4

Inside the Al Accelerators: From High
Performance to Energy Efficiency

Ana Pinzari, Adrien Prost-Boucle, Christelle Rabache,
and Frédéric Pétrot

Institute of Engineering Univ. Grenoble Alpes, France

Abstract

This chapter overviews current technologies for high-performance, low-
power neural networks. To cope with the high computational and storage
resources, hardware optimisation techniques are proposed: Deep Learning
(DL) compilers and frameworks, DL hardware coupled with hardware-
specific code generators. More specifically, we explore the quantization
mechanism in deep learning, based on a deep-CNN classification model.
We highlight the accuracy of quantized models and explore their efficiency
on a variety of hardware platforms. Through experiments, we show the
performance achieved using general-purpose hardware (CPU and GPU) and a
custom ASIC (TPU), as well as the simulated performance for a reduced bit-
width representation of 4 bits, 2 bits (ternary) down to 1-bit heterogeneous
quantization (FPGA).

Keywords: Deep Learning, hardware accelerators, DL Compilers, CPU,
TPU, GPU, quantization aware training, binary neural network.

4.1 Introduction and Background

Al-based solutions are constantly emerging in our daily life. Al solu-
tions already dominate across all social fields; their remarkable success

87

88 Inside the Al Accelerators: From High Performance to Energy Efficiency

bringing comfort and quality, and saving time. However, the difficulty of
deploying these solutions raises open questions for both industry and research
communities.

The use of the most recent neural networks generally requires a lot of
computation and resources, as the rule of thumb is - the deeper the model, the
more accurate it is. Various DL frameworks such as TensorFlow, MXNet and
PyTorch are meant to simplify the definition and implementation of neural
network architectures. To accelerate the performance of these models and
achieve high energy efficiency, various DL hardware are proposed. CPU and
GPU are general-purpose hardware embracing SIMD and vector-oriented
logical components which can be used to facilitate and accelerate neural
networks computation.

Application-specific integrated circuits, such as the custom dedicated
hardware Google Coral TPU and FPGA, are designed to increase neural
network performance and leverage the energy efficiency. Each hardware
architecture has its own specificity in term of computational requirements and
memory complexity. To cope with these requirements and to adapt the DL
models to the wide variety of DL chips, DL compilers have been proposed.

The most recent DL compilers, such as TVM, Glow, XLA, Tensor
Comprehension [6] have the objective of optimizing the NN for specific
hardware architectures. They include in their flow a front-end intermediate
representation (IR) and dedicated back ends, which allows the portability of
a model across diverse target hardware.

To enable and facilitate the portability to Al edge devices, various opti-
mization techniques must be applied. The most known methods involve
reducing the parameter count and representational precision, while others use
tensor decomposition techniques.

The number of parameters can be reduced by pruning the weights and
nodes, or to lighten the topology of the neural network architecture. To cope
with the memory complexity and to leverage hardware requirements, models
need to be represented in lower precision, such as 8-bit integer representations
or extremely low-bit precisions (ternary {-1, 0, 1}, binary {-1, 1}). This is
referred to as quantization.

In this paper, we propose to show the implementation of a small neural
network defined and designed to be deployed on a wide range of small edge-
Al devices. To evaluate these edge platforms, we implemented an end-to-end
inference design based on a quantized neural network architecture.

These experiments aim at demonstrating that an Al-based classification
solution is feasible on these types of low-power and limited resource devices,

4.2 Related Work 89

by only applying quantization techniques. Other optimizations are of course
feasible, and their efficiency is studied in Section 1.2.

For the rest of the article, we show the performance our model achieves
for real-time inference on CPU, GPU, TPU and FPGA boards. We are
specifically interested to compare the power consumption and the logical and
physical resources allocated for these edge devices. These criteria and the
model’s performance will be examined in our study.

4.2 Related Work

To enable rapid deployment and exploit the performance of hardware accel-
erators, a great time and effort has been dedicated to DL compilers. A recent
overview of these compilers to enable the automatic transformation of DNN
to hardware accelerators is well explained in [7].

For specialized DL accelerators, a hardware programmable architecture
integrating JIT compiler and runtime, is proposed to the community [4]. The
VTA is part of Apache TVM and offers more flexibility and versatility for
diverse models to hardware back ends (FPGAs).

