretable edge AI model provides clear information
about the relationship between inputs and outputs. An interpretable algorithm
can be explained clearly and understandably by a person. Interpretability is
essential to ensure that users will trust AI models.

While there are methods to explain the behaviour of models that are not
inherently interpretable, interpretability serves as a gold standard for model
explainability in a direct and transparent manner.

Superior AI explainability and interpretability come at the expense of
performance, as illustrated Figure 9.1 [7]. When datasets are large, and the
data are related to images or text, neural networks can meet the customer’s
AI/ML objective with high performance. For cases where complex methods
are required to maximise performance, data scientists may focus on model
explainability rather then of interpretability [7].

A conceptual workflow for the design of AI models which includes both
interpretability and explainability is illustrated in Figure 9.2.

Interpretability is mostly associated with model training, evaluation, and
quality assurance, while the explainability is a consideration of the deployed
AI model.
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Figure 9.1 AI Interpretability and Explainability vs Performance for Common ML Algo-
rithms (Adapted from [7])

Figure 9.2 Conceptual Workflow explainable and interpretable ML model development

The European Union’s Artificial Intelligence Act (AIA) [3] addresses AI
explainability and interpretability. The AIA is a comprehensive regulatory
framework that promotes transparency, accountability, and the protection of
individual rights in the face of AI’s growing influence, aiming to ensure the
ethical and responsible use of AI. A significant proportion of current AI-based
software falls within the scope of the AIA.

The European Parliament has amended the AIA by introducing Article
28 b, aligned with the 2019 OECD AI Principles [11], which states that AI
“should be robust, secure, and safe throughout its lifecycle so that it functions
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appropriately and does not pose unreasonable safety risks.” [12]. The new
Article 28b features nine responsibilities for developers of foundation mod-
els. Of these nine obligations, the following three are the most relevant for AI
designers;

Risk identification [Article 28b(2a)], which specifies that it is mandatory
to identify and mitigate reasonably foreseeable risks (inaccuracy, discrimina-
tion, etc.) with the support of independent experts.

Testing and evaluation obliges AI providers to make adequate design
choices to ensure that the foundation AI model achieves appropriate levels of
performance, predictability, interpretability, corrigibility, safety, and cyber-
security. AI model functions are the building blocks for many downstream
functions, so Article 28b(2c) aims to ensure that these meet the minimum
standards and do not compromise systemic quality.

Documentation is an obligation for AI providers in the form of data sheets,
model cards and intelligible use instructions. This is required to avoid that
black box AI foundational models being deployed without knowing their
processes or capabilities.

The documentation should include the following elements:

• A description of the data sources used in the development of the AI
foundational model.

• An explanation of the capabilities and limitations of the foundational
model, including reasonably foreseeable risks and the measures that
have been taken to mitigate these, as well as the remaining unmitigated
risks with an explanation of the motivation for which they could not be
contained.

• A description of the training resources utilised by the foundation model,
including the required computing power, the training time, and other rel-
evant information related to the model’s size, performance, and energy
efficiency.

• A description of the model’s performance based on public state-of-the-
art industry benchmarking methods.

• A report and explanation of the results of relevant internal and external
testing and optimisation of the model.

An overview of the responsibilities across the AI value chain according to
the AIA is illustrated in Figure 9.3. The AIA provides a holistic approach to
address the challenges posed by foundation models at different stages along
the entire AI value chain. This approach considers that along the AI value
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chain, multiple entities will supply tools, services and components, including
data collection and pre-processing, model training, model retraining, model
testing and evaluation, hardware/software integration. The complexity of the
AI value chain requires transparency in a manner that permits traceability and
explainability while making users aware that they are interacting with an AI
system [3].

This chapter is organised as follows. Section 1 introduces the edge AI
explainability and interpretability research area, including the proper defi-
nitions of the terms. Section 2 presents the goals of AI explainability and
interpretability. Section 3 provides an overview of the state of the art of
existing edge AI explainability and interpretability approaches, methods and
techniques, and the actual advantages/disadvantages. Section 4 describes pos-
sible benchmarking techniques for edge AI explainability and interpretability
to align with edge AI systems’ trustworthiness requirements. Section 5
presents more detail on edge AI explainability and interpretability elements
and specific issues. Section 6 describes the challenges, open issues, and future
research directions for edge AI explainability and interpretability. Section 7
draws the conclusions.

