
5
Designing Lightweight CNN for Images:

Architectural Components and Techniques

Lilian Hollard, Lucas Mohimont, and Luiz Angelo Steffenel

Université de Reims Champagne-Ardenne, France

Abstract

While neural networks have brought about impressive advancements in
computer vision tasks, these achievements heavily depend on computation-
ally demanding resources, restricting their deployment. The decentralized
paradigm of Edge AI computing aims to bring decisional capabilities directly
to the edge, facilitating real-time decision-making, streamlined data process-
ing, and reduced dependence on network connectivity. In some cases, it is
possible to rely on cloud computing to offload processing tasks, but this
can introduce latency issues that affect system responsiveness, security, and
efficiency. Instead, searching for optimized neural networks for edge device
deployment may lead to a better balance between computational efficiency
and accurate analysis, empowering sensors to execute their roles effectively
with minimal reliance on external resources. This paper reviews the landscape
of deep learning architecture optimization tailored for edge devices. Within
this survey, we delve into the state-of-the-art advancements in computer
vision techniques optimized for edge computing. The challenges deploying
and optimizing computer vision models on edge devices emphasize the
importance of efficient computation and resource management while navi-
gating the trade-offs between model performance and hardware constraints.

Keywords: neural network architecture, Edge AI, deep learning, neural
architecture search, transformers, Edge vision, computer vision.

105



106 Designing Lightweight CNN for Images

5.1 Introduction and Background

Neural networks enabled significant advancements in computer vision. How-
ever, these achievements often rely on computationally expensive resources,
limiting deployment on less powerful devices. Despite the rapid adoption of
cloud-based processing and cloud AI over the last decade, such offloading
brings several inconveniences such as latency, bandwidth limitations, and
security concerns. These challenges led to the development of Edge AI, which
stands to the AI landscape. Edge Computing offers notable advantages, such
as data ownership, heightened security, reduced latency, and decreased power
consumption attributed to minimized back-and-forth communication with the
cloud.

The term “Edge” encompasses a wide spectrum of devices and appli-
cations, including peripheral data centres (cloudlets [1], fog [2]) and IoT
endpoints. Hence, it is not uncommon to partition the Edge according to
the capabilities of the devices or the distance to end users. For example, the
EdgeAI European project classifies edge solutions in three levels: Meta, Deep
and Micro-Edge. Micro Edge represents mostly the final sensors and devices,
Deep Edge lies in the vicinity (gateways, network routers) and Meta-Edge
interfaces the Edge with external technologies such as the cloud. As a result,
the size and capability of devices are determinant factors that differentiate
various “Edge” application areas within Edge AI.

Bringing computer vision tasks to Micro-Edge devices such as microcon-
trollers is often complex due to resource limitations and computational con-
straints. These devices may struggle with the intensive processing demands
of computer vision algorithms, making it difficult to perform analysis and
decision-making directly at the edge. Offloading computer-vision tasks to
“upper” layers is also a problem, as the data volume to be transmitted is
far over more traditional IoT sensor data. Instead, Edge-AI computer vision
requires optimized solutions adapted to the resource constraints of edge
devices.

In this chapter, we review the most recent advances in computer vision
methodologies for edge computing, with a specific emphasis on model
architecture. While various established techniques such as quantization,
pruning, and hardware optimization have been extensively investigated, our
primary focus is the substantial enhancements that deep learning model
architecture has witnessed over the last few decades. These enhancements
have notably contributed to the improvement of Edge-AI. We explore



5.2 CNNs 107

the challenges faced in deploying and optimizing computer vision models
on edge devices, the need for efficient computation and resource man-
agement, and the trade-offs between model performance and hardware
constraints.

Furthermore, we run our own benchmarks to obtain uniform comparison
results. Indeed, the deployment of deep learning models must emphasize
model efficiency and comparison across various parameters. Metrics such as
inference time, latency, training and inference costs, and other established
indicators are crucial for researchers to demonstrate the contribution of new
deep-learning techniques. However, researchers often assume a correlation
among these metrics and report only a few of them, leading to partial
conclusions and incomplete evaluations of different models [3].

Considering the types of models, different computational aspects may
yield varying results. One example of bias in deep learning model optimiza-
tion is relying solely on parameter-matched comparisons as a single metric,
which may result in a flawed understanding of overall model performance.
Shift-based convolution for instance, improves overall accuracy by offering a
parameter-free alternative to traditional convolution but increases processing
times. Memory access costs on different platforms or overall, unsatisfactorily
optimized multi-branch model architecture for parallel computing might as
well influence speeds metrics [3][7][8]. Therefore, models should evaluate
multiple metrics on the targeted platform, as memory access and model
parallelization are architecture dependent.

For the sake of reproducibility, most benchmarks presented in this chapter
originate from the PyTorch Torchvision module benchmark. Our intention is
to enable readers to replicate the results, although some models may exhibit
slight variations from their original paper.

The remainder of the chapter is structured as follows: Section 1.2 explores
the latest advancements in the computer vision research community using
convolutional neural networks. Section 1.3 examines how Transformers rev-
olutionized computer vision and how these techniques can be employed to
reduce the overall computational cost. Section 1.4 investigate ConvNeXt
convolution and its potential to elevate CNN models, enabling them to rival
Transformers, while also exploring their utility in Edge computation. Section
1.5 covers the neural architecture search in an efficient computation scenario.
We conclude this paper in Section 1.6, presenting some final remarks and
research directions.



108 Designing Lightweight CNN for Images

5.2 CNNs

Convolutional Neural Networks (CNN) are a class of deep learning mod-
els that excel when processing and analysing visual data. CNN enhanced
the ability to learn intricate patterns and features from massive datasets,
empowering deep learning to achieve remarkable breakthroughs in diverse
areas, including computer vision but also natural language processing, speech
recognition, recommendation systems and many more. The scalability, adapt-
ability, and robustness of CNNs make it a dominant force in the breakout of
AI technologies.

