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Abstract

Machine Learning (ML) models are being deployed in a wide range of
domains owing to their capacity to deliver high performance across a range of
challenging tasks including safety-critical and privacy-sensitive applications.
Moreover, the computing requirements of increasingly complex ML models
presents a significant challenge to the hardware industry.

Against this backdrop, Federated Learning (FL) has emerged as a promis-
ing technique that enables privacy-preserving development of ML models on
low-energy Edge devices. FL is a distributed approach that enables learning
from data belonging to multiple participants, without compromising privacy
since user data are never directly shared. Instead, FL relies on training a
global model by aggregating knowledge from local models. Despite its repu-
tation as a privacy-enhancing strategy, recent studies reveal its susceptibility
to sophisticated attacks that can undermine integrity and, as well as disrupt
their operations. Notably, the constraints posed by the limited hardware
resources in edge devices compound these challenges. Gaining insight into
these potential risks and exploring hardware-friendly solutions is vital for
effectively implementing trustworthy and power-efficient FL systems in edge
environments.
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This chapter contributes a review and perspective of the triad of privacy,
security, and hardware optimization in FL settings.

Keywords: Federated Learning, Hardware Optimisation, ML Security,
Privacy.

3.1 Introduction and Background

In this era of unprecedented data proliferation and exponential technolog-
ical advancement, conventional centralized and cloud-based training and
deployment of machine learning faces 2 main challenges:

• How to train and deploy accurate models in an energy-efficient and
sustainable manner?

• How to guarantee the security and privacy of potentially sensitive data
without compromising the learning process?

FL has emerged as a promising approach to address the challenges
posed by decentralised data sources while preserving data privacy. Traditional
centralised ML approaches require aggregating sensitive data from various
sources into a central repository for training, which can raise concerns about
data exposure and privacy. FL offers an innovative solution by enabling model
training across multiple devices or data silos, without the need to centralise
the data themselves. This distributed approach not only safeguards individual
privacy but also optimises the utilisation of edge devices, edge servers, and
cloud resources.

The key motivation behind FLis to leverage the collective intelligence
of a network of devices while maintaining data locality. This is particularly
crucial in scenarios where data is distributed across devices or locations, such
as Internet of Things (IoT) ecosystems, healthcare networks, and financial
institutions. By allowing devices to collaboratively learn a shared model
while keeping their data local, federated learning can address challenges like
network latency, bandwidth limitations, and data security.

In this chapter, we delve into the multifaceted aspects of FL, focusing
on privacy, security, and the opportunities for hardware optimisation at the
Edge. We explore the techniques that enable data privacy within FL, the
security measures needed to protect against adversarial attacks, and the ways
in which hardware constraints and advancements shape the landscape of FL.
Through case studies and emerging trends, we aim to provide a comprehen-
sive understanding of how federated learning empowers data-driven insight
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while upholding individual privacy, ensuring security, and harnessing the
potential of diverse hardware resources.

This chapter not only sheds light on the current state of federated learning
but also serves as a guide for researchers, practitioners, and policymakers who
seek to navigate the intersection of machine learning, distributed systems, and
data governance. As FL continues to evolve, it is imperative to appreciate its
significance in reshaping the landscape of data-driven technologies, fostering
collaboration, and advancing both technological and ethical dimensions in the
digital era.

The structure of the chapter is crafted to offer a comprehensive explo-
ration of the FL state-of-the-art. Our roadmap unfolds as follows: we
begin with an initial introduction to the basics of FL and its applications,
followed by an exploration of FL’s constraints and limitations, including
hardware resources, security, and privacy considerations. Finally, we con-
clude by underscoring the crucial requirement for balance among these varied
aspects.

3.2 Federated Learning Overview

Training a deep neural network necessitates a significant amount of data,
often representing the most valuable resource within a target environment:
it can be of commercial value, be governed by privacy regulations, can be
limited by user agreements (as illustrated by regulations such as HIPAA in
the US and GDPR in Europe). In another scenario, data generated on Edge
devices may face sharing restrictions due to privacy anxieties, bandwidth
restrictions, or performance constraints.

FL recently emerged as a potential solution to the problems above. It
enables participants to collaboratively train a federated model while preserv-
ing local data privacy. Within the FL framework, each participant trains a
local model sharing it with a central server also known as a central aggregator.
Data remain private to each participant. The server aggregates the local model
updates into a single federated model and shares this model with the partic-
ipants, creating an updated federated model that benefits from all the data
without jeopardising its confidentiality. The model’s refinement continues as
participants deliver more updates.