9.2 AI Explainability and Interpretability Goals

Explainable and interpretable artificial intelligence enables trustworth predic-
tive analytics, anomaly alerts, and decision-making. Data from edge devices
can be analysed to predict maintenance for machines in industry and to opti-
mise resource allocation in manufacturing. Effectively managing a distributed
range of explainable systems to provide faithful computations on the data
collected from edge devices is a fundamental challenge in deploying trans-
parent edge-based AI applications. Creating effective solutions that can easily
combine and accumulate decisions made by multiple models is still under
development. It represents one of the key research areas to be investigated in
the future [47]. Also aggregating explainability and interpretability in such
composed systems represents a key challenge.

Over many years, researchers have primarily focused on enhancing model
performance, relegating the intricate inner mechanisms that drive the out-
put to a secondary analysis. Classical neural networks rely on millions of
parameters (e.g., VGGNet has ∼138M parameters, and ResNet-152 has
∼60.3M parameters) [84]. Understanding the interconnections and com-
munication pathways in these networks remains a challenging task. Fur-
thermore, despite their remarkable performance, these models also exhibit
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vulnerabilities; object detectors and classification models, for example, can
be easily deceived with slight alterations to input signals using adversarial
examples [44], or decisions could be based on entirely incorrect features.
Gender biases and stereotypes also pose challenges for Natural Language
Processing (NLP) [45].

An understanding of the underlying mechanisms driving AI-driven model
results has emerged as an imperative. This understanding is also a fundamen-
tal goal for human progress and for enhancing current AI-based systems.With
the advent of new methodologies and large datasets, various sectors, includ-
ing finance, transportation, healthcare, and security, have adopted approaches
that are not only comprehensible but also endowed with an appropriate level
of trustworthiness and effective oversight. For example, medical diagnosis
systems usually employ visual explanations to provide support for their deci-
sions, increasing the classification confidence [42]. The financial sector also
heavily relies on interpretable methods for extracting trends and seasonalities
from historical time series data [46].

In scenarios involving the proliferation of edge devices within a system,
strategies that guarantee reliability, transparency, interoperability and foun-
dational defence against vulnerabilities and errors become imperative, partic-
ularly in critical domains. The reliability of the analytics platform becomes
crucial in these application scenarios. Autonomous systems equipped with
the ability to perceive, learn, and make decisions represent the fundamental
trajectory of future AI-based systems. Their actions must satisfy specific
requirements and be explained in critical contexts.

Domains where interpretable systems find application span a diverse
spectrum, for example:

Agriculture: Systems adept at extracting high-level insights from satellite
images and remote sensors provide invaluable farming decision support. The
possibility to expound upon the derived information is pivotal for informed
decision-making [38].

Finance: Insurance companies and banks rely on automated systems to pro-
file clients. These systems are pivotal in evaluating loan eligibility, demanding
a transparent rationale for granting or withholding loans. Clear justifications
are imperative for accountability and audit [36].

Industry and Autonomous Robots: Deploying automated systems to pre-
vent human injuries requires the ability to proactively prevent individuals
from specific actions. These systems must operate in a manner that absolves
companies of liability for any unintended or improper action [37], while
allowing post event analysis of any interventions that were performed.
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Medical Diagnosis: Classifying magnetic resonance imaging (MRI) scans
or histopathological images necessitates the elucidation of outcomes and
the identification of causative factors. This is crucial for ensuring accurate
diagnoses and comprehensible justifications for medical conclusions and
interventions [35, 42].

Military and Security: Territorial defence and soldier training could consid-
erably benefit from support systems that explain actions. These systems can
enhance the efficiency of achieving goals, ensuring that tactical manoeuvres
and training regimens are effective and comprehensively rationalised [39].

Recommendation Systems and Marketing: Typical applications consist
of profiling users to support marketing endeavours that augments corporate
revenues and facilitates the targeted promotion of products. Transparency
in explaining these attributes fosters customer engagement and strategic
decision-making [40].

Smart Cities: Aspects such as lighting, energy management, and traffic
control within smart buildings and urban infrastructures are very applicable to
AI. As the number of interconnected devices increases, AI-based frameworks
must explain decisions regarding different aspects of human life (e.g., water
supply, waste management, governance, etc.). Addressing cybersecurity and
privacy challenges with explainable and interpretable methods is crucial for
smart city development [43].