5.2.1 The pioneers

Optimising CNNs for low-power applications often involves weight pruning,
quantisation, and model compression techniques. In theory, these methods
position CNNs as ideal solutions for edge devices operating in energy-
constrained environments; however, although essential for edge devices,
these techniques often reduce accuracy. We cannot deny that the computer
vision community made substantial progress since the remarkable perfor-
mance of AlexNet’s [9] first publication. Through architectural changes
and optimisations, significant performance improvements extended several
times state-of-the-art computer vision models while reducing computational
demands.

ResNet [10] revolutionised the landscape of neural networks by intro-
ducing the concept of residual connections, a breakthrough that facilitated
the construction of exceptionally deep models. This innovation proved
instrumental in optimising the training of deeper layers. As a result, these
extended CNN architectures attained unparalleled performance across diverse
benchmark tasks.

ResNet’s pioneering influence shaped the field of Deep Learning, serving
as a cornerstone that inspired the architectural design of countless contem-
porary models. Residual connections provide an alternative pathway for the
gradient to flow during backpropagation to address the vanishing gradient
problem, as illustrated in Figure 5.1.

However, while many high-performing CNN models characterised by
substantial numbers of parameters and FLOPS (Floating point operations
per second) achieved impressive performance, the realm of Lightweight
CNNs emerged as a potent contender. These efficient architectures, including
EfficientNet [11][13], MobileNets [14][15], ShuffleNet [16][17], SqueezeNet
[18], and ESPNet [19][20], devoted remarkable efforts to optimise CNNs by



5.2 CNNs 109

Figure 5.1 ResNet architecture [11]

renouncing the need for excessively deep and densely interconnected struc-
tures, aligning with the philosophy that ResNet and VGG [21] established.
The success of these Lightweight CNNs highlights their ability to achieve
competitive performance while maintaining a judicious balance between
model complexity, parameters, and FLOPS.

CNNs are widely utilised across various domains, such as classification,
object detection, segmentation, and other tasks. Currently, the object detec-
tion and segmentation research communities closely collaborate to enhance
classification CNNs and the other way around, recognising their pivotal role
as the backbone for object detection and segmentation models. Hence, the
forthcoming sections will not specifically address these distinctions, as they
all contribute to improving EdgeAI capabilities.

5.2.2 YOLO, first step towards fast object detectors

YOLO (You Only Look Once) [22], a deep learning model introduced in
2016, revolutionised object detection by providing real-time detection and
accurate results. Before YOLO, most object detection algorithms followed
a two-step approach, which was time-consuming and limited in case of
detection speed. On the other hand, YOLO formulated object detection as
a regression problem, dividing the input image into a grid and predicting
bounding boxes and class probabilities directly from the grid.



110 Designing Lightweight CNN for Images

Newer versions of YOLO [23][24][25][26][27][28][29][30] incorporated
concepts like anchor boxes, feature pyramid networks, and advanced network
architectures (e.g., Darknet, ResNet) to improve detection accuracy and han-
dle objects of various sizes. They also introduced multi-scale predictions,
enabling detection at different resolutions within the network. However,
these advanced network architectures, such as YOLOv5, have high memory
requirements and need relatively powerful edge devices like the Jetson Nano
with Nvidia GPU.

To circumvent such requirements, the object detection research commu-
nity has three major perspectives. First, the improvement of YOLO-based
models, both in terms of complex computation (e.g., YOLOv7 [25]) and
adapting YOLO for edge computation (e.g., TinyssimiYOLO [31], YOLOv3
Tiny[26], YOLOv5 Nano [23], YoloNAS [32]). Second, the enhancement
of backbones for object detection, such as combining MobileNetV3 [33]
with SSD320 [34] detection heads. One last approach is the exploration of
Transformers-based object detectors.

The miniaturisation of YOLO models is still ongoing research. Recent
efforts have focused on reducing the architecture to create highly flexible,
memory-efficient, and ultra-lightweight object detection networks with less
than 0.5MB of memory. However, these optimised models are most suitable
for detecting a few classes. For example, TinyissimiYOLO [31] performs well
for up to three classes, and challenges remain when trying to improve the
edge-oriented benchmark on datasets like MS COCO [35], which consists of
80 classes. As demonstrated in TinyissimoYOLO, a plain-architecture model
still exhibits great potential for efficient inference on microcontrollers or edge
devices.

In addition to YOLO object detectors, there is a significant effort to
enhance classifier CNNs, which extend to backbone CNNs for object detector
models in a broader context. These CNN architectures undergo rigorous
benchmarking on datasets like ImageNet but also on datasets such as
MSCOCO and Pascal VOC to address object detection and segmentation
tasks. Indeed, the emergence of SSD detector heads and Mask R-CNN
segmentation heads catalysed a distinct research avenue, prompting a concen-
trated exploration of classification models or backbone designs specifically
tailored for advancing object detection capabilities.

Research to enhance classifiers changed the recent panel of YOLO
models. Since YOLOv4 [30], the composition of YOLO models depends
on CSPNet [36] block modifications, an architecture that already enabled
known architectures such as ResNet, ResNeXt, and DenseNet to reduce



5.2 CNNs 111

Figure 5.2 CSPNet (Identity Block - DenseNet)

computational cost while preserving accuracy. It effectively reduces
computational bottlenecks (YOLOv3’s computational bottlenecks can be
reduced by 80%) and memory costs. ResNeXt already proved that cardinality
can be more efficient than width and height. CSPNet divides feature maps
into two main parts: one used to create an identity block (DenseNet, ResNet,
MobileNet, etc.) and the other that is combined at the output after or before a
transition layer, as shown in Figure 5.2.