A comparison of various type of neural networks (MLPs, CNNs, RNNs)
on Google TPU ASIC is done in [5]. Experiments show that the performance
is limited by memory bandwidth rather than by peak computational need.
This is due to the use of systolic execution (a row matrix is limited to 256-
element multiply-accumulate operations) in order to save energy (reading
large SRAM uses much more power than arithmetic operations).

Tensor decomposition is another acceleration method. A well-explained
study of higher-order tensor decompositions and their applications is
reviewed in [3][6]. The authors [2] propose an asymmetric 3D decomposition
for different models. In their study, they show that shallower models can
achieve 3.5x speed-up on the CPU and 3.3x speed-up on the GPU, with
an insignificant loss of accuracy. Experiments on much deeper models, such
as the VGG-16, showed that the GPU remains more sensitive to speed-up
than the CPU. This gap is explained by the fact that for particular kernels
used in tensor decomposition (e.g., 1x3, 3x1 convolutions), there is a lack of
parallelism and therefore optimization in CPUs. This problem has boosted
the research of many scientists, for example the authors [8] propose a CT
decomposition that is up to 5.56x faster than the current Tensor Lab library.

The work of [1] explains in detail the efficiency of using QKeras library
for ultra-low-latency inference. The authors use the hls4ml library for a
fully automated deployment of quantized model on FPGA and show that the

90 Inside the Al Accelerators: From High Performance to Energy Efficiency

amount of resource consumption can be reduced by up to 98%. Among vari-
ous optimizations techniques, such as pruning and 6-bit precision for weights
and activations, the best energy efficiency is achieved by the heterogeneous
quantization method (be it post-training or quantization aware training).

The first authors to explore the training of neural networks with binary
activations were introduced in [20]. An efficient way to map a binary CNN
to reconfigurable logic is presented in [21]. Authors use FINN [22] frame-
work to build a scalable and fast binary neural network, achieving a high
throughput but a limited accuracy.

In the vast field of hardware accelerators, quantization techniques and
models with limited number of weights are our primary research pillars. We
are studying how heterogeneous quantization can be applied to achieve fairly
high-performance with under 8-bit precision models, as some applications
show [23]. In comparison, we do not neglect models with 8-bit integer
quantization and show their performance on the most popular Al-edge boards.
Indeed, the smallest items that CPUs manipulate is a byte, and there is no
point in using smaller bit widths, as they require more instructions to process,
and it is even counter-productive from a computation point of view.

4.3 Classification Model

The model we consider for our experiments has been developed for a multi-
class classification problem.

To reduce the cost and energy consumption of the inference process as
much as possible, we have considered the right balance between resources
and accuracy, as a prior criterion. We performed the search for the appropriate
network architecture using floating-point representation, keeping in mind that
parameter size will be reduced by quantization. The definition of our model
is mostly empirical, as the current pre-defined neural networks are mainly
intended for very complex problems, and these large models are simply not
appropriate for inference on small electronic devices. More details about our
particular defined model can be found in [9].

Our neural network has been trained on mono-channel 224 x224 images
applying as learning method the supervised learning algorithm. Table 4.1
shows an overall description of each layer of the model, the number of
parameters and the output size for the resultant feature maps.

We continue with optimization techniques regarding computational and
memory requirements necessary to enable the execution of our model on
small edge devices.

4.4 Quantization 91

Table 4.1 Neural Network Description

Layer Output size / Nr of Parameters
Input (224x224x1)
Conv2D, 32 (7x7), s=2 109x109x32 / 1600
MaxPool2D (2x2) 54x54x32
Inception Block 54x54x32 /1056
32 (1x1), 54x54x8 /264, 54x54%x8 /264,
8 (1x1), 8 (1x1), MaxPool2D (3x3) 54x54%32
32 (3x3), 32 (5x5), 54x54x32 /2336, 54x54x32 /6432
32 (1x1) 54x54x32 /1056

54x54x128 /11408

MaxPool2D (2x2) 27x27x128
Conv2D, 12 (1x1) 27x27x12 /1548
Conv2D, 116 (3%3), s=2 14x14x116/ 12644
Conv2D, 116 (3x3), s=2 Tx7x116/121220
Flatten (5684)
FC / Softmax, 58 58 neurons / 329730

Total number of parameters: 478.150 (478 neurons and 477.672 weights)
Total number of FLOPs: 125.518.940

4.4 Quantization

Quantization consists of reducing the number of bits necessary to represent
a value. Its use in neural networks is not new [12, 13] but using it on deep
convolutional neural network raises new challenges. There are now many dif-
ferent quantization approaches, ranging from quantizing only the parameters,
quantizing both parameters (often only weights, not biases) and activations,
quantizing on 16, 8, or even 2 or 1 bit. Approaches using the smallest
bit sizes are meaningful for hardware implementations [14, 15, 16, 17].
For comparison reasons, we performed experiments targeting off-the-shelf
microcontroller-based boards using 8-bit quantization and custom hardware
accelerators such as FPGA, for lower bit-width representations.