In addition, the General Data Protection Regulation (GDPR) [41], which
codifies regulations on information privacy in the European Union and the
European Economic Area, imposes legal obligations upon developers to
elucidate decisions that hold the potential for impact on individuals. Finally,
systems that inspire user confidence by being unambiguous and explainable
are much more likely to be positively received and well engaged with.

9.3 AI Explainability and Interpretability Methods and
Techniques

Highly accurate models are favoured over those that offer superior explain-
ability but diminished accuracy, given that the primary objective of a machine
learning system centres on its performance. However, it is not uncommon for
these systems to be viewed as opaque by human evaluators, and the interpre-
tation of their decision-making processes is often relegated to a subsidiary
investigation.
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Interpretability can enhance multiple aspects of a machine learning
model. It can rectify biases learned during training, ensure that only mean-
ingful variables contribute to the output, and measure robustness against
adversarial perturbations. Sectors such as healthcare, finance, and secu-
rity necessitate a profound understanding of ML models to uphold equity,
responsibility, and transparency principles.

AI explainability and interpretability primarily focus on two aspects of
an ML system: data and model. As illustrated in Figure 9.4, exploratory data
analysis and visualisation represent important tools for gaining insights from
data.

Dimensionality reduction techniques, such as PCA, ICA, t-SNE, LDA,
and autoencoders, are used in cases involving many variables. These tech-
niques convert high-dimensional data into a lower-dimensional form while
preserving or extracting their internal structures.

Several frameworks implement data exploration and explanation
techniques to express each feature’s relevance through graphs, heatmaps,
and various plots. Contrastive analyses provide interpretations that study the
impact of features in achieving a desired output rather than solely focusing
on the outcome itself.

Figure 9.4 Data and Model AI Explainability and Interpretability Classification
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While data explainability provides insights into the collected data, model
explainability and interpretability focuses on the techniques used to under-
stand the models. Specifically, explainable and interpretable models are
categorised into transparent surrogate models, as illustrated in Figure 9.5.

Models classified as transparent inherently offer comprehensive insight
through their intrinsic design or explicit processes aligned with the input
data. Logistic or linear regression, decision trees, k-nearest neighbours and
rule-based methods are examples of transparent models. This characteristic
is mainly owned by ante-hoc methods.

Ante-hoc techniques allow embedding explainability into a model from
the beginning. Post-hoc techniques enable models to be trained normally,
with explainability only included at testing time.

Generalised additive models (GAMs) [54], for example, represent one
of the first classes of nonparametric interpretable models, where the impact

Figure 9.5 AI Explainability and Interpretability Model Approach Classification
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Figure 9.6 AI Explainability and Interpretability Model-Agnostic Approach Classification

of the examined variables is captured through smooth linear (or nonlinear)
functions. Being additive, the effect, or impact of each variable can be
measured independently from the others. Decision trees follow a tree-based
logic, where control statements switch between specific paths to uncover rules
behind decisions.

While computationally cheaper to evaluate, transparent models may not
fulfil the performance criteria of the task at hand. Surrogate models use
approximation criteria to emulate the operative dynamics of the primary
model by assimilating the input-output relationship and exploiting fidelity
measures [50] to evaluate their performance.

These models present fewer challenges in interpretation. They are created
post-hoc and offer more flexibility and usability compared to the models
they are built on top of. Post-hoc explainability refers to models that are
not inherently interpretable by design and represent a class that encompasses
diverse means to increase the explainability.

Post-hoc techniques offer valuable approximations of the inner workings
or information flow to produce understandable representations using graphs,
rule sets, score maps, or natural language.

While model-specific techniques extract explainable representations tai-
lored to a particular learning algorithm or the internal structure of a model,
model-agnostic techniques utilise model inputs and predictions to replicate
the learning mechanism and generate explanations, as illustrated in Figure 9.6
and Figure 9.7.

Among model-specific techniques, feature importance highlights the
impact of each feature on the decision.

Condition-based explanation defines oriented questions to allow the
model to provide possible explanations with a set of conditions.
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Figure 9.7 AI Explainability and Interpretability Model-Specific Approach Classification

Knowledge distillation methods [70] or rule-based learners [71, 72] also
strongly rely on the original model.