5.2.3 Convolutional Neural Network architecture improvements

MobileNetv1 was one of the first CNN architectures specifically created
to bring efficiency to mobile and embedded vision applications. Its main
improvement was the efficient use of depthwise separable convolutions
to build lightweight neural networks. MobileNet was nearly as accu-
rate as VGG16, with 32 times less size and 27 times less computation.
MobileNetv1 performance on the ImageNet dataset achieved a top-1 of
68.4%. MobileNetv2, on the other hand, improved MobileNetv1 drastically
while preserving the same mobile-first philosophy, using inverted residual
block and linear bottlenecks. MobileNetv2’s linear bottleneck does not incor-
porate linear activation within its narrow input and output layer. Instead, it
incorporates non-linearity after each expanded layer of the bottleneck.

The hypothesis of MobileNetv2 stated that ReLU can preserve complete
information only if the i-th feature input lies in a low-dimensional sub-
space of the input space. Researchers showed through experimental evidence
that using non-linear layers in the input/output of bottlenecks impacts the



112 Designing Lightweight CNN for Images

Figure 5.3 MobileNetv2 block

model’s performance by several percent. Figure 5.3 illustrates the difference
between non-linearity in the residual and inverted residual blocks. Resid-
ual block architecture skip connections with fewer feature maps between
connections. In contrast, an inverted residual block broke this relation by
using an expansion of feature maps. As a result, MobileNetV2 TOP-1 Ima-
geNet performance reaches 71.978%, with only 2.6M parameters and 0.3G
Flops. Table 5.1 details the performance of different MobileNet models when
conducting the ImageNet classification.

Since MobileNet, a vast majority of modern networks adopted depth-wise
separable convolutions. ShuffleNetv1 and v2 introduced practical guidelines
for efficient network design, resolving some MobileNet issues.

ShuffleNet v2 stated that the expensive use of depth-wise separable
convolutions and grouped convolution increase memory access cost. Also,
element-wise operations have a high MAC (Memory Access Cost) and FLOP
cost, even with a small parameter count. The ShuffleNet architecture thus
introduces an architecture using balanced convolutions of equal channel
width, reducing the degree of fragmentation and reduced element-wise oper-
ations, surpassing MobileNetv2 with an ImageNet top-1 performance of

Table 5.1 CNNs based model optimization since AlexNet
Model ImageNet Top

1(%)
Parameters (M) FLOPs (G)

ShuffleNetv2x0.5 60.5 1.3 0.04
ShuffleNetv2x1.0 69.36 2.27 0.14
MobileNetv3 Small 67.4 2.5 0.06
MobileNetv2 71.97 2.6 0.3
ShuffleNetv2x1.5 72.99 3.5 0.30
ShuffletNetv2x2.0 76.23 7.3 0.58
AlexNet 56.52 61 0.71
VGG16 76.3 132.8 7.61



5.2 CNNs 113

72.99%, with comparable FLOPs of 0.3G and 3.5M parameters. Table 5.1
benchmarks ShuffletNet v2 across various scales.

5.2.4 Tackling memory consumption

Memory consumption is a significant concern when optimizing CNNs for
mobile computing applications. State-of-the-art models for mobile and edge
often employ grouped and depth-wise convolutions to reduce overall model
parameters [37][14][15][39][16][17]. However, these models require more
computation time and memory per layer, which may pose challenges for edge
AI models focused on video stream processing.

Therefore, in addition to the architecture optimization research of CNNs,
researchers made significant efforts to achieve extreme memory consumption
optimization for microcontroller use cases. A remarkable example of this is
MCUNet [40], which demonstrated impressive potential for memory opti-
mization by simply enhancing the memory workflow of CNNs following the
MobileNet architecture philosophy previously mentioned.

MCUNet significantly reduces memory usage for MobileNetv2, fitting
it within a mere 320kB of RAM. This impressive feat is accomplished
through two key strategies: first, by identifying the optimal input resolution
size and adapting the model width to achieve the most efficient neural
architecture size. Second, it leverages the characteristic of depth-wise con-
volutions, which do not perform filtering across channels, allowing each
channel to be computed in a temporary buffer. This approach substantially
reduces overall memory consumption, computing the input and the output
feature map as one shared memory, with one additional buffer to com-
pute and transfer the data. MCUNetv2 [41] goes further by optimizing
memory usage through patch-based computation. Instead of processing the
entire feature width and height, it strategically employs small input portions
to generate activation maps, leading to more efficient memory utilization.
Table 5.2 describes MobileNets memory consumption improvement with
MCUNets.

5.2.5 Structural re-parameterization

Within this survey, we showcase research aimed at enhancing the architecture
of models commonly referred to as “mobile”. However, these mobile-first
models rely heavily on grouped and depth-wise convolutions, which induce
many other computational challenges.



114 Designing Lightweight CNN for Images

Table 5.2 MCUNet memory optimization compared to MobileNet and MobileNetv2
Model ImageNet Top 1 (%) SRAM
MobileNetv1 68.4 NS
MobileNetv2 69.8 1.8 MB
MCUNetv1-int8 60.3 238 kB
MCUNetv2-int8 64.90 196 kB
MCUNetv1-int8 68.5 452 kB
MCUNetv2-int8 71.8 465 kB

Grouped and depth-wise convolutions utilize 1x1 convolutions not well-
optimized for certain architectures. In contrast, 3x3 convolution architectures
are more efficient on generic GPUs than 1x1 convolutions. Multi-branch
design models like ResNet [7] or branch-concatenation in Inception [42]
encounter similar issues, making them less efficient for parallel architec-
tures like GPUs due to additional overhead, such as kernel launching and
synchronization. Residual connections also face challenges in retaining con-
voluted feature maps in memory during the computation of multi-branch deep
learning architectures.

To address these challenges, recent research suggests structural re-
parameterization to revert to early deep learning plain models like VGG
[21], Darknet [22], and AlexNet [9], which are theoretically efficient for edge
computation. However, these models no longer compete in terms of accuracy
and overall performance with the current state-of-the-art models.