On micro-controllers, the most demanding part of the neuron output
computation (v;= Z:‘L:_ol x;w;;) uses only 8-bit integer multiplications.

This is key because the area and power complexity of a multiplier is
in O (bQ) where b is the number of bits of the inputs. Each multiplication
produces a 2b-bit result, that is accumulated with the adder to produce a
(2b + logyn)-bit result, n being the number of inputs of the neuron. Using
a 32-bit addition is a safe guess here, as there are very few chances that the
accumulation takes place with more than 2'6 inputs. It is also safe to have
a bias b; on 32-bit, as this is a single addition performed after all integer
multiplications (0; = vj + b;).

92 Inside the Al Accelerators: From High Performance to Energy Efficiency

TensorFlow has been the first widely available framework to provide fine-
tuned 8-bit integer arithmetic implementations for micro-controllers (using
e.g. SIMD instructions) and Google TPU [18], we opted to use it given
our high power-efficiency goal. We briefly summarize here the quantiza-
tion approach that is advocated by and implemented in this framework,
which is thoroughly detailed in [19]. For a given convolution layer, the
quantization process produces, in addition, an offset (called zero-point,
zp), and for each output channel of the layer a scale under the form
of an integer multiplicand M and a shift s. The scale factor and offset
must be applied before the activation function, leading (roughly, as the
idea is to divide by 2° which is not a raw shift for negative values)
to y; = ((oj x M)>s) + =zp. These operations, done only once
per kernel, typically fit in 32-bit, and the result is saturated to —128
or 127.

From a practical point of view, there are two main ways for quantizing
a network: Post-training quantization (PTQ) and quantization-aware training
(QAT). PTQ consists of finding offsets and scale values to approximate the
weights of an already trained network. Post-training works quite well on large
networks, especially when lowering weight size to 8 bits or more. To further
reduce bit size without incurring high accuracy losses, it is usually necessary
to use QAT. This consists of training the network by considering the low
precision behaviour during the process.

Google’s TensorFlow-Lite (TF-Lite) open-source framework provides an
API to convert and interpret quantized networks. Given our target that is
micro-controllers possibly backed by an accelerator, for which lower than
8-bit precision is useless, we use the PTQ method. It produces weights
and biases quantized to a fixed-point precision of 8-bit using the approach
mentioned above and required by integer-only accelerators. PTQ takes a fully
trained model and doesn’t require additional modifications for conversion
into a quantized model. Nevertheless, an important point for the conversion
process is to provide a representative data set, i.e., a small subset of the orig-
inal data set which covers the entire value space. This gives the quantization
process the range of inputs values and it can then find the most appropriate 8-
bit fixed-point representation (multiplicand M and shift s) for each weight and
activation value. To achieve the best possible performance, i.e., ensure that all
computations are done using SIMD instructions or outsourced to the TPU, it
is recommended to strictly stick to the 8-bit data type. For this purpose, we
perform a full integer optimization with the TF-Lite converter, i.e., the inputs
and the outputs use 8 bits too.

4.5 Experiments and Results 93

The accuracy with the quantization process activated is given Table 4.2.

Table 4.2 Inference Accuracy Of The Quantized Model Before (QAT) and After (PTQ)
Training

Quantization-aware Post-training
Training Quantization
Accuracy 97.63 % 97.35 %

4.5 Experiments and Results

The following experiments are conducted using software implementa-
tion of our quantized neural network model as well as the unquantized
version. They are each using the available kernel implementation pro-
vided with the development kit without modification or optimization from
our side.

Further optimization is described in Section 4.5.2, though we show
through this type of experiment that solely optimizing the neural network
model is enough to deliver the required performances using general purpose
hardware.

Experiments are conducted on the following hardware targets.

