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Abstract

The aim of this chapter is to provide an overview of automated optical
inspection (AOI) edge artificial intelligence (AI) inference system solutions
in the digital industry by considering if, and how, they enable manufacturers
to reach a satisfactory trade-off between customer needs and production costs.
Numerous solutions can address customer and factory needs, from inspection
machines to testing boards equipped with cameras installed near the conveyor
belt. In all the considered solutions we can implement effective defect detec-
tion algorithms, such as the latest You Only Look Once (YOLO) variants
based on deep learning (DL), to obtain high key performance indicators
(KPIs), i.e., mean average precision, adequate process capability and high
throughput yield. Parallel implementations of edge test systems allow us to
further improve production yield, while repeated tests performed in sequence
can allow us to approach the precision required for zero defect practice.
The comparison of available solutions using KPIs, functional requirements
(FRs) and non-functional requirements (NFRs) highlights that the advantage
of using inspection machines is that they are equipped with user interface
and data analysis which helps workers and managers to ensure high quality
production process and effective order management. Their weakness is the
high cost of purchase and energy consumption, whereas solutions that use
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computing boards for defect testing at the edge are featured by lower costs.
A demonstrator to evaluate the effectiveness of edge AI solutions based on
the test boards available on the market and those developed by the EdgeAI
project is outlined.

Keywords: automated optical inspection, key performance indicators, func-
tional, non-functional requirements, deep learning, PCB defect detection,
edge computing, online and continual learning, process capability.

7.1 Introduction

The advent of cyber physical systems (CPS), i.e., IoT systems equipped
with computational capabilities, is affecting the control systems in every
industrial and service sector [28], [11]. CPSs allow computational systems
to reside ever closer to the production process, reducing latency and increas-
ing throughput yield (TPY), one of the most important KPIs in production
processes.

This trend towards edge computing-based inspection systems is particu-
larly evident in the AOI of industrial products. This is our field of research
interest in the EdgeAI project.

In this context, we are faced with two different evolutions of the AOI. On
the one hand traditional AOI systems that operate at the operational level are
being rethought as intelligent systems to be coupled to the production line.
On the other hand, CPSs equipped with camera are increasing their compu-
tational capacity to achieve effective AOI systems using local or cloud DL
algorithms.

The aim of this chapter is to provide an overview of AOI edge AI infer-
ence system solutions by discussing if, and how, they allow manufacturers
to reach a satisfactory balance between customer needs (mainly in terms of
product quality and on-time delivery of ordered lots) and production costs.
Section 2 provides the context for us to classify edge AI inference system
solutions for AOI, where specific products and prototypes are highlighted to
flesh out the discussion. Section 3 compares the leading AOI solutions identi-
fied in Section 2 using both KPIs and functional/non-functional requirements.
Section 4 outlines the demonstrator we are setting up in the EdgeAI project
to improve optical inspection in the digital industry. This will allow us to
highlight how edge AI solutions can outperform or complement conventional
AI-based inspection machines for AOI.
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7.2 Overview of the Main Edge AI Solutions for AOI

Traditional AOI machines are tipically designed to support Surface Mount
Technology (SMT) for mounting and interconnecting electronic components
on printed circuit boards.

Figure 7.1a outlines the process by which an empty printed circuit board
(PCB) is gradually filled with all the components to obtain a fully functional
printed circuit board (PCBA). We note that in the figures of this chapter
it is assumed that PCBAs are inserted into the AOI system to detect PCB
or PCBA defects, i.e. defects relating respectively to the printed circuits
or to the component assembly process. Also it should be noted that AOI
machines are used online in two stages of the SMT process: at the exit of
the Pick and Place process and after the reflow oven to detect almost any
surface defect. AOI machines are primarily dedicated to discovering 2D and
3D PCBA defects and making Coordinate Mounting Measurements (CMM).
There are multifunctional machines on the market that perform not only
AOI and CMM but also Solder Paste Inspection (SPI) [22]. After AOI and
X-ray Inspection (AXI) discover surface and internal defects respectively, an
electronic test phase consisting of In Circuit Test (ICT) and Functional Test
(FCT) is performed.