Residual connections and multi-branch architecture [43][44][42][36][39]
[45][46], to cite only a few, are indeed essential components in deep learning
architectures. Their introduction addresses the vanishing gradient problem,
which occurs when gradients diminish as they propagate through deep
networks during training.

It is challenging for a plain model to achieve comparable performance to
a multi-branch architecture. The complex structure of multi-branch architec-
tures often slows down inference, as the combination of small operators is not
favourable for devices with strong parallel computing capabilities like GPUs.
Taking a more edge-centric perspective, utilising multi-branch structures
necessitates significant cache memory, as these structures demand the model
to retain the feature maps of each branch in memory before processing to the
subsequent layer. However, the benefits of multi-branch architecture mainly
apply while training [47][7][46].

Structural re-parameterization involves transferring the knowledge gained
from multi-branch architecture during training into a single plain convolution
block for inference.



5.2 CNNs 115

MobileOne TOP-1 ImageNet performance on multiple scaling is 71.4%
and 75.9% for MobileOne-S0 and MobileOne-S1 respectively, both under 1G
Flops. Table 5.2 lists the complete results. Other re-parametrization models,
like RepVGG, accompany the comprehensive results in Table 5.3.

While the training cost may be significant, improving performance at
the cost of additional training resources is acceptable if the deployed model
fits the size and computing power required for edge devices. Hence, one

Table 5.3 CNNs based model optimization since AlexNet
Model ImageNet Top

1 (%)
Parameters (M) FLOPs (G)

AlexNet 56.52 61 0.71
EfficientNet B0 77.69 5.2 0.32
EfficientNet B1 78.64 7.79 0.69
EfficientNet B2 80.6 9.1 1.09
EfficientNet B3 82.2 12.2 1.83
EfficientNet B4 83.4 19.34 4.38
EfficientNet B7 84.122 66.34 37.75
EfficientNetv2 Large 85.808 118.5 56.08
EfficientNetv2 Medium 85.112 54.1 24.58
EfficientNetv2 Small 84.228 21.4 8.37
ESPNetv2 72.1 3.49 0.28
MobileNetv1 68.4 2.6 NS
MobileNetv2 71.97 2.6 0.3
MobileNetv3 Small 67.4 2.5 0.06
MobileOne-S0 71.4 2.1 0.275
MobileOne-S1 75.9 4.8 0.825
MobileOne-S2 77.4 7.8 1.29
MobileOne-S3 78.1 10.1 1.89
MobileOne-S4 79.4 14.8 2.97
RepVGG-A0 72.4 8.3 1.4
RepVGG-A1 74.5 12.8 2.4
RepVGG-B0 75.1 14.3 3.1
ResNet101 77.374 44.5 7.80
ResNet152 78.312 60.19 11.51
ResNet18 69.75 11.6 1.81
ResNet34 73.314 21.7 3.66
ResNet50 76.13 25.5 4.09
ShuffleNetv2x0.5 60.5 1.3 0.04
ShuffleNetv2x1.0 69.36 2.27 0.14
ShuffleNetv2x1.5 72.99 3.5 0.30
ShuffletNetv2x2.0 76.23 7.3 0.58
SqueezeNet 57.5 1.2 0.35
VGG16 76.3 132.8 7.61



116 Designing Lightweight CNN for Images

can use a high-end GPU server for training before deployment on an edge
device.

5.3 Transformers for EdgeAI

Initially proposed for natural language processing tasks, transformers have
also found exploration in computer vision [48][49][50][51][52][53]. The
Vision Transformer (ViT) [52], introduced in 2020, adapted the Transformer
architecture specifically for computer vision by replacing CNN-based back-
bones with Transformer encoders. ViT achieved competitive performance on
image classification benchmarks, indicating the effectiveness of Transformers
in vision tasks. However, Transformers require substantial amounts of data to
work well, and ViT struggles to perform on ImageNet-1K 0, which already
contains over one million images. Convolution still plays an important role in
Transformers.

5.3.1 Hybrid transformers

Research towards the miniaturization of Transformers focuses on utiliz-
ing CNNs as feature extractors with low computational cost. Models like
MobileViT and its latest versions [37][50][49] achieved impressive perfor-
mance with significantly fewer parameters and floating-point operations than
previously published computer vision Transformers. The concept involves
incorporating multiple CNN blocks within transformers to enhance the
extraction of features, as illustrated in Figure 5.4. While transformers like
ViT demonstrated remarkable capabilities in natural language processing
tasks, they often lack the reliance on powerful feature extractors, such as
CNNs, which may explain the challenges faced by such models in achiev-
ing efficient training with limited data, as seen in the struggle encountered

Figure 5.4 MobileViT block [37].



5.3 Transformers for EdgeAI 117

when training ViT based network on datasets like ImageNet1K. These con-
tributions may lead to new backbones for object detection, segmentation,
and classification in the computer vision community, utilizing these hybrid
models.

As mentioned earlier, the number of parameters is not the sole metric
for comparing results; a compelling example is the comparison between
MobileNetv2 and its supposed enhancement, MobileViT. MobileViT fails to
match the computing speed of MobileNetv2 on the iPhone 12 neural engine,
as the latter achieves an inference time of 0.9ms, while MobileViT requires
7.28ms per inference despite having a similar number of parameters.

Transformers inherently tend to be slower than CNNs for several reasons.
First, Vision Transformers (ViTs) are designed to leverage dedicated CUDA
kernels on GPUs, enabling improved scalability and efficiency. In contrast,
CNNs benefit from device-level optimizations like batch normalization fusion
with convolutional layers, 3x3 convolution optimization, and other tech-
niques. This observation suggests there is still room for improvement in
optimizing transformers at a lower computational level. Despite their poten-
tial, transformers must continue to evolve to achieve faster and more efficient
performance comparable to that of CNNs in specific contexts.