FL encompasses three primary categories from a data partitioning per-
spective: horizontal FL, vertical FL and federated transfer learning [5]. This
document, however, zooms on the most prevalent and widely used model,
namely horizontal FL. In the subsequent section, we consider the intricacies
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Figure 3.1 Client device sends their locally trained model updates to server for training the
federated model.

of horizontal FL while also offering succinct insights into the other two
models for context.

3.2.1 Horizontal Federated Learning

Participants train their local model with data that are in the same feature
space. For example, two regional hospitals might contain different patient
population data, with little to no intersection in the data (perhaps because the
hospitals serve different regions). However, the activities of the two hospitals
are similar with respect to each other and so their feature spaces are the same.
During the training phase of the horizontal FL model, each of the participants
trains its local model using the local, private, data and sends the gradients to
the central aggregator. The central aggregator aggregates all of those local
model updates to build a global shared model and return this back to all
participants. Finally, each participant updates its local model using the result
from the central aggregator.

3.2.2 Vertical Federated Learning

Vertical FL addresses the scenario where participants refine their respective
local models using data samples derived from different feature spaces. For
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example, consider a hospital and a pharmacy in the same region. While there
is likely a significant overlap in patient population data, the retained infor-
mation (i.e., the features) for these patients vary due to the distinct functions
of the two participants. For example, the hospital preserves the records of
all users about their disease, diagnosis and information of treatment received
while the pharmacy keeps the records of medicine purchasing history. Using a
vertical FL system, the two institutions can collaboratively build a prediction
model by aggregating those different features and calculating the gradients of
their local data in a privacy preserving manner.

3.2.3 Federated Transfer Learning

Federated Transfer Learning [7] finds its niche in scenarios where users’
datasets remain disjoint or share minimal overlap in both the samples and
feature spaces. For instance, revisiting the hospital and pharmacy scenario
recall that the feature spaces of their data have little overlap. If the two insti-
tutions are in different countries they would also have few, if any, common
patients, making it impossible to apply VFL. FTL solves this problem by
creating a common representation using transfer learning and using it to build
a predictive model across the entire data set.

With a foundational understanding of FL in place, we now turn our
attention to the challenges that accompany this paradigm. While FL offers
a promising avenue for decentralised model training and data privacy preser-
vation, it is essential to acknowledge its limitations.

3.3 Challenges and Limitations of Federated Learning

FL presents a trio of critical challenges that demand rigorous exploration:
hardware resources, security, and privacy.

These dimensions shape the framework’s efficacy and ethical underpin-
nings. In this section, we consider this interplay.

3.3.1 Security challenge

The distributed nature of FL, while preserving data locality, introduces com-
plexities that require careful attention to ensure the confidentiality, integrity,
and authenticity of the data and models being exchanged.

Adversarial attacks, stemming from both malicious clients and malicious
servers, pose a significant threat to the security and integrity of FL by
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exploiting vulnerabilities inherent in the decentralised nature of the approach.
These attacks aim to manipulate the training process and the resulting model’s
composition, leading to erroneous predictions and potential data exposure.

In this context, understanding the objectives that potential attackers pur-
sue becomes crucial. These objectives can be categorised into three primary
dimensions:

• Compromising System Integrity: Attackers aim to compromise the
integrity of the FL system by tampering with the model’s function. They
induce misclassifications by poisoning individual local model updates
or by colluding with other malicious participants.

• Compromising Data Confidentiality and Privacy: Adversaries target data
confidentiality and privacy by attempting to infer private information
or reconstruct original training samples. We will delve deeper into this
topic in the upcoming section.

• Disrupting the Learning Process: Attackers seek to disrupt the learning
process itself. This includes tactics such as initiating denial-of-service
or impeding the convergence of the training process.

To achieve these objectives, adversaries deploy a range of strategic
actions:

• Poisoning Attacks: Malicious actors maliciously alter either the training
data or the model to corrupt the overall federated model’s integrity. This
compromise is executed with the intention of manipulating the model’s
behaviour to serve the attacker’s motives.

• Privacy Attacks: Adversaries attempt to deduce sensitive information
about the data, which will be discussed in detail in the subsequent
section.

• Disruption Attacks: Attackers exploit the learning process by introduc-
ing delays in updates or interfering with the protocol’s operation, aiming
to undermine the system’s functionality.

3.3.1.1 Malicious Clients
We first consider model integrity attacks that originate frommalicious clients.
We assume that a client is able to arbitrarily change its local model that
it sends to the server. The model can be manipulated either directly by
changing its parameters, or indirectly by manipulating the local training set.
The poisoned local model in turn poisons the aggregated model when it
is combined with the models from other clients. One possible goal of this
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attack is to make the global model misclassify in general (untargeted attack).
Alternatively, the attack can target specific classes that the attacker would like
to degrade, potentially causing them to misclassify into specific alternative
labels (targeted attack).