Figure 7.1 a) Printed Circuit Board (PCB) Assembly Process, and b) Typical Implementa-
tion of the SMT Production Line, where production data are taken from Printer, Chip Mounter
and Reflow, whereas quality data are taken from SPI, AOI and AXI.
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An example illustrating this way of using AOI is shown in Figure 7.1b
which shows how OMRON proposes to use AOI to discover surface defects
using 2D/3D optics and internal defects using X-ray machines [23]. This last
control is increasingly widespread, as underlined in [39]. Sometimes the AOI
machine is only placed after the reflow oven. In principle this solution is less
expensive, although finding defects after reflow oven costs the manufacturer
much more to rectify.

The above pattern is followed by mass production factories. In fact,
Electronic Manufacturing Services (EMS) factories that produce small manu-
facturing lots featuring high technology for New Product Introduction (NPI),
often adopt offline solutions to avoid changing the path of the conveyor
belt in the production site. For this reason, the role of optical inspection
machines can be schematized within the production line in two main ways: as
control systems not necessarily close to the conveyor belt (Figure 7.2a), and
as integrated control systems in the production line (Figure 7.2b) to ensure
high production yield, especially in the case of mass production.

Inspection machines have recently been equipped with DL algorithms to
improve the accuracy of the defect detection process, such as the Omron
VT-S1080. Modern optical inspection machines can be roughly viewed as
intelligent edge computing solutions for AOI, whose main problem remains
the high purchase and power consumption cost and the constraints they
impose on the conveyor belt layout.

A further weakness of inspection machines concerns the AI algorithms
used. In fact, if they improve throughput by switching from statistical algo-
rithms to DL inspection-based algorithms, their performance may not reach

Figure 7.2 Main Inspection Machine Configurations for AOI in the Digital Industry
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the high accuracy of 99.8% reported in [23] or the very low rate of defective
products reported in [26], if they are not equipped with:

a) Online Learning (OL) to use experimental data to optimize the initial
learning model typically obtained from data available in the literature or
from similar cases, and

b) Continual learning (CL) to use experimental data to extend the learning
capacity of the algorithm to discover further defects without forgetting
the previous ones.

Therefore in this chapter, by OL and CL we mean a learning technique
that uses experimental data to improve defect detection accuracy and to
learn additional defects respectively. Regarding OL, we have to note that
in the global industry, online learning should be used with caution if a test
program executed on one site is expected to produce the same results as that
implemented on the other sites [18]. This implies that global manufacturers
should check whether OL improves defect inspection equally across their
different sites. In this case, or in the case of tests on local production lines, it
is useful for the learning model to be continuously updated from the images
captured by the cameras to optimize the discovery of defects or to deal with
different types of defects.

In principle, inspection machines can be equipped with OL and CL, but
this will increase their cost as it requires the machines to be equipped with a
powerful processing CPU or powered by an additional GPU due to the high
computational load required by such algorithms [27].

For this reason, AOI solutions have recently appeared on the market
consisting of powerful workstations, possibly equipped with GPU boards,
and equipped with a high-resolution camera installed near the belt, such as
those proposed in [7] using the Neousys technology (Figure 7.3a) and those
proposed by Advantech [2], ADLINK [8] and AAEON [1]. Advantech and
AAEON solutions are shown in Figure 7.3b and 7.3c.

The hardware architectures shown in Figure 7.3 allow us to highlight that
the Neousys and AAEON solutions use a powerful workstation able of both
training and testing, while Advantech uses a processing unit for testing and a
GPU workstation for learning and for the classification of defects. ADLINK’s
solution can be achieved by replacing MIC-720 with EOS-I6000-M which
is an AI vision system suitable for testing and classification, while learning
takes place on cloud server.

Although these solutions support both online and continual learning and
real-time verification of product defects, the problem remains of the high
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Figure 7.3 Edge AI AOI solutions from Neousys (a), Advantech (b), and AAEON (c) for
Defect Detection (D) and Classification (C). The model is Pre-trained on the Workstation.

purchase and power consumption cost, as well as a certain difficulty of
installing such systems near to the production line due to their size and
conditioning constraints.