MobileViTv2’s [50] enhancement primarily focused on optimizing
the self-attention operation within transformers. As previously mentioned,
researchers have a significant opportunity to improve attention layers like
Multi-Head Attention (MHA). The computational complexity of the MHA
layer is typically O(k2) whereas MobileViTv2’s version of MHA has
reduced it to O(k) through the implementation of element-wise opera-
tions. The concept involves using element-wise operations such as summa-
tion, multiplication, and softmax instead of more computationally intensive
operations like batch-wise matrix multiplication, which is quadratically
expensive.

Previous efforts to optimize self-attention, such as the Linformer [37]
approach, decompose the self-attention operation into smaller segments
via linear projections, effectively reducing the complexity from O(k2) to
O(k). However, Linformer still employs resource-intensive operations to
learn global representations within MHA, which could pose challenges for
deploying such models on devices with limited resources. Other methods
have managed to reduce complexity to O(k) but often suffer substantial
performance degradation.



118 Designing Lightweight CNN for Images

In contrast, MobileViTv2 outperformed MobileViTv1 by approximately
1% and exhibited a significant speed boost, running 3.2 times faster
on comparable devices. This advancement underscores the potential of
optimizing self-attention operations within transformers while maintaining
robust performance, especially in constrained computing environments.

In recent developments, there has been progress in enhancing hybrid
architectures combining CNN and Transformers for mobile devices. Mobile-
ViTv3 [49] emerged as an improved iteration of the initial MobileViT
architecture. This advancement involves substituting resource-intensive 3x3
convolutional layers with more efficient depthwise and 1x1 convolutions.
Additionally, the integration of residual connections contributed to an overall
performance boost for the MobileViT v1 design. Furthermore, this enhance-
ment opened avenues for scaling the width of the MobileViTv3 model. The
removal of the costly 3x3 convolutions led to a reduction in parameters and
FLOPs, resulting in improved scalability while maintaining or enhancing
performance.

Table 5.4 gives comprehensive results around each MobileViT version
compared to Swin-T as an accuracy gap to achieve for the transformer-
based model. While Swin Transformer [51] and DETR [48] significantly
improved tackling the ImageNet classification and MS COCO challenges,
they remain less suitable for edge computing due to their computational
demands. Nevertheless, the technological advancements achieved through
the rise of transformers could be instrumental in enhancing convolutions.

Table 5.4 Optimized transformers and hybrid transformers performance by scale
Models ImageNet Top

1 (%)
Parameters (M) FLOPs (G)

MobileViT-XXS 69.4 1.3 0.4
MobileViTv2-0.5 70.2 1.4 0.5
MobileViTv3-XXS 70.98 1.2 0.28
MobileViTv3-0.5 72.33 1.4 0.48
MobileViTv2-1.0 78.1 4.9 1.8
MobileViTv3-XS 76.7 2.5 0.92
MobileViTv3-1.0 79.64 5.1 1.87
MobileViTv3-S 79.3 5.8 1.84
MobileViTv2-0.5 70.2 1.4 0.5
MobiletViTv2-2.0 81.2 18.5 7.5
Swin-T 81.3 28.3 4.5
MobileNetv2 71.978 2.6 0.3



5.4 ConvNeXts 119

Consequently, using the benefits of the previously mentioned miniaturization
techniques with these technological advancements in an edge-computing
context becomes a promising avenue for further progress.

5.4 ConvNeXts

While Transformers are a significant breakthrough in computer vision, recent
advancements, such as the ConvNeXt [11] convolution, quietly surpassed
their performance in computer vision. The foundation of ConvNeXt lies
in the adaptation of ResNet, which serves as a starting point, leveraging
techniques inspired by transformers to fill the gap between ResNet’s and Swin
Transformer’s performance (Figure 5.5).

To achieve this, ConvNeXt introduces a new CNN design inspired by
Transformers. Firstly, it employs the patchify technique, which involves
flattening the input into a vector of smaller patches, an idea initially intro-
duced in Vision Transformers (ViT) to exploit text-based transformer tech-
niques for processing 2D images effectively. Secondly, the training recipe
aligns closely with the strategies employed in Swin Transformers and DeiT.

Figure 5.5 ConvNeXt Block [11]



120 Designing Lightweight CNN for Images

Table 5.5 ConvNeXt compared to hybrid transformers performance by scale.
Models ImageNet Top

1 (%)
Parameters (M) FLOPs (G)

AlexNet 56.52 61 0.71
VGG16 76.3 132.8 7.61
ResNet152 78.312 60.19 11.51
EfficientNetv2 Large 85.808 118.5 56.08
MobiletViTv2-2.0 81.2 18.5 7.5
Swin-T 81.3 28.3 4.5
ConvNeXt-T 82.9 28.6 4.5
ConvNeXt-S 83.616 50.2 8.68
ConvNeXt-B 84.06 88.6 15.36
ConvNeXt-L 84.414 197 34.36

As a result, ConvNeXt exhibits less sensitivity to image shift-invariance.
The training process is extensively enhanced through data augmentation,
longer training epochs, and the AdamW optimizer, leading to improved
results.

Furthermore, ConvNeXt introduces a compelling microdesign aspect,
replacing the conventional ReLU activation function with GeLU (Gaussian
Error Linear Unit), a different non-linear activation function. Additionally,
the model incorporates fewer activations and norms than those found in
transformer architecture (Recognizing the initial hypothesis involving non-
linearity inMobileNetv2). These adaptations contribute to the model’s overall
efficiency and performance, effectively leveraging the power of transformer-
inspired concepts within a CNN framework.

ConvNeXt’s new philosophy for CNNs might open the path for new
mobile architecture. The benchmark in Table 5.5 enlightens ConvNeXT
performance compared to models with similar computing performance.