In targeted attacks, the attacker aims at forcing the model to misclassify a
specific class or subset of classes. These attacks are also called Backdoor
attacks. For example, an attacker may desire to have a particular type of
vehicle be undetected in a federated recognition system. Targeted attacks
can be performed either by manipulating the target model’s parameter or by
poisoning the target training data directly.

Targeted Model and Data Poisoning
Researchers have investigated model poisoning techniques aimed at crafting
targeted attacks, where the adversary’s goal is to create a global model that
exhibits high accuracy for both the primary task (untargeted classes) and
includes a hidden backdoor to target specific classes.

Attackers can attempt to disrupt the accuracy of the FL global model
through three avenues in data poisoning:

• Mislabelling Data: The adversary can change the labels of training sam-
ples, converting them to a target class while keeping the data otherwise
unaltered [9]–[11]. These attacks are demonstrated by Biggio et al. [12],
Fung et al. [9], and Gu et al. [10].

• Manipulating Input Features: By slightly modifying a portion of the
original training dataset through noise addition or feature manipulation,
adversaries can make models learn triggers on specific inputs while
maintaining non-poisoned data accuracy [3], [13].

• Combining Mislabelling and Feature Manipulation: This category
involves malicious clients changing both data and labels. The attacker
can induce the global model to trigger on specific inputs and misclassify
to a designated target label. An example is an attacker’s face being
misclassified by a federated face recognition system while a specific
watermark is present in the image. Naseri et al. [14] demonstrate this
through a modification of training data and label of samples.

3.3.1.2 Mitigating client-based attacks
Defences can be organised into two primary categories: Detection and
removal of malicious client updates; and mitigating attack severity. We dis-
cuss both of these categories below. Detection and removal of malicious client
updates.
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Detection and Removal of Malicious Client Updates
Detecting and removing malicious client updates involves strategies that
flag unusual and statistically abnormal updates, excluding them from the
aggregated model. These defences vary in how they decide if an update is
abnormal, usually by comparing it to the distribution of updates from other
clients. A balance exists between accommodating unique data contributions
from clients while identifying and preventing harmful updates. This balance
entails allowing valuable data to contribute while guarding against malicious
intentions. Shejwalkar et al. [15] introduced a strategy called divide-and-
conquer (DnC) to tackle malicious model poisoning updates. DnC works
under the assumption that a harmful update from a malicious source will
significantly deviate from normal updates. Initially, DnC calculates the main
direction of variance among input updates, known as the principal compo-
nent. It then computes projections, which are essentially measures of how
much the updates align with this principal component. Harmful updates
tend to have larger projections. In the final step, DnC removes a portion
of updates with the highest projections. This approach is effective against
untargeted attacks, as long as the number of malicious clients doesn’t surpass
the proportion of removed updates.

Shejwalkar et al. [15] introduced a strategy called divide-and-conquer
(DnC) to tackle malicious model poisoning updates. DnC works under the
assumption that a harmful update from a malicious source will significantly
deviate from normal updates, causing harm. Initially, DnC calculates the
main direction of variance among input updates, known as the principal
component. It then computes projections, which are essentially measures of
how much the updates align with this principal component. Harmful updates
tend to have larger projections. In the final step, DnC removes a portion
of updates with the highest projections. This approach is effective against
untargeted ICM attacks, if the number of malicious clients doesn’t surpass
the proportion of removed updates.

Mitigating the severity of the attack
In this second category, defences leverage aggregation strategies that do
not exclude the malicious updates, but rather try to mitigate their effect.
One strategy involves using the median as a point of aggregation for
models, effectively lessening the influence of malicious outliers within FL
systems [16].

Fu et al. [12] introduce an innovative aggregation algorithm termed
“Reweighting” to counter targeted poisoning attacks. In their approach, the
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global model is a reweighted average of individual local models. This is
achieved through techniques such as the Repeated Median Estimator [17]
and Iteratively Reweighted Least Squares (IRLS) [18]. In practical terms,
the authors assess the confidence of model parameters based on their dis-
tance from a robust regression line. Local models are then assigned weights
proportional to their parameter confidence. Malicious outliers, having lower
confidence scores, exert minimal influence on the overall model, effectively
curtailing their impact.