* X86 Desktop CPU 48 cores / 96 threads (float and int)

* Google Coral TPU coprocessor 4 TOPS (int)

* Google Coral CPU quad Cortex-A53 and a Cortex-M4F (int and float)
e Jetson CPU (int and float) Quad Cortex-a53

¢ Jetson Maxwell GPU (float), 128 CUDA cores

* STM32MP1 CPU Cortex-A7 (int and float)

* Zyng-7000 SoC XC7Z010 FPGA

Figure 4.1 describes the workflow to create a TensorFlow Lite model
for inference on the above-mentioned edge devices. Our conversion focuses
on creating a floating-point quantization model (for inference especially on
GPU) and an 8-bit fixed point model for CPU and TPU acceleration. For
optimal use of Coral’s TPU, the tflite model must be compiled at the end with
the edge-tpu compiler to check the compatibility of the quantized operations
and then map them onto the TPU.

Once we have the models, we analyse the real-time performance of
our model for different systems. The experiments target the number of
inferences our model can perform per second, by measuring the latency
for different scenarios: unquantized TensorFlow model (binary32 The

94 Inside the Al Accelerators: From High Performance to Energy Efficiency

INT8 model

i

Post-training
Quantization
(.tflite model)

Y

Float16 model

TensorFlow
model

STM32MP1

Jetson

Figure 4.1 Workflow to Create a Tflite Model (Int8 And Binary16) for Inference on Edge
Boards: Google Coral Including the Compiled Model for the EdgeTPU, STM32MP1 and
Jetson.

binary256/128/64/32/16 types correspond to the floating-point representa-
tions defined in the IEEE 754-2008 standard on the number of bits indicated
in their name.), tflite model (binaryl6 and int8) and edgetpu model (int8).
Inference is performed one image at a time, i.e., the batch size is set to 1.

4.5.1 Time and power consumption

Table 4.3 shows the performance of our model for each target. An x86 CPU
desktop machine uses binary32 floats by default to infer a neural network.
With quantization, there is a gain in memory resources and therefore a higher
inference speed, at the expense of a lower precision. The MP1 board performs
faster for integer arithmetic, due to flexible dual cores dedicated for real-
time low-power tasks. For the Coral SoC, the best performance is achieved
by the TPU ML accelerator, the performance is more than 30x higher (902
i/s) than on its CPU. The Jetson GPU shows good inference performance
for models at half precision. The binaryl6 operations are faster than the
binary32 ones, so these quantized models should be considered for future
evaluation.

In the following, we present a general analysis by taking higher
throughputs and focusing not only on hardware optimizations but also on
power consumption. The following experiments are performed on a batch
size of 100 images and within the range of 1 to 32 batches processed
at a time.

4.5 Experiments and Results 95

Table 4.3 Inference Performance and Latency Measurements for Randomly Selected
Images. Experiments Done on x86 Standalone Server, Google Coral, STM32P1 and NVIDIA
Jetson Boards.

Performance (inferences/s)

Float Float (tflite) Int CPU TPU GPU
x86 52.5 322.5 312.5 - -
Coral - 20 31.8 902 -
MP1 - 4.5 5.5 - -
Jetson 26 38 56 - 47

Latency (ms)
x86 19 3.1 3.2 - -
Coral - 494 314 1.11 -
MP1 - 223 181 - -
Jetson 38.5 26.4 17.8 - 21.2

Accuracy: 97 %

4.5.1.1 Google Coral Board

Figure 4.2 shows the performance achieved by the TPU and the CPU of
the Coral board. We can observe that for large batch sizes, the TPU hard-
ware accelerator achieves performance up to 1600 inferences/s for a power
consumption of 4.2 W. Running the tflite model on the CPU (ARM vector
instructions), and without edge-tpu optimization, we obtain a performance of
33 inferences/s (ips) for the int8 model leading to a power consumption of
4.3 W, and a lower consumption of 3.8 W for the binary32 model, with 21
ips. In the power curves, we can observe a repetitive power overshoot of a bit
less than 1 W per batch. This is due to the cooling fan that starts when using
larger batches. Note that for inferences at a batch size of 1, the fan was never
activated.