5.5 Neural Architecture Search

Amidst the collection of hand-crafted neural networks, the question arises:
Can we venture into automatic network architecture design, to reduce the
dependency on deep learning expert insights? The Neural Architecture
Search (NAS) literature categorizes two primary domains: Evolutionary
Algorithms (EA) and Reinforcement Learning (RL). Evolutionary algorithms
utilize a pool of candidate architectures, each with its respective accuracy.
Only a limited number of top-performing candidates evolve further. Should
these evolved candidates exhibit enhanced accuracy, the candidate pool



5.5 Neural Architecture Search 121

is accordingly updated. On the other hand, Reinforcement Learning (RL)
employs an LSTM Agent to generate a string, serving as a dictionary of
convolution operations to execute on hardware to train and test. The accu-
racy serves as the reward signal for this operation, and the LSTM Agent
subsequently refines and produces another dictionary block.

The initial NASnet [54] model lacks consideration for runtime or compu-
tational efficiency. The search space for potential architectures is inherently
resource intensive. While the LSTM Agent discovered architecture proves
superior to manually crafted ones, it inherits the complexity identified in
this survey as challenging for edge devices. This complexity arises from
the substantial memory requirements due to the neural architecture search
algorithm’s reliance on a configuration of five cells per layer, each with three
potential residual depth connections (from the previous cell’s output, the cell
before the previous one, and the previous block’s output within the current
cell).

Most NAS methods [54][55] explore architectural spaces to construct
intricate cells, subsequently employing these cells with identical configura-
tions throughout the network. Unfortunately, this approach lacks the potential
for layer wise diversity. MnasNet [56], a breakthrough in Aware Neural
Architecture Search for Mobile, introduces an edge computation model for
inference by selecting a considerably smaller number of convolution blocks.
This time, the LSTM agent selects hand-crafted architectures in alignment
with theMobileNet philosophy. Employing such block-based designs reduces
the search space from 1039 options to 1013.

The search algorithm within MnasNet also introduces a multi-objective
reward system that combines validation accuracy and a metric for real-
world latency on mobile devices. This dual-objective approach optimization
creates architectures that excel in both accuracy and efficiency for real-world
performance.

5.5.1 NAS scale study

While NAS is primarily concerned with discovering novel convolutions
based on accuracy-to-speed trade-offs, EfficientNet [12][13] takes a different
approach, aiming to optimise a manually designed model by identifying the
optimal balance among width, depth, and resolution (Figure 5.6). Although
these components might seem independent, EfficientNet’s case study high-
lights that achieving superior accuracy requires simultaneous optimization of
all three components rather than considering them separately.



122 Designing Lightweight CNN for Images

Figure 5.6 EfficientNet Scaling [12]

Table 5.6 Efficient neural network architectures with neural network search

Models
ImageNet
Top 1(%)

Parameters
(M)

FLOPs
(G)

ResNet50 76.13 25.5 4.09
NASNet-A (4 @ 1056) 74 5.3 0.56
NASNet-B (4 @ 1536) 72.8 5.3 0.48
NASNet-C (3 @ 960) 72.5 4.9 0.558
MobileNetv1_efficientNetv1
(d=1.4,w=1.2,r=1.3)

75.6 2.3

MobileNetv2_efficientNetv1
(d=1.4, w=1.2, r=1.3)

77.4 1.3

PNASNet-5 (N = 3, F = 54) 74.2 5.1 0.58
PNASNet-5 (N = 4, F = 216) 82.9 86.1 25
EfficientNet_B0 77.692 5.2 0.32
EfficientNet_B1 78.642 7.79 0.69
EfficientNetv2_Small 84.228 21.4 8.37
EfficientNetv2_Medium 85.112 54.1 24.58
EfficientNetv2_Large 85.808 118.5 56.08
MobileNetv1 68.4 2.6 ND
MobileNetv2 71.978 2.6 0.3

To enhance accuracy and efficiency, the interplay between depth, width,
and resolution is computed and then trained on the CIFAR dataset, allow-
ing rapid assessment of the newly formulated model. Subsequently, this
model is scaled up for evaluation in an ImageNet context. Building upon
this foundation, EfficientNetv2 introduces a further innovation: the incor-
poration of fused MBConv (MobileNet-like convolution). This mechanism
combines the 1x1 expansion convolution with the subsequent 3x3 depth-
wise convolution into a single 3x3 operation, streamlining both processes
and enhancing overall efficiency. Table 5.6 compares the performance of



References 123

NAS-based models against a list of comparable and well-known hand-crafted
architectures.

5.6 Conclusion

Efficient neural network architectures are a subject of ongoing intensive
research within the deep learning community. This research aims to har-
ness the scalability potential of Convolutional Neural Networks (CNNs) for
emerging edge computing paradigms. Since the publication of AlexNet, these
architectures not only improved accuracy but also advanced the state-of-
the-art through optimised proposals. However, developing efficient neural
networks for mobile and edge devices highlights the challenge of crafting
such models manually.

Throughout this work, we presented a comprehensive array of opti-
mised neural network architectures tailored for edge devices, encompassing
more than just microcontrollers. While these architectures may exhibit dis-
crepancies and contradictions, they collectively highlight the deep learning
community’s commitment to refining model architectures. This emphasises
the absence of a one-size-fits-all architecture for edge devices and the neces-
sity for benchmarks when searching for neural network architectures to
fit our needs. This chapter provides researchers with a global perspective
on significant advancements and their pros and cons, fostering a deeper
understanding.

Acknowledgements

This research was conducted as part of the EdgeAI “Edge AI Technologies for
Optimised Performance Embedded Processing” project, which has received
funding from KDT JU under grant agreement No 101097300. The KDT
JU receives support from the European Union’s Horizon Europe research
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia,
Luxembourg, Netherlands, and Norway.

References

[1] Buyya R., Yeo C. S., Venugopal, S., Broberg J., Brandic I. ’Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility’, Future Generation Com-
puter Systems, Volume 25, Issue 6, 2009, doi: 10.1016/j.future.2008.
12.001.



124 Designing Lightweight CNN for Images

[2] Steffenel L. A., “Improving the Performance of Fog Com-
puting Through the Use of Data Locality,” 2018 30th Int.
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), Lyon, France, 2018, pp. 217-224, doi:
10.1109/CAHPC.2018.8645879.