Alternatively, a solution where visual testing is done at the edge and learn-
ing in the cloud can reduce purchase and power consumption costs without
increasing latency, as shown in Figure 7.4. This solution can be obtained
by replacing the MIC-720 unit with a NVIDIA board in the Advantech
proposal shown in Figure 7.3. In Figure 7.4 a Jetson board is adopted for
edge tests, for example Jetson TX2 as proposed in [29]. In the latter case,
learning is on the cloud but several tests suitable for highlighting groups of
defects can be performed in parallel by competing boards thus decreasing
latency.
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Figure 7.4 AOI Solution Consisting of an Edge Board for Testing and a GPU Server for
Learning.

7.3 Comparing EdgeAI solutions for AOI using Relevant
KPIs, NFRs and FRs in Digital Industry

In the previous section we outlined three main EdgeAI solutions for AOI,
namely the one based on an inspection machine (see Figure 7.1), hereinafter
referred to as IS, the one that makes use of a GPU workstation equipped with
high-precision cameras (see Figure 7.3a and 7.3c), called GS, and the one
based on a test board near the conveyor belt that sends images to the cloud
server for online and continual learning (see figures 7.3b and 7.4), called
ES. In the chapter we also consider a fourth solution consisting of cameras
sending images to a cloud server for testing and learning, which we will
call CS.

The discussion of such solutions was mainly based on cost and flexibility
aspects and suggested to take into great consideration both CS and ES. In
this section, we compare these solutions by considering Key Performance
Indicators, Functional and Non Functional Requirements.

7.3.1 Comparison using KPIs

KPIs mainly deal with cost effectiveness, efficiency (precision) of the dis-
crimination process and its productivity (speediness) as suggested in [13] to
evaluate the performance of every digital system. Efficiency of the discov-
ery process is usually evaluated, as in every information retrieval system,
using precision and recall that may be easily obtained by the confusion
matrix related to the adopted discovery algorithm [15]. The confusion matrix
together with the precision and recall formulas are shown in Figure 7.5.
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Figure 7.5 Confusion Matrix and Precision/Recall Formulas

In some cases, the most important characteristic is recall, for example,
if we are interested in finding out all, or almost all, defective PCBAs, it
is reasonable to increase the false positive checking effort, while in other
cases it may be better to use precision, for example, if one is interesting that
the discrimination process only outlines not defective PCBAs although high
accuracy may increase false negatives.

At first glance, one might think that precision may be the most important
feature in AOI of PCBAs, especially in cases where the requirement for
near-zero defects should be adopted, for example in the aerospace sector or
recently in the automotive industry. But precision alone can cause many good
products to be discarded, thus increasing production costs. For this reason,
efficiency indicators that combine precision and recall are used in the digital
industry such as the mAP defined as the mean of the average precisions,
and the F-measure defined as the weighted harmonic mean of precision and
recall. The following balanced F-measure is often used, denoted as F1, which
equally weighs precision and recall:

F1 = 2 · P · R / (P+R)

We use mAP as it is widely adopted to measure the performance of defect
detection algorithms in industrial manufacturing. The meaning of mAP can
be understood by introducing the notion of Intersection Of Union (IoU) [37],
a measure from 0 to 1 of the similarity between the bounding box containing a
possible defect and the one relating to a real one (the ground truth). According
to [37] IoU is used as a threshold for whether an object having a defect-
like image should enter the defective class (i.e., class consisting of defective
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PCBAs) or not. Other rules can be found in the literature for whether a
PCBA defect should be predicted as real, for example, in [32] a possible
defect contained in a bounding box is predicted as a real defect if both IoU
and another coefficient, namely the confidence coefficient, calculated by the
detection algorithm are greater than 0.5.

Thus, choosing a high IoU will increase the percentage of really good
items compared to those predicted good by the algorithm, but even numerous
really good items may be discarded (that is, false negatives increase). Con-
versely, a low IoU will decrease false negatives, but defect discovery is
characterized by low precision thus increasing false positives as the chosen
similarity is not sufficient to discriminate good from bad elements. Conse-
quently, to reduce the AOI alarms for possible false positives, e.g., the PCBAs
featured by IoU > 0,5 and whose confidence coefficient is close to 0,5, it is
advisable to increase precision by adopting a most performing algorithm or
to increase IoU since this generally implies an increase of the confidence too,
even this is not desired since it implies an increase in false negatives.