1600, /\/J——\/—/"f 5000
1400
/ 4750

1200
/ 4500

1000

)

— intTPU —— int-tpu-PBUS(mW)
200 = int=CPU 3500 —— int-cpu-PBUS(mW)
— float-CPU —— float-cpu-PBUS(mW)

4250

800

Throughput (i/s)

4000

200 3750

0 5 10 15 20 25 30 0% 20% 40% 60% 79% 9%
Batch Size Testbench progression (%)

Figure 4.2 Coral Performance and Power Measurements

96 Inside the Al Accelerators: From High Performance to Energy Efficiency

7

1400

L)

1200

/_/_/— 1000

800

R

IS L]

w
Power(mw)

Throughput (ifs)

N
s
1]
5]

-
N
S
5]

—— int-cpu-Throughput — int-cpu-PBUS(mW)
—— float-cpu-Throughput —— float-cpu-PBUS (mW)
0 0
[5 10 15 20 25 30 0% 23% 45% 68% 91%
Batch Size Testbench progression (%)

Figure 4.3 MP1 Performance and Power Measurements

4.5.1.2 STM32MP1 Board
The STM32 MP1 board is efficiently designed for low power mode. The
float throughput improves when we increase the batch size, taking thus the
advantages of the ARM SIMD instructions. For the integer model, there is
not much improvement in performance, see Figure 4.3

We can also report that it was not possible to exceed a batch size of 32
with floats due to memory limitations. But we were able to go up to batches
of 128 for 8-bit integers due to their much smaller memory footprint.

4.5.1.3 NVIDIA Jetson

Figure 4.4 shows GPU float experiments with two inference kernels. One
available is the TensorFlow base interpreter, the other is the TensorFlow lite
implementation. Both have similar throughput (a little lower for tflite) but
there’s a non-negligible change in power consumption going from 5W to
3.5W. The latter being close to integers which are even more interesting with a
little more throughput for a little less power consumption. “The non-linearity

250 AN s s so00 RP——T
/ﬂ ol AT 'W[) S

/ __ 4000 w'|
— int-CPU ‘
—— float-CPU
—— float-GPU

— float-tflite-CPU

N
=1
8

—

"
&
-]

Power(mW)
w
-]
2
E]

Throughput (i/s)

-
2
38

2000 —— int-cpu-PBUS(mW)
— ~—— float-cpu-PBUS(mW)
50 —— float-gpu-PBUS(mW)
1000 —— floattflite-cpu-PBUS(MW)
0 (]
0 50 100 150 200 250 0% 17% 35% 52% 70% 87%

Batch Size Testbench progression (%)

Figure 4.4 Jetson Performance and Power Measurements.

4.5 Experiments and Results 97

in the GPU curve occurs for a batch ...” a batch size of 128 which is the
number of CUDA core to feed with images. This is why we lose some
throughput at 129 before slowly catching up the maximum throughput.

4.5.2 FPGA

4.5.2.1 QKeras Library

QKeras [10, 11] is an extension to Keras, a high-level API to define and train
neural networks. It has been implemented to perform a drop-in replacement
for certain layers of the model, related to weights and activation functions
with a deep quantized version of Keras neural network.

QKeras is designed to remain a simple and consistent interface optimized
for common functionalities in accordance with Keras design principles. For
this purpose, the following set of layers have been implemented: Qconv2D,
QActivation, QDense etc, to enable the conversion between non-quantized
to quantized networks. To make your own quantization (QAT) it is needed
to replace all variables and weights/bias created by Keras as well as output
of arithmetic layers by quantized functions. Qactivation is used in both
convolution (Qconv2D) and dense (Qdense) layers and acts at the end as
a merging function for activation and quantization. For these layers, some
parameters are interesting to mention.

Alpha is a parameter concerning the scale factor and should be applied
before the activation function. This parameter by default is None. It can also
indicate that the scale is computed as a floating-point number by the learning
process. It can also force the scale to be an integral power of 2, which ends
up for a hardware implementation in shifting the result of a convolution or
dense layer to the right or left (positive shifts left, negative shifts right). For
these practical reasons, in our experiments we opt for the latter setting.

Symmetric if set to, if set to True, ensures the trainable parame-
ters to get the same maximum and minimum values after the clipping
operation during quantization. The use of stochastic_rounding reveals
to be useful in practice for improving accuracy. However, computing
stochastic rounding might be quite heavy, so we set this parameter to
False.