[3] Mostafa Dehghani et al. The Efficiency Misnomer. The Tenth Interna-
tional Conference on Learning Representations (ICLR), April. 2022.
doi: 10.48550/arXiv.2110.12894.

[4] Bichen Wu et al. “Shift: A Zero FLOP, Zero Parameter Alternative to
Spatial Convolutions”. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018,
pp. 9127–9135. doi: 10.1109/CVPR.2018.00951.

[5] Andrew Brown, Pascal Mettes, and Marcel Worring. “4-Connected Shift
Residual Networks”. In: 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE,
Oct. 2019, pp. 1990–1997. doi: 10.1109/ICCVW.2019.00248.

[6] He Y., Liu X., Zhong H., Ma Y., ’AddressNet: Shift-Based Primitives
for Efficient Convolutional Neural Networks,’ 2019 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), Waikoloa, HI,
USA, 2019, pp. 1213-1222, doi: 10.1109/WACV.2019.00134.

[7] Ding X., Zhang X., Ma N., Han J., Ding G., Sun J.“RepVGG: Making
VGG-style ConvNets Great Again”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021. p. 13733-
13742.

[8] Ma N., Zhang X., Zheng HT, Sun J. “ShuffleNet V2: Practical Guide-
lines for Efficient CNN Architecture Design”, Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 116-131.

[9] Krizhevsky A., Sutskever I., Hinton G.E. “ImageNet classification with
deep convolutional neural networks”. Communications of the ACM 60,
6 (June 2017), 84–90. doi: 10.1145/3065386.

[10] He K., Zhang X., Ren S., Sun J., “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi:
10.1109/CVPR.2016.90.

[11] Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S., “A
ConvNet for the 2020s,” 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022,
pp. 11966-11976, doi: 10.1109/CVPR52688.2022.01167.



References 125

[12] Tan, M., Le, Q. “EfficientNET: Rethinking model scaling for con-
volutional neural networks”. In: International conference on machine
learning (ICML). 2019. p. 6105-6114. url: http://arxiv.org/abs/1905.1
1946

[13] Tan, M., Le, Q. “EfficientNETv2: Smaller models and faster training”.
In: International conference on machine learning (ICML). 2021. p.
10096-10106. doi: 10.48550/arXiv.2104.00298.

[14] Howard A. G., Zhu M., et al. “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications”. arXiv preprint
arXiv:1704.04861. 2017.

[15] Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.C. “MobileN-
netV2: Inverted residuals and linear bottlenecks”. In: Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2018. p. 4510-4520.

[16] Zhang X., Zhou X., Lin M., Sun J., “ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices,” 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 2018, pp. 6848-6856, doi: 10.1109/CVPR.2018.00716.

[17] Ma N., Zhang X., Zheng HT., Sun J. “ShuffleNet V2: Practical Guide-
lines for Efficient CNN Architecture Design”. In: Computer Vision –
ECCV 2018. LNCS, vol 11218. doi: 10.1007/978-3-030-01264-9_8.

[18] Iandola F.N., Han S., Moskewicz MW., Ashraf K., Dally WJ., Keutzer
K. “SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and <0.5MB model size”. arXiv preprint, Nov. 2016. doi:
10.48550/arXiv.1602.07360.

[19] Mehta S., Rastegari M., Caspi A., Shapiro L., Hajishirzi H. “ESPNet:
Efficient Spatial Pyramid of Dilated Convolutions for Semantic Seg-
mentation”. In: Computer Vision – ECCV 2018. LNCS vol 11214. doi:
10.1007/978-3-030-01249-6_34.

[20] Mehta S., Rastegari M., Shapiro L., Hajishirzi H., “ESPNetv2: A Light-
Weight, Power Efficient, and General Purpose Convolutional Neural
Network,” 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 9182-9192, doi:
10.1109/CVPR.2019.00941.

[21] Simonyan K., Zisserman A. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: 3rd International Conference on
Learning Representations (ICLR), San Diego, CA, USA, May 7-9,
2015. doi: 10.48550/arXiv.1409.1556.



126 Designing Lightweight CNN for Images

[22] Redmon J., Divvala S., Girshick R., Farhadi A., “You Only Look Once:
Unified, Real-Time Object Detection,” 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.

[23] Glenn, J., “ YOLOv5 by Ultralytics”. doi: org/10.5281/zenodo.3908559.
[24] Chuyi Li et al. “YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications”. Sept. 2022. doi:
10.48550/arXiv.2209.02976.

[25] Wang CY., Bochkovskiy A., Liao HY. M., “YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors.”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023.. doi: 10.48550/arXiv.2207.02696.

[26] Redmon J., Farhadi A. “YOLOv3: An Incremental Improvement”. Apr.
2018. doi: 10.48550/arXiv.1804.02767.

[27] Yan W., Liu T., Fu Y., “YOLO-Tight: An Efficient Dynamic Compres-
sion Method for YOLO Object Detection Networks”. In: 2021 13th
International Conference onMachine Learning and Computing. ICMLC
2021. event-place: Shenzhen, China. New York, NY, USA: ACM, 2021,
pp. 378–384. doi: 10.1145/3457682.3457740.

[28] Redmon J., Farhadi A., “YOLO9000: Better, Faster, Stronger,”
2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, HI, USA, 2017, pp. 6517-6525, doi:
10.1109/CVPR.2017.690.

[29] Fang F., Wang L., Ren P. “Tinier-YOLO: A Real-Time Object Detection
Method for Constrained Environments”. In: IEEE Access 8 (2020), pp.
1935–1944. doi: 10.1109/ACCESS.2019.2961959.

[30] Bochkovskiy A., Wang C.Y., Liao H-Y., M. “YOLOv4: Opti-
mal Speed and Accuracy of Object Detection”. Apr. 2020. doi:
10.48550/arXiv.2004.10934.