The mAP is obtained by evaluating the average precision of the controls
performed for each IoU value from 0.5 to 0.9 with a step of 0.1 and perform-
ing the mean of these averages [32]. To simplify, in the work we will use
mAP0.5, i.e. the precision of the discovery process for IoU = 0.5. Therefore
mAP0.5 = 0.99 does not mean that we will have 1% error, but that the error
of the predicted good items is close to 1% with a reasonably low number of
false negatives, i.e., few good products will be discarded from the ones for
customers.

The above considerations justify why the efficiency of the discovery
process is evaluated using mAP. We recall that the mAP depends not only on
the efficiency of the discovery algorithm but also on the type of defect to be
found. Typical defects to be discovered on the PCB are missing hole, mouse
bite, open circuit, short circuit, spurious copper, spur. But measurements of
the relevant metrological data of the PCBA are also useful, such as component
height, lift, tilt, missing or incorrect component, incorrect polarity, flipped
component, OCR inspection of 2D code, component offset (X / Y/rotation),
fillet (e.g., end joint width, wetting angle, side joint length), exposed zone,
foreign material, zone error, cable offset, cable posture, cable presence,
sphere of weld, weld bridge, distance between components and component
angle.

Several algorithms have been proposed in the literature to manage the
problems listed above. A study highlighting different algorithms to manage
either PCB or PCBA defects can be found in [12] where it is demonstrated
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that mAP0.5 ranges from 95% to 98%. In this chapter we update this study
considering the best performing algorithms for typical PCB defect detection.
From the literature we found that these are mainly optimized versions of
the DL-powered YOLO algorithm [35]. The mAP0.5 of such algorithms
increased from 95.7% proposed in 2018 [5] to higher values using the best
performing DL algorithms developed from 2018 to present. For example,
mAP0.5 is 99% in the algorithm proposed in [38], 99% in [25], 98.7% in
[36], 99% in [39]. Such values go beyond 99% more recently, i.e. 99.17% in
[20], 99.5% in [11] and 99.71% in [40].

Although this comparison has only an indicative value since the men-
tioned precision values were not achieved using the same data set [33], we
can reasonably assume that the solutions denoted with IS, GS and CS can
be equipped with a DL algorithm whose defect discovery precision could
increase from 98% to 99.7%, and that this could be further improved by
online learning to 99.8%, as stated in [23].

The feasibility of implementing YOLO-based algorithms on ES has been
recently shown in literature thus confirming that ES can also be equipped with
such an algorithm, e.g., in [30] a YOLO implementation on NVIDIA Jetson
TX2 is illustrated in characterized by satisfactory precision performance, that
is, mAP0.5 = 98%. We are currently working on solving two open problems:
a) to what extent more accurate algorithms can be implemented on ES and
b) how to implement such algorithms on less expensive boards (e.g., Jetson
Nano and Raspberry PI4) by extending the DL algorithms proposed in [14]
and [34].

However, although the theoretical accuracy of the optimized YOLO ver-
sions has reached a very high value, it may not be sufficient for the quality
control of PCBAs to be used in applications where the constraint of near-
zero defects is required, such as in the automotive industry [4]. In fact,
99.8% of mAP0.5 approximately implies that the delivered defective products
are about 2000 per million, whereas 1000 per million defective parts is a
typical expected value in automotive products satisfying the near-zero defect
constraint [24].

Note that the former failure rate, known as defects per million oppor-
tunities (DPMO) [16], measures all PCBA possible failures, i.e., defects
of components or due to the assembly process. If each PCBA consists of
approximately 100 components, this means that the DPMO is 2000 defective
PCBAs per million if the PCB is filled with components with a failure rate of
20ppm. The DPMO in the industrial sector is used as a relevant KPI to mea-
sure the process capability, i.e., how well the process yield meets customer
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expectations in terms of acceptable defective products. This capability can
also be expressed by a percentage (called Yield) or by a coefficient named
Cpk, i.e., a statistical coefficient between 0 and 2 where Cpk = 2 means that
there are no defective PCBAs leaving the production process, while Cpk =
0 means that the quality process does not detect any fault, so all the faulty
boards are still in the leaving products. A conversion table is available in the
literature to pass from DPMO to Yield or to Cpk and vice versa, e.g., in [31].