Table 4.4 describes the results obtained by our model after quantizing
for different precisions. For example, the first convolution g_conv2d is set
this way: bits=4, integer=0, symmetric=1. The 4-bit quantization of the entire
model (weights, biases, and activations) achieves the better accuracy. When
further reducing to 2 bits, the accuracy of the model decreases drastically.

98 Inside the Al Accelerators: From High Performance to Energy Efficiency

Table 4.4 QKeras quantization for different precisions

Precision Sparsity
Layer 4 bits 2 bits Heteroge 4 bits 2 bits Heteroge
neous (4 bits, neous
binary) (4 bits,
binary)
g_conv2d 4,0,1) (2,0,1) 4,1,1), 0.1156 0.5131 0.1350
W.b 4,1) (2,0) 4,1,1)
ReLU 4,1)
g_conv2d_1 (4,0,1) (2,0,1) binary, 0.1023 0.5341 -
W.b 4,1) (2,0) 4,1,1)
ReLU 4,1)
g_conv2d_2 (4,0,1) (2,0,1) binary, 0.0985 0.5720 -
W,b 4,1 (2,0) 4,1,1)
ReLU 4,1)
g_conv2d_3 (4,0,1) (2,0,1) binary, 0.1108 0.5483 -
W.b 4,1) (2,0) 4,1,1)
ReLU 4,1)
g_conv2d_4 (4,0,1) (2,0,1) binary, 0.1973 0.5330 -
W,bReLU (4,1) (2,0) 4,1,1)
“.D
g_conv2d_5 (4,0,1) (2,0,1) binary, 0.2243 0.6550 -
WbReLU (4,1) (2,0) 4,1,1)
4.1)
g_conv2d_6 (4,0,1) (2,0,1) binary, 0.0975 0.5445 -
WbReLU (4,1) (2,0) 4,1,1)
.1
g_conv2d_7 (4,0,1) (2,0,1) binary, 0.1389 0.5975 -
W,bReLU (4,1) (2,0) 4,1,1)
“.1
g_conv2d_8 (4,0,1) (2,0,1) binary, 0.1754 0.5540 -
WbReLU (4,1) (2,0) 4,1,1)
4.1
g_conv2d_9 (4,0,1) (2,0,1) binary, 0.2935 0.6840 -
Wb ReLU (4,1) (2,0) 4,1,1)
“.D
q_dense 4,0,1) (2,0,1) (4,1,1), 0.5152 0.8756 0.4806
Wb ReLU (4,1) (2,0) 4,1,1)
“.1
Model Performance Total Sparsity
Accuracy 9% % 76.1 94.6 % 0.163 0.4397 0.81 0.3318
Loss 0.148 0.747

4.5 Experiments and Results 99

The table shows, as an additional information, the model sparsity for
various quantization scenario. This is a valuable metric to compare and see
the trade-off between the accuracy and the computational cost of the model.
The weights sparsity plays the role in reducing the number of calculations
during the inference. When the sparsity is the same, the level of FLOPs
remains constant. When the sparsity is too important (2 bits precision), the
quantization becomes less effective, and the accuracy of the model is reduced.
The sparsity for the last fully connected layer is like the pruning technique,
where synapses between neurons are reduced.

These reasons led us to search for heterogeneous quantization, the trick
being to find the right trade-off between accuracy requirements and hardware
performance.

From a practical point of view, for the weights of the intermediate layers,
we opted for an extremely low-bit quantization (we used binary quantization).
The first and last classification layers were quantized to 4 bits, as well as the
biases of the entire network. The activations of each quantized layer play an
equally important role, so these neurons have not decreased in number of bits,
the precision is maintained 4 bits.

This last model was implemented on the small Zybo board. The precision
for each quantized layer and the accuracy of the model are described Table 4
(heterogeneous quantization). This method enabled us to achieve an accuracy
slightly lower than the performance of the 4-bit model, more precisely a rate
of 94.6%.

4.5.2.2 Quantized model and Experimental Setup
The quantized network used in our experiment, targets the small board
Zybo Z7010 and explores the advantages of low-bit quantization. The major
advantage of binary precision is that the pre-trained weights of the model
(1.9 MB) fit very well within the on-chip memory. To achieve high memory
throughput and very lightweight control paths, our hardware implementation
does not leverage weight sparsity or compression. The low resource usage of
multipliers with binary weights also enable to use a larger bit width for acti-
vations (4 bits), keeping accuracy high. Each network layer is an independent
hardware block with its own dedicated resources and implementation, which
enables to optimize parallelism and memory usage on a per-layer basis. The
entire network fits inside the FPGA.