Model-specific post-hoc explainable techniques cannot be employed
with arbitrary models. In this circumstance, model-agnostic techniques can
be considered since they involve conducting pairwise analyses of model
inputs and predictions, aiming to comprehend the learning mechanism and
generate explanations. This class, which does not make any assumptions
about the model, includes visualisation-based techniques [73, 74], knowledge
extraction [75, 76], and influence methods [77, 78]. Knowledge extraction
provides a comprehensible representation of the model. Influence methods,
instead, investigate the importance or resilience of hidden units by recording
signal variations within the model.

The way explanations are presented is also inextricably linked to the
nature of the data under examination. For instance, saliency, or attention,
maps are prevalent to explain decisions derived from visual data (popular
saliency methods are GradCAM [60], DeepLIFT [61] and SmoothGrad [62]);
conversely, for textual data, specific segments of text that contribute to the
resultant output are typically highlighted. Moreover, a predetermined set of
rules can be applied to highlight the relevance of attributes in influencing the
prediction.

Visual explanations represent one of the most important classes of meth-
ods used for classification, detection, and recognition tasks. Their success
can be ascribed to the immediate representation of the decisions, highlighting
what region of the input images generated that specific response. The medical
domain, for example, extensively relies on these approaches [69].

These methods are typically used for visually understanding convo-
lutional neural networks (CNNs) [66, 67, 68]. Most visual explanation
techniques use backpropagation-based approaches that compute partial
derivatives concerning each input feature or intermediate deep neural network
layers [47] [48].
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Another key distinction of the explanation generation processes relies on
type of extracted explanations, which are representative of instances (local) or
are broadly applicable (global). In this regard, local methods investigate the
output of the models for specific samples and refer to a dynamic explanation
process.

In this context, Local Interpretable Model-agnostic Explanations (LIME)
[55] builds a surrogate model around the sample, which is easy to explain.
A trade-off between unfaithfulness and the complexity of the model allows
non-experts to interpret decisions by weighing the most critical parameters.
Despite there being no guarantee that the surrogate models inherit the same
properties as the original model, it is model-agnostic and only requires small
perturbations to the input data.

Model Agnostic Supervised Local Explanations (MAPLE) [59] is a
supervised neighbourhood approach that combines local linear models and
ensembles of decision trees. SHAP (SHapley Additive exPlanations) [56] is
another technique, based on game theory, used to explain the predicted output
by computing the contribution of each input feature to the prediction.

Shapley values could refer to individual feature values or groups of
feature values. For instance, pixels can be grouped into super pixels to explain
an image. This method can be used both locally and globally. Other examples
are counterfactual explanations [57].

Random Forest Feature Importance [63], Quasi Regression [64] and
Global Sensitivity Analysis (GSA) [65] are examples of global methods that
measure the importance of the features that contributed to the prediction
highlighting their overall influence.

In this context, Partial Dependence Plots (PDPs) represent a class of
visualisation-based techniques that define a global method able to visualise
the effect of the values of a specific feature by marginalising all the other
features.

Along with t-SNE, PCA and Quasi Regression, in these techniques the
explanation is directly inferred from the black box model, compared to
surrogate models. These methods are categorised as illustrated in Figure 9.8.

Whilst numerous methods were developed to explain the results, criteria
to assess the explainability of a model are a fundamental and active area
of research since several properties, such as casualty, target’s belief, or
trustiness, cannot be easily formalised [57].

Complexity and sparsity represent two critical aspects of evaluating
a model to define its interpretability. The Predictive, Descriptive, Rele-
vant (PDR) framework [58] proposes three desiderata for evaluating and
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constructing interpretations: predictive accuracy, descriptive accuracy, and
relevancy.

9.4 Benchmarking

The effectiveness of interpretable and explainable AI (XAI) techniques is
influenced by various factors, including the user, usage context, model type,
data characteristics, and desired form of explanation. Several approaches have
been introduced in the literature to analyse and measure such effectiveness,
the performance, and impact of interpretable and explainable AI techniques
in real-life applications. However, the definition of a standard set of measures
for evaluationg the effectiveness of interpretable and explainable AI tech-
niques is still an open research problem, and there has yet to be an agreement
on standard benchmarking methods.

The lack of accords stems from the fact that a qualitative human-based
evaluation of the explanation is often necessary to assess the explanation
quality. Nevertheless, several research trends are oriented towards the def-
inition of quantitative approaches, enabling an automatic measurement of
interpretable and explainable AI techniques, and allowing us to effectively
compare different techniques [28].