In the semiconductor industry, DPMO = 6000 is an acceptable value if the
near-zero defect constraint is not required. Using the conversion table, we can
find that this corresponds to Cpk = 1.33 and Yield = 99.40%. Consequently,
if we aim to have DPMO = 6000 for both defective components and surface
defects, using the conversion table we obtain that we must use 99.55% of non-
defective components plus an instrument, such as AOI for example, obtaining
99. 80% accuracy to discriminate between good and bad products coming
out of the SMT process. The latter accuracy in detecting surface defects can
be achieved by recent versions of the AI-YOLO algorithm, but applications
characterized by the zero-defect constraint require a Yield of 99.98% which
can be achieved using an AOI of 99.95% of precision.

Therefore, while waiting for more performing algorithms, it is reasonable
to carry out two or three repetitions of the AOI checks of the products
classified as good to improve the accuracy as proposed in [9]. Indeed, this is
a reasonable procedure only if the AOI checks are statistically independent.
as claimed in [6] due to the noise superimposed on the images when they are
taken by the cameras, for example due to faded colours or weaknesses in the
lighting system. Consequently, reproducing the control using the same AOI
can eliminate the uncertainty due to noise issues thus allowing the AOI to
approach its maximum theoretical accuracy calculated using literature data.

Also, as pointed out earlier, one could reduce the volume of bad products
delivered as good (i.e., to reduce false positives) by increasing the IoU, but
this usually also increases false negatives. In fact, this can lead to consider
good products the ones that are close to the boundary between the “good”
and “bad” classes and which are affected by the maximum uncertainty of
classification.

Therefore, checking the PCB using another AOI system, i.e., not repro-
ducing the measurement but replicating it using a different AOI, can be
useful to improve accuracy without changing the recall. This repetition could
add some defective elements to the “bad class” as suggested in [21] which,
hopefully, could coincide with the few defective products that were not
detected by the first test. This is also stated in [9] where it is underlined
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Figure 7.6 Repeating the AOI Check.

that repetition improves accuracy in the electronics industry even if beyond a
certain threshold repetition is not cost effective due to the increasing cost of
adding a further check.

This consideration suggests evaluating in our project the possibility of
adding a check after the inspection machine using an ES check to try to satisfy
the constraint of near-zero defects. In fact, the hypothesis of adding a further
control to the one currently carried out without modifying the layout is an
opportunity given the low cost and the high flexibility of the ES. Figure 7.6
shows how the repetition scheme proposed in [9] can be reworked to improve
the mAP of AOI. Test repetition to avoid bad products reaching customers
could be carried out, even manually, only for testing the few PCBAs that
passed the first test but were classified close to the border between good and
bad clusters.

In addition to mAP and process capability to evaluate process efficiency,
another important KPI is the productivity of an AOI system, also known as
throughput yield (TPY), to measure good PCBAs at optical control output
in the unit of time. Since in all considered IS, GS and CS the test phase is
performed on GPU machines, the comparison can be made considering the
latency due to the algorithm and the camera system used to acquire the images
of the PCBAs on the belt. Latency mainly depends on the implementation of
the algorithm and is often not indicated in the literature. It can be measured
indirectly by the speed, in frames per second (FPS), at which the proposed
algorithm is able to process the images.

A general comparison of the FPS achievable in the available methods for
defect discovery can be found in [30] where the authors pointed out that their
version of the YOLO algorithm is able to reach about 90 FPS. This value is
also confirmed in other studies, for example we found that the FPS goes from
33 FPS in [40] to 90 FPS in [20]. Lower but satisfactory FPS characterize
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3D defect detection, for example 19 FPS in [Du, 2023]. Regarding ES,
we found from the literature that even in ES the implementation of YOLO
algorithms can achieve high throughput, for example, in [30] it is proved
that the DL-based YOLO algorithm implemented on Jetson TX2 can process
22 FPS [30].