The approach of this efficient neural network implementation is presented
in [17]. The hardware architecture generated by this method presents a total
of 40 layers, with the following type: Sliding Window Layer, Neuron Layer,

100 Inside the AI Accelerators: From High Performance to Energy Efficiency

Table 4.5 FPGA performance and resource utilization

LUT (logic) LUTRAM Slice Block DSP cores
Registers RAM

9030/ 17600 4830/ 6000 11796 / 35200 60 /60 37780

(51.3 %) (80.50 %) (33.51 %) (100 %) (46.25 %)

Table 4.6 Model perpormance on FPGA

Performance Latency Power Power

(FPGA only) (Entire Chip)
178 images/s 26 ms 0.24 W ~ 1.75 W ~

134 mJ/ image 983 mJ/ image

ReLU Layer, MaxPooling Layer, and Fork and Cat layers for synchronization
of the parallel branches in the inception part of the network.

The resource utilization and performance of our quantized network
implementation, is described Table 4.5 .

The BRAM is used for read-only memories of weights in neuron layers.
All quantized MAC operations (multiply-accumulate) in neuron layers are
implemented in distributed logic with LUTs. The MAC operations of most
layers have a 1 b operand, which reduce the multiplications to tiny AND
operations. Only the last layer actually implements a 4 b multiplication (0.5%
of all MACs). The DSP cores are only used for address calculations within
Sliding Window Layers.

The power consumption number is the total power estimation performed
by the Xilinx Vivado synthesis suite. The processor subsystem of the Zynq
chip would actually be mostly idle, so we report power both for the whole
chip and for the FPGA only. The performance at 150MHz is summarized in
following Table 4.6.

4.6 Conclusion

A selection of edge-Al boards and some optimization techniques have
enabled us to investigate the possibilities of achieving high performance on
a low budget. With a deep CNN model defined for a classification task, the
accuracy achieved on 8-bit operating systems is around 97%. The efficiency
of each board depends on processing speed and RAM availability. In our
experiments, we found that performance is more limited by memory usage
than by the number of neurons. In addition, we show how performance

References 101

and energy efficiency can be affected by the cost of each board. To these
measurements, further experiments using binary operations were carried out
to address the option of a more energy efficiency at the expense of slightly
degraded accuracy (94.6%). To find a suitable model, we used a hybrid
aware quantization and described the methods enabling the maintain of an
acceptable accuracy.

By focusing on this type of optimization related to the memory usage,
i.e., an appropriate number of weights and limited bit widths, we have
shown that high-performance inference can be achieved very efficiently. More
specifically, the energy efficiency and power consumption achieved by each
evaluation board is summarized as follows:

e Coral TPU: 3.12 mJ/image or 320 images/s/W

e STM32MP1I: 232 mJ/image or 4.7 images/s/W

e Jetson GPU: 22.7 mJ/image or 44 image/s/W

e Zybo Z-7010: 983 mJ/image or 101.7 image/s/W

For further work, we plan to try out other optimization techniques linked
to specific applications, for which these methodologies are of the utmost
interest.

Acknowledgements

This work was supported by Key Digital Technologies Joint Undertaking
(KDT JU) in EdgeAl “Edge Al Technologies for Optimised Performance
Embedded Processing” project, grant agreement No 101097300.

References

[1] Claudionor N. Coelho Jr, Aki Kuusela, Shan Li, Hao Zhuang, Jennifer
Ngadiuba, Thea Klacboe Aarrestad, Vladimir Loncar, Maurizio Pierini,
Adrian Alan Pol, Sioni Summers, “Automatic heterogeneous quantiza-
tion of deep neural networks for low-latency inference on the edge for
particle detectors”, Nature Machine Intelligence (2021)

[2] Zhang, Xiangyu & Zou, Jianhua & He, Kaiming & Sun, Jian. (2015).
Accelerating Very Deep Convolutional Networks for Classification
and Detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[3] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and
Applications. SIAM Reyv, 51, 3 (August 2009), 455-500.