It is therefore possible to distinguish two kinds of approaches to evaluate
the effectiveness of interpretable and explainable AI techniques: i) quan-
titative evaluation methods, which involve creating an objective metric or
benchmark to measure explanations without human involvement and that
offer the advantage of facilitating comparisons between different explanation
methods; ii) qualitative evaluation methods, which involve humans in evalu-
ating explanations and permit evaluating the beneficial effects of interpretable
and explainable AI methods from the users’ perspective.

Quantitative evaluation approaches can be classified according to differ-
ent taxonomies in the literature. As an example, [28] classifies evaluation
approaches according to the type of application (images classifiers generating
heatmaps, and natural language processing techniques). Moreover, recent
studies propose the use of synthetically generated data with known properties
to quantitatively evaluate the performance of interpretable and explainable
AI methods [34]. However, generating realistic synthetic data with specific
properties known a priori can be challenging for real application contexts.
Together with classifying quantitative evaluation approaches, some work in
the literature also review the measures used to evaluate their effectiveness.
For example, [30] describes the following figures of assessments:
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• Fidelity seeks to assess the accuracy of function f in emulating func-
tion b. Variations of fidelity exist, contingent upon the specific type of
explainer being examined [31].

• Stability confirms that comparable instances yield consistent expla-
nations. The assessment of stability can be accomplished using the
Lipschitz constant [32].

• Deletion involves eliminating the features that were deemed important
by the explanation method f, observing how the performance of b deteri-
orates as a result. One of the deletion methods is Faithfulness [32], which
seeks to confirm whether the relevance scores truly reflect significance:
higher importance values are anticipated for attributes that substantially
influence the ultimate prediction.

• Insertion employs a complementary approach to deletion. Typically,
both insertion and deletion evaluations are customised for specific types
of explainers: Feature Importance explainers for tabular data, Saliency
Maps for image data, and Sentence Highlighting for text data.

• Monotonicity [33] can be viewed as a manifestation of an insertion
approach. It assesses the impact of b by systematically introducing each
attribute in ascending order of importance. In this scenario, the antic-
ipation is for the performance of the black-box model to progressively
improve as more features are added, leading to monotonically increasing
model performance.

• Running time is the computational time needed to provide interpretations
or explanations. The running time of the technique used to explain the
decisions made by the model in real time and cloud applications can be
a critical factor. It is important for systems to provide interpretations or
explanations in a timely manner.

Qualitative evaluation approaches can be classified according to whether
they are designed to analyse explainable or interpretable AI methods. The
qualitative analysis of explainable AI methods is mainly based on the
statistical analysis of questionnaires submitted to human evaluation, which
may be designed with different goals [29]:

• Evaluate the a priori goodness of explanations.
• Assess users’ satisfaction with explanations.
• Uncover user’s mental model of an AI system.
• Evaluate user’s curiosity or need for explanations.
• Analyse the level of user’s trust and reliance on the AI.
• Assess how the human-system work performs.
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The qualitative analysis of interpretable AI methods is based on measures
that can be systematised into three categories [30]:

• Functionally-grounded measures, which analyse the impact of the sys-
tem in the considered application context.

• Application-grounded evaluation methods, which require evaluations
performed by the set of human experts for which the system has been
designed.

• Human-grounded measures, which assess interpretations using non-
expert humans.

9.5 Edge AI Explainability and Interpretability

Integrating IoT, edge computing and AI can revolutionise how intelligent
devices interact and enable a new era of innovative applications. By bringing
computation, analytics, and connectivity closer to the data source, edge AI
technologies reduce latency, enhance privacy, optimise bandwidth, and enable
the online/offline operation.

Challenges such as limited computing resource, data quality and training,
security and privacy, scalability, interoperability, ethical considerations, and
explainability and interpretability must be addressed carefully. As these tech-
nology fields continue to advance, IoT, edge computing, and AI convergence
are unlocking new opportunities, enabling intelligent decision-making and
real-time insights at the edge.

AI at the edge extends ethical concerns about biased decision-making,
algorithmic transparency, and accountability to that environment. As the
number of intelligent edge devices increases, it is necessary to address ethical
considerations and ensure that edge AI systems are fair, transparent, and
accountable while edge AI models are explainable and interpretable. Com-
pliance with legal regulations regarding data privacy, bias, and responsible
AI usage is also crucial.