Therefore, using a TX2 board, it can be expected that a 25 cm2 PCB can
be inspected in about 90 msec, if each image taken by the camera is about 5
cm2. This means that the AOI production per hour obtainable using ES could
be around 3250 boards per hour (bph) which is a value comparable with the
value of 4189 bph obtained using IS reported in [26]. Let us note that such
values refer to the number of PCBA exiting from the optical inspection phase
(see fig.1.1a) . Indeed other electrical checks may decrease such thoughput,
e.g., the ones dealing with the determination of the safe operating area of
PCBs to be used in power applications. In [26] the authors proposed other
relevant KPIs beyond hourly production, i.e., precision of detected defects,
working time and delivery times from order to shipment.

The accuracy of defect discovery can be calculated using mAP as shown
above, while the last two proposed KPIs depend on the organization of work.
Therefore, they can only be analysed by knowing the factory organization
structure, order volume and rate. It is out of the scope of the chapter. However,
they suggest us that mAP and FPS alone are not sufficient to measure the
impact of AOI on the SMT process. In fact, cycle time and takt time should
also be included in the KPIs at least to verify that the AOI production system
can meet the time constraints due to customer orders. A general discussion
may be found in [17]. For the paper, it is sufficient to include the following
parameters in the KPI list:

• Cycle time (CT), i.e., the time required to produce a lot of PCBs
requested by the customer divided by the number of PCBs.

• Takt time (TT), i.e., the time interval during which the production line
is available in the time interval required by the customer to produce
the PCB lot divided by the number of PCBs to be delivered to the
customer. In other words, it is the maximum time interval for pro-
ducing one PCBA to meet the customer time constraint considering
the availability of the production resources and the number of PCBAs
of the lot.

Knowing CT and TT we can verify the condition necessary to satisfy
the customer’s demand, i.e., CT < TT. This means that CT (the inverse of
throughput yield) is a very important KPI that should be appropriately scaled
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down to meet overall customer demand in due time. This can be achieved: i)
by increasing the FPS of the AOI unit, ii) by using more than one AOI unit
in parallel, or iii) by implementing more than one production line. The first
two conditions can be obtained more conveniently by ES than by IS since its
low cost allows adopting many cameras to work in parallel. In fact, the CT
of a production line can be improved by passing from a solution in which a
camera sends images to a testing board as illustrated in Figure 7.7a. to the one
proposed in [3] made up of several cameras possibly equipped with a testing
board (Figure 7.7b). In both cases, the images are sent to a server to update
the pre-trained model.

To get an idea of the cost savings using ES in both cases illustrated in
Figure 7.7 let us consider the market cost of CS, ES, and IS. Assuming one
CS as a unit cost, from the market cost we found that this cost becomes 2 for
ES, 6 for a WS provided with GPUs and from 25 to 50 for IS depending on
if the IS is a low-cost machine or a professional one. Therefore, the purchase
costs are as follows: n+6 for CS, 2n+6 for ES and 25 or 50 for IS where n is
the number of cameras and related testing boards.

Using these values, Figure 7.8a compares the costs of ES and CS with
the cost of a low cost IS proposed by Saki in [29]. This comparison is
feasible since they have the same configuration, i.e., they are all equipped
with a camera which, thanks to a telecentric lens system (Figure 7.7a), takes
pictures of PCB slices of about 5 x 25 cm while it is placed on the conveyor
belt.

Instead, to evaluate the cost savings by using multiple cameras and
boards, we compare the CS and ES with the OMRON professional solution,
i.e., VT-S1080, assuming that the CS (ES) is equipped with 5 camera posi-
tions (5 camera positions plus 5 testing boards) as in Figure 7.7b so that the
whole PCB can be inspected as it is transported on the conveyor belt and
at the same time the OMRON AOI captures all images of the PCB using a
robotic system that moves the camera over the PCB inside the machine. The
comparison is shown in Figure 7.8b.

Figure 7.8 clearly shows that in both cases CS and ES are less expensive
than IS. The cycle time using CS and ES in case 3.3a. is greater than that of
IS, then CS and ES are suggested only if a relatively high CT is acceptable. If
a lower CT is required, the parallel implementation is recommended. Further-
more, we should mention that both mAP and FPS could be further improved
in ES by using more performant testing boards like the ones proposed in [19]
where it is stated that object classification can be performed at hundreds of
FPS. This is for further study.
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Figure 7.7 a) A Camera Equipped with a Testing Board Which Sends the Image of a PCB
Slice of about 5 X 25 cmUsing a Telecentric Lens to a Testing Board, b) A Set of Five Cameras
Equipped with Testing Boards. Images Are Sent to a Server to Update the Pre-Trained Model.
The Server Periodically Sends the Updated Model to the Edge Testing Boards.