102 Inside the AI Accelerators: From High Performance to Energy Efficiency

[4] T. Moreau et al., “A Hardware-Software Blueprint for Flexible Deep
Learning Specialization,” in IEEE Micro, vol. 39, no. 5, pp. 8-16, 1
Sept.Oct. 2019, doi: 10.1109/MM.2019.2928962.

[5] Norman P. Jouppi, et al. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. SIGARCH Comput. Archit. News 45, 2 (May
2017), 1-12.

[6] Vasilache, Nicolas, et al. “Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions.”, 2018.

[7] R. Zhao et al., “Hardware Compilation of Deep Neural Networks: An
Overview,” 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), Milan, Italy,
2018, pp. 1-8, doi: 10.1109/ASAP.2018.8445088.

[8] Zhang, Tao et al. “cuTensor-Tubal: Efficient Primitives for Tubal-Rank
Tensor Learning Operations on GPUs.” IEEE Transactions on Parallel
and Distributed Systems 31 (2020): 595-610.

[9] Pinzari, Ana et al. (2023). Power Optimized Wafer map Classification
for Semiconductor Process Monitoring.

[10] Moons, Bert, et al. “Minimum energy quantized neural networks.” 2017
S1st Asilomar Conference on Signals, Systems, and Computers. IEEE,
2017.

[11] Zhou, Shuchang, et al. “Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients.” arXiv preprint
arXiv:1606.06160 (2016).

[12] G. Dundar and K. Rose, “The effects of quantization on multilayer
neural networks,” in IEEE Transactions on Neural Networks, vol. 6, no.
6, pp. 1446-1451, Nov. 1995.

[13] B. G. Hoskins, M. R. Haskard and G. R. Curkowicz, “A VLSI
implementation of multi-layer neural network with ternary activation
functions and limited integer weights,” Proceedings of International
Conference on Microelectronics, Nis, Serbia, 1995, pp. 843-846 vol.2.

[14] R. Andri, L. Cavigelli, D. Rossi and L. Benini, “YodaNN: An Ultra-
Low Power Convolutional Neural Network Accelerator Based on Binary
Weights,” 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLS])), Pittsburgh, PA, USA, 2016, pp. 236-241

[15] Umuroglu, Yaman & Fraser, Nicholas & Gambardella, Giulio & Blott,
Michaela & Leong, Philip & Jahre, Magnus & Vissers, Kees. (2017).
FINN: A Framework for Fast, Scalable Binarized Neural Network
Inference.

References 103

[16] Ritchie Zhao, et al. 2017. Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’17). Association for Computing Machinery, New
York, NY, USA.

[17] Adrien Prost-Boucle, Alban Bourge, and Frédéric Pétrot. 2018. High-
Efficiency Convolutional Ternary Neural Networks with Custom Adder
Trees and Weight Compression. ACM Trans. Reconfigurable Technol.
Syst. 11, 3, Article 15 (September 2018).

[18] N. P. Jouppi, et al. “Ten Lessons From Three Generations Shaped
Google’s TPUv4i: Industrial Product,” 2021 ACM/IEEE 48th Annual
Intemational Symposium on Computer Architecture (ISCA), Valencia,
Spain, 2021, pp. 1-14.

[19] Jacob, Benoit, et al. “Quantization and training of neural networks for
efficient integer-arithmetic-only inference.” Proceedings of the IEEE
conference on computer vision and pattem recognition. 2018.

[20] Courbariaux, Matthieu, Bengio, Yoshua, et David, Jean-Pierre. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. Advances in neural information processing systems, 2015
,vol. 28 .

[21] Fraser, Nicholas J., et al. “Sealing binarized neural networks on recon-
figurable logic.” Proceedings of the 8th Workshop and 6th Workshop
on Parallel Programming and Run-Time Management Techniques for
Many-core Architectures and Design Tools and Architectures for Mul-
ticore Embedded Computing Platforms. 2017.

[22] Umuroglu, Yaman, et al. “Finn: A framework for fast, scalable bina-
rized neural network inference.” Proceedings of the 2017 ACM/SIGDA
international symposium on field-programmable gate arrays. 2017.

[23] A. D. Vita, D. Pau, L. D. Benedetto, A. Rubino, F. PAl'trot and G.
D. Licciardo, “Low Power Tiny Binary Neural Network with improved
accuracy in Human Recognition Systems,” 2020 23rd Euromicro Con-
ference on Digital System Design (DSD), Kranj, Slovenia, 2020, pp.
309-315.