In the literature, there are only a limited number of studies on edge
AI interpretability and explainability [80, 83]. Most of the work considers
autonomous driving technologies [17], preventive healthcare applications
[18, 80], and IoT [19].

Considering autonomous driving technologies, the study on edge AI inter-
pretability and explainability regard different kinds of applications. There
are methods for analysing images acquired from external cameras and Lidar
sensors [20], and studies analysing the driver behaviour [21].
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In preventive healthcare applications, interpretability and explainability
techniques can detect possible health problems, as well as assist healthcare
experts and family members in making critical healthcare decisions [22].

In the context of IoT devices, interpretability and explainability can be
used to achieve heterogeneous goals according to the considered applica-
tion scenario. For example, there are studies on edge AI interpretability
and explainability for managing traffic [23], smart buildings [24], smart
homes [25], environmental monitoring [26], and industrial control systems
[27, 81, 82].

However, current studies on edge AI interpretability and explainability
are limited to specific applications and do not propose a general approach for
designing and developing interpretable and explainable AI technologies for
the edge. This process is particularly challenging. In fact, developing edge AI
solutions requires integrating edge AI hardware, software, AI stack building
blocks techniques/methods/models and data addressed as a holistic edge AI
design framework for the whole edge AI system.

Edge AI interpretability and explainability must apply to the edge AI
model and data, as illustrated in Figure 9.4.

9.6 Challenges and Open Issues

Edge AI models are implemented and run on devices at the edge of a
network, enabling real-time data processing and analysis. Edge processing is
characterised by constrained computing, memory, power budget, and latency
resources. Edge AI interpretability manages the extent to which a cause and
effect can be observed within an edge AI system.

At the same time, explainability addresses how the internal mechanisms
of an edge ML or DL system can be explained in human terms and repre-
sentations. AI explainable and interpretable methods and techniques provide
additional processing requirements and affect the overall performance of the
AI-based systems implemented at the edge. This section presents several
challenges, open issues, and future research directions that must be addressed
for a successful edge AI deployment.

Edge AI model complexity vs interpretability and explainability is a
challenge, considering AI decision-making must be transparent and under-
standable. Edge DL models are typically accurate but difficult to interpret. As
a result, a trade-off between model complexity, interpretability, and explain-
ability may be accepted. Complex models, such as edge deep neural networks
(DNNs), capture convoluted patterns in data and provide prime performance.
DNNs act as black boxes, making interpreting their behaviour or internal
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decisions challenging. AI models, such as decision trees or linear regression,
are more straightforward and interpretable but offer lower performance on
complex tasks and are more difficult to create.

The open issue is how to find the optimal balance to develop AI models
that are powerful and robust enough to provide accurate results and yet
sufficiently simple to be understandable. In many cases, this requires hybrid
approaches, developing new edge AI interpretability and explainability tech-
niques and methods, or accepting unavoidable trade offs in either explain-
ability/interpretability or performance. In summary, achieving interpretability
and explainability comes at the expense of edge AI model deployment. Sim-
pler models that are easy to interpret may not perform as well as their complex
replicas. Balancing the demand for explanation and interpretation with the
requirement for models offering high-level performance is challenging.

Edge AI deployment and the management of AI models on many edge
devices can be challenging considering the integration of edge AI explainable
and interpretable methods, as it could be difficult to ensure that models
perform optimally across all devices. Resource-constrained edge devices can
also make running complex updates or retraining models challenging. This
can be a significant problem as it is essential to monitor the performance
of edge AI models and their explainable or interpretable surrogate models
(twins) and implement regular maintenance, upgrades, and updates to prevent
model degradation.

A lack of expertise in the field of edge AI explainability and interpretabil-
ity will limit the adoption and deployment of edge AI. This can comprise
the technical aspects of edge AI explainability and interpretability, such as
how to build and optimise efficient explainable and interpretable models
for edge devices and understanding the broader ramifications of using edge
AI, such as real-time processing, latency, and security concerns. A lack of
expertise can make it difficult to effectively design edge AI explainable
and interpretable models and utilise them in edge AI applications to meet
customers’ requirements. It can also make it challenging for edge AI model
providers and users to adequately evaluate the potential risks and benefits
of using edge AI, limiting their ability to make informed decisions about
possible adoption and deployment of edge AI.