7.3.2 Comparison using NFRs

In addition to the mentioned KPIs, further quality requirements, so-
called non-functional requirements, should be considered to compare the
different solutions. Below we indicate some NFRs that consider those
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Figure 7.8 An Approximate Comparison of the Purchase Costs of CSs and ESs Equipped
with one Camera Versus the Low Cost 2D Saki AOI (a), and the Purchase Costs of CSs and
ES Equipped with Five Cameras Seats Versus the Professional 2D/3D OMRON AOI (b).

proposed in [26] for the support of workers, i.e., the adopted solution
should:

• Enable efficient use of workers’ time through automation.
• Improve control capability through real-time data feedback.
• Explain the defects at least by locating the defects found on the PCB or
PCBA, which allows workers to improve the production process.

All the above NFRs can be satisfied by CS and ES provided that appro-
priate user interfaces are developed that help workers interpret and manage
data from optical inspection.

NFRs are proposed in [26] dealing with planning tools, i.e., managers
should be supported by suitable planning tools, based on data from AOI and
other IoT monitoring systems, to meet takt time and to verify more generally
that the overall time including the purchase of the raw material and the
delivery of the products to customers (i.e., the lead time) is compatible with
the customer’s demand. This implies that lead time should also be included
in the KPI list above.

Since the current IS and GS provide effective operator interfaces and
planning tools for managers, these solutions, despite the high cost, can
maintain some advantage over ES until ES is equipped with the mentioned
worker interface and management tools.

This can be facilitated by the fact that ESs can take full advantage
of parallel technology and cloud computing. In fact, the worker interface,
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usually installed near the production line, could be implemented by adding
another board to the edge testing system, while data analysis tools could be
implemented on the network server available to plant managers.

This issue should be addressed carefully in ES and is a challenge for any
project aiming to use AOI testing boards at the edge.

7.3.3 Comparison using functional requirements

To complete the comparison, the main FRs must also be considered. The
following list consists of five FRs, of which the first two are mandatory while
the last three are highly recommended. Such FRs require that any AI solution
for AOI:

a) it should have a high mAP suitable to support the process capability
required by the industrial sector of interest of the producers, for example
CPk = 1.33 for the semiconductor industry. Based on the discussion in
this section, all solutions could meet this requirement using OL-based
DL defect detection algorithms.

b) it should be able to detect PCB defects in real time as the PCBs are trans-
ported on a conveyor belt. Based on the discussion made in this section,
all solutions can meet this requirement due to their relatively high FPS
value.

c) it must have an adequate feedback loop with the machine controls.
This requirement also belongs to the NFR list mentioned, but here it
is understood as the requirement that the solution has a minimum set of
functions to help workers and managers optimize the PCB production.
IS and GS usually satisfy such FR, while it is acceptable for CS and
ES to provide at least some defect location functionality to explain the
causes of the defect.

d) it should learn to discover defects by exploiting the data available in the
literature. In principle, this requirement is satisfied by GS, CS and ES as
they are usually open systems, while ISs are usually designed as closed
solutions which are not provided with network attached storage system
on the cloud to include data from the literature to improve the accuracy
of learning or to handle new defects.

7.3.4 Advantages of ES with respect to the other approaches

The comparison of the AI based AOI solutions using the main KPIs, NFR and
FR has highlighted that ES is a promising technology provided it is equipped
with adequate operational and management interfaces.
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Some points that encourage the effort to equip ESs with such interfaces
are not only their low cost and parallel processing that allow them to achieve
better KPIs for the detection of multiple defects simultaneously, but also the
possibility for ESs to take full advantage of the cloud technology not only to
use the cloud to better build the mentioned user interfaces, but also to enable
small companies to use AOI-based control remotely.

7.4 Edge AI Solutions Demonstrator

Given the different solutions available for optical defect detection, a demon-
strator can be useful to evaluate if and how an AOI solution can help
in practice manufacturers to reach a satisfactory compromise between the
quality required by customers (in terms of acceptable number of defective
items and takt time) and factory costs.