[31] Moosmann J., Giordan M., Vogt, C., Magno, M. “TinyissimoYOLO: A
Quantized, Low-Memory Footprint, TinyML Object Detection Network
for Low Power Microcontrollers”. (2023). arXiv preprint, url:http://arxi
v.org/abs/2306.00001

[32] Aharon S., Louis-Dupont, Ofri Masad, Yurkova K., Lotem F., Lkdci,
Khvedchenya E., Rubin R., Bagrov N., Tymchenko B., Keren T.,
Zhilko A., Eran-Deci. “Super-Gradients”. 2021. doi: 10.5281/ZEN-
ODO.7789328.

[33] Howard A., Sandler M., Chu G., et al. “Searching for MobileNetV3”.
Proceedings of the IEEE International Conference on Computer



References 127

Vision, Seoul, 27 October-2 November 2019, 1314-1324. doi:
10.1109/ICCV.2019.00140

[34] LiuW., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C-Y., Berg A.C.
“SSD: Single Shot MultiBox Detector”. In: Computer Vision – ECCV
2016. LNCS vol 9905. doi: 10.1007/978-3-319-46448-0_2

[35] Lin, TY. et al. “Microsoft COCO: Common Objects in Context”. In:
ECCV 2014. LNCS vol 8693. doi: 10.1007/978-3-319-10602-1_48

[36] Wang C.-Y., Mark Liao H.-Y., Wu Y.-H., Chen P.-Y., Hsieh J.-W., Yeh
I.-H., “CSPNet: A New Backbone that can Enhance Learning Capability
of CNN,” 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 1571-
1580, doi: 10.1109/CVPRW50498.2020.00203.

[37] Sinong Wang et al. “Linformer: Self-attention with linear complexity”.
In: arXiv preprint arXiv:2006.04768 (2020).

[38] Mehta S., Rastegari M., “MobileViT: Light-weight, General-purpose,
and Mobile-friendly Vision Transformer”. International Conference in
Learning Representation. 2022. Available at:http://arxiv.org/abs/2110.0
2178

[39] Chollet F. “Xception: Deep Learning with Depthwise Separable Con-
volutions,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807, doi:
10.1109/CVPR.2017.195.

[40] Lin J. et al. “MCUNet: Tiny Deep Learning on IoT Devices”. Annual
Conference on Neural Information Processing Systems (NeurIPS 2020)
Nov. 2020. doi: 10.48550/arXiv.2007.10319.

[41] Lin J. et al., “MCUNetV2: Memory-Efficient Patch-based Infer-
ence for Tiny Deep Learning”. Oct. 2021. arXiv preprint. doi:
10.48550/arXiv.2110.15352.

[42] C. Szegedy et al., “Going deeper with convolutions,” 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

[43] Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z., “Rethinking the
Inception Architecture for Computer Vision,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 2016, pp. 2818-2826, doi: 10.1109/CVPR.2016.308.

[44] Ioffe S., Szegedy C. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. Proceedings of the 32nd
International Conference on Machine Learning (ICML) 37:448-456,
2015.Mar. 2015. doi: 10.48550/arXiv.1502.03167.



128 Designing Lightweight CNN for Images

[45] Huang G., Liu Z., Van Der Maaten L. Weinberger K. Q., “Densely Con-
nected Convolutional Networks,” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp.
2261-2269, doi: 10.1109/CVPR.2017.243.

[46] Xiaohan Ding et al. “Diverse Branch Block: Building a Convolution
as an Inception-like Unit”. In: 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). Nashville, TN, USA:
IEEE, June 2021, pp. 10881–10890. doi: 10.1109/CVPR46437.2021.
01074.

[47] Vasu P, Gabriel J., Zhu J., Tuzel O., Ranjan A., “MobileOne: An
Improved One millisecond Mobile Backbone”. Mar. 2023. arXiv
preprint, url:http://arxiv.org/abs/2206.04040

[48] Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko
S., “End-to-End Object Detection with Transformers”. In: ECCV 2020.
LNCS vol 12346. doi: 10.1007/978-3-030-58452-8_13.

[49] Adekar S.N., Chaurasia A. “MobileViTv3: Mobile-Friendly
Vision Transformer with Simple and Effective Fusion of Local,
Global and Input Features”. Oct. 2022. arXiv preprint. doi:
10.48550/arXiv.2209.15159.

[50] Mehta S, Rastegari M. “Separable Self-attention for Mobile
Vision Transformers”. June 202. arXiv preprint. doi:
10.48550/arXiv.2206.02680.

[51] Liu Z. et al., “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows,” 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), Montreal, QC, Canada, 2021, pp. 9992-10002,
doi: 10.1109/ICCV48922.2021.00986.

[52] Dosovitskiy A. et al. “An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale”, 9th International Confer-
ence on Learning Representations (ICLR 2021). May 2021. doi:
10.48550/arXiv.2010.11929.

[53] Xie S., Girshick R., Dollár P., Tu Z., He K., “Aggregated Residual
Transformations for Deep Neural Networks,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
2017, pp. 5987-5995. Available at:https://doi.org/10.1109/CVPR.2017.
634. Deng J., Dong W., Socher R., et al., “ImageNet: A Large-Scale
Hierarchical Image Database”. 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, 20-25 June 2009, 248-255. doi:
10.1109/CVPR.2009.5206848.



References 129

[54] Barret Zoph et al. “Learning Transferable Architectures for Scalable
Image Recognition”. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018,
pp. 8697–8710. doi: 10.1109/CVPR.2018.00907.

[55] Liu C. et al. “Progressive Neural Architecture Search”. In: ECCV 2018.
LNCS vol 11205. doi: 10.1007/978-3-030-01246-5_2

[56] Mingxing T. et al. “MnasNet: Platform-Aware Neural Architecture
Search for Mobile”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE,
June 2019, pp. 2815–2823. doi: 10.1109/CVPR.2019.00293.