Developing and deploying edge AI is a time-consuming and costly
process and implies a trade-off between explainable and interpretable fea-
tures and performance. Difficulties are associated with integrating edge AI
explainable and interpretable models with edge devices, especially the ones
with limited resources. The complexity and time associated with deploying
edge AI explainable and interpretable models is a challenge, especially
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when dealing with large models, requiring extensive tuning and optimisation.
Deploying, managing, and maintaining edge AI explainable and interpretable
models on many edge devices is time-consuming and requires significant
resources.

Updating and upgrading the edge AI explainable and interpretable models
aligned with the improvements and advancements of edge AI models is
essential to extend the lifetime of edge AI solutions. Adapting the features
to the latest market advancements can be challenging, as edge AI solution
providers must plan for incorporating the newest edge AI explainable and
interpretable technology into their developments to stay competitive.

Edge AI explainability and interpretability is a relatively unexplored field
with no standard definitions, established mature methods and techniques, best
practices, or benchmarking methods. This can make it difficult for edge AI
designers to know which approaches to adopt and how to measure their per-
formance and efficiency. The choice of the approach depends on the specific
edge AI model, its complexity, the intended solution, and the application’s
requirements. Combining different techniques may provide a more compre-
hensive interpretability and explainability solution for edge AI systems.

9.7 Conclusion

Explainable and interpretable AI models are applied to AI-based systems to
complement them, facilitating the parallel use of data treatment, knowledge
processing algorithms and analysable, and answerable implementations. This
allows systems to simultaneously process relational and non-relational data
from databases and sources that generate data in real-time, such as IoT
sensors, and analyse the decision and outputs of the AI models.

The advancements in AI and edge AI require data analysis systems with
AI algorithms and the parallel use of mathematical models for the creation
of self-explanatory, self-answerable models that incorporate, for example,
convolutional neural networks, deep symbolic learning, fuzzy logic, compart-
mental mathematical models, Bayesian networks, dynamic data assimilation
models, and other models from the ML and DL domains.

The concepts of AI and edge AI explainability and interpretability are
presented alongside emphasising that interpretability focuses on understand-
ing the inner workings of the models. By contrast, explainability focuses
on explaining the decisions made. As a result of the differences between
the two concepts, interpretability requires more significant detailing than
explainability.
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The field of edge AI explainability and interpretability is evolving rapidly,
and new approaches, methods and techniques are being developed to improve
the explainability and interpretability of AI models and make them more
transparent and more functional by improving visualisation methods, decom-
position techniques, explanations based on examples, and ante-hoc and
post-hoc approaches.

Edge AI involves deploying AI models on devices with inherent resource
constraints, such as limited computing power, memory, and latency. Achiev-
ing a clear understanding of causality within these systems and making
their internal workings and outputs comprehensible to humans often neces-
sitates the use of hybrid approaches or the acceptance of trade-offs, with
performance typically taking precedence.

The trade-offs are essential to edge AI explainability and interpretability
as performance, energy consumption, complexity, and speed are constantly
optimised against each other in resource-constrained edge devices. This is
even more relevant considering the need for regular AI model updatability
and upgradability.

Another essential consideration is that AI and edge AI models with
advanced explainability or interpretability are mainly required in high-
risk AI-based applications. Highly explainable/interpretable models can be
used to assess AI-based systems by an independent third party and make
another party accountable or liable while building trust between designers,
developers, and users.

Currently, standardised definitions, mature methods, best practices, and
benchmarking techniques are lacking in the field of edge AI explainability
and interpretability. Nevertheless, there is an ongoing trend to explore com-
prehensive solutions that strike a balance between complexity, transparency,
and the specific requirements of various applications. Addressing these chal-
lenges also requires the implementation of rigorous regulations and robust
data quality validation. These efforts are becoming increasingly crucial as the
networks of interconnected devices expand, adding complexity to the entire
systems and emphasising the need for transparency.

This article attempts to classify and structure the existing concepts, offer-
ing the taxonomy needed to understand the multi-dimensionality of elements
that must be considered, such as data (e.g., data type, data sets, and data
use, encompassing – training, validation, testing, and inference, various AI
model methods (e.g., model specific, model agnostic, etc.), extend (e.g.,
local, global) and the quality and behavioural properties (e.g., causality,
transferability, fairness, informativeness, etc.).
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In this context, edge AI explainability and interpretability solutions aim
to ensure that AI models are transparent, accountable, and compliant with
regulations, increasing user confidence and facilitating their adoption in
various industries and applications.
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