Currently we are activating such demonstrator equipped with the follow-
ing technologies:

• An IS machine, supplied by HTS, i.e., OMRON AI-AOI VT-S1080,
to measure mAP and FPS achievable during the PCBA test and to
verify that it is able of achieving using Deep Learning the high accu-
racy required by the industrial sector of interest, i.e., semiconductor or
automotive sectors.

• A workstation, provided by DEEPS, equipped with a 7 TB storage
system, an AMD RyzenTM Threadripper 3970 CPU and two NVIDIA
RTX 6000 GPUs. This workstation currently acts as a server on the local
network so it will allow us to simulate CS ed ES but could be connected
via a fast channel to cameras to simulate GS as well.

• Several NVIDIA boards, namely Jetson Nano, Jetson TX2, Xavier and
ORIN, to host the algorithm trained on the GPU server at the edge and
a NAS (Network Attached Storage) system to store the images taken by
the cameras to allow the server to online update the pre-trained model.

• High-resolution Basler cameras to take images of PCBs as they are being
transported on a conveyor belt. These images will be sent to the server’s
NAS or workstation near the belt or passed through a fast channel to the
NVIDIA cards.

The components from b) to d) will allow us to activate the demonstra-
tor using the same platform illustrated in Figure 7.4, to measure the most
significant KPIs and to evaluate the NFR for defect detection. In this way,
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commercially available ES and new EdgeAI AOI solutions, such as the one
based on the low-power board to be developed by the EdgeAI project, could
be compared with GS, CS and IS.

We note that the main purpose of the demonstrator is not to support
designers in developing DL defect detection algorithms that outperform the
current ones, even if this test can also be performed using the platform, but
to demonstrate that: a) the DL-based defect models obtained from the pre-
training phase on the server can be implemented on the edge boards to obtain
test performance comparable to that of IS and GS but at a lower cost as
required mainly by mass production companies, and b) the AI Edge solution
can be equipped with extremely precise defect discovery and defect explain-
ability algorithms to support the improvement of the production process
and in the identification of possible critical components as required mainly
by NPI.

Furthermore, the conditions suggesting the combination of different solu-
tions can be studied. For example, if a low throughput yield is acceptable,
this may justify CS over the others. In addition, an ES-based remote solution
will be tested to support small companies in implementing a simple and cost-
effective solution where the testing board is installed close to the conveyor
belt and the learning powered by OL and CL is done by a cloud server.

7.5 Conclusion

An overview of the available solutions for AI-based optical defect inspection
of PCBAs has been made from an engineering point of view, i.e., emphasizing
whether and how they can support a satisfactory trade-off between product
quality and production costs.

From the overview it emerged that it is possible to adopt different
solutions to meet the needs of the factory and customers, from inspection
machines to testing boards equipped with cameras installed near the conveyor
belt. Generally, in all the considered solutions it is possible to implement
effective defect detection algorithms, such as the latest DL-based YOLO
versions, to obtain the suitable mean precision, i.e., mAP, to support the
required process capability.

The main advantage of using inspection machines is that they have data
analysis tools that support managers to ensure high quality and effective
management planning. Their weakness, i.e., the high cost of purchase and
energy consumption, is the strength of solutions that use processing boards
for defect testing at the edge.
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Parallel implementations of edge solutions, using suitable optical sys-
tems, improve latency and the number of PCBAs that may be classified as
good or bad products per time unit, while repeated tests carried out by a test
board installed after the inspection machine, allow us to approach the process
capability required in industry sectors characterized by the near zero defects
constrain. This can be achieved without decreasing recall, thus avoiding an
increase in false negatives.

It was discussed how a solution can achieve a low cycle time that can meet
takt time and lead time to satisfy customer demand, emphasizing that using
ES this can be achieved by increasing the FPS of the AOI and activating, if
necessary, parallel AOI units in the production line.

A suitable platform was also presented to evaluate the most suitable
solutions using experimental data. This will help us demonstrate the effi-
ciency, productivity, and cost-effectiveness of a solution in practice and test
whether coprocessing units, such as the recent neuromorphic boards, can
improve discovery algorithms. It will allow us also to demonstrate how small
companies can use the platform to perform defect detection using local testing
boards supervised by a remote server.
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