3.3.1.3 Malicious Server attacks and mitigations
The central server’s role within the context of FL is pivotal, encompassing
tasks such as aggregating updates into the global model and disseminating
it to clients. While the server’s integrity is typically assumed, the potential
for severe consequences necessitates a nuanced consideration of malicious
server attacks and potential countermeasures. In essence, a compromised
server holds the capacity to arbitrarily manipulate the global model, leading
to detrimental impacts on classifier performance. Hence, comprehending
this threat becomes crucial, prompting exploration into potential defence
strategies.

Architecting a secure federated training protocol without the presumption
of a trusted server presents an intricate and compelling challenge. With-
out such safeguards, the server’s influence on the models sent to clients
is unconstrained, allowing malicious servers to dispatch compromised or
subpar classifiers. The server’s motives could range from intentional harm
to clients, such as by distributing models with targeted poisoning, to a desire
to leverage client data without reciprocating the effort of model aggregation
and communication. In the baseline FL framework, clients implicitly bestow
trust in the server and accept its model as the global reference, devoid of
means to verify if the server adheres to the FL protocol’s integrity. A secure
federated protocol would ideally impede malicious servers from arbitrarily
injecting fake model updates. Alternatively, it would empower clients to
validate the integrity of received model updates. Addressing this challenge,
Xu et al. [19] propose Verifynet, a verification process that ensures the
veracity of server-delivered outcomes. Their approach involves hashing the
gradient of the client’s local model through a homomorphic hash function
possessing universally recognized collision-resistant features. Furthermore,
clients compute additional (meta) information utilising pseudorandom func-
tions linked to secret keys issued by a trusted authority (TA). Each client then
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dispatches the masked gradient and associated meta information to the server.
On the server side, the gradients from all clients are aggregated, negating the
added noise. The server subsequently calculates a proof derived from client-
provided meta information, broadcasting this proof to active clients. To assess
the server update’s authenticity, each client scrutinises the proof by verifying
the truth equations of homomorphic hash and pseudorandom functions. Any
inconsistencies prompt client rejection of the server’s result. In essence,
Verifynet verifies server results, safeguarding clients against manipulation by
a malicious server.

Adversarial attacks exploit the vulnerabilities inherent in the decen-
tralised model, seeking to disrupt the training process and compromise the
behaviour of resultant models. The multifaceted challenges brought forth by
these attacks underscore the need for innovative defence mechanisms that
transcend traditional paradigms.

3.3.2 Privacy challenge

The privacy challenge is marked by the intricate balance between collabo-
rative knowledge extraction and safeguarding individual data privacy. In this
section, we explore the complexities surrounding compromised data confi-
dentiality, the prevalence of privacy attacks, and the potential implications of
membership inference attacks. The decentralised nature of FL, while foster-
ing collective learning, poses unique challenges to preserving the privacy of
individual participants’ sensitive information. These challenges necessitate
the exploration of innovative strategies and techniques designed to uphold
the privacy of participants while maintaining the robustness of collaborative
learning.

Imagine a consortium of hospitals employing FL to construct a robust
disease prediction model. In this collaborative effort, each hospital con-
tributes patient data with a strong emphasis on preserving individual privacy.
Yet, the decentralised nature of FL introduces the potential for privacy
breaches. Within this context, a malicious actor could exploit vulnerabilities
to deduce sensitive patient information. This exploitation would compromise
the confidentiality imperative. Such attacks could result in the unautho-
rised identification of individuals, thereby jeopardising their privacy and
undermining trust in the collaborative strategy.

It’s important to recognize that privacy attacks in FL can emanate from
various malicious clients and malicious servers. Malicious clients might
attempt to infer private information about other clients based on model
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updates. A malicious server could exploit model updates to deduce sensitive
client information, further underscoring the multifaceted nature of the privacy
challenge. In the subsequent sections, we examine specific types of attacks
originating from both clients and servers. We will explore techniques to
defend against these attacks.

3.3.2.1 Client privacy attacks
This type of attack originates either from a single malicious client or group
of colluding clients. For a given client, only its own data and global model
are available to them. As in the baseline FL setting, the client trains its local
model and communicates the raw gradients to the server without protection
(e.g., adding noise or using encryption), it opens up scope for any malicious
player to infer private information about other clients’ data from the raw
gradients. Here we consider two types of attacks. One is an inference attack
on a specific client ‘overhearing’ the local model gradient of other clients.
Overhearing might happen directly or through collusion between malicious
clients. Another type of attack is to infer sensitive information of other
clients through the global model weights. In this second category of attack,
a client might maliciously modify its local model parameters to infer sensitive
information of other clients.

Membership Inference Attack – Membership inference attacks are a com-
mon privacy attack [20], [21]. In this form of attack, the attacking client’s
goal is to infer whether a specific data sample is part of the dataset that was
used to train the federated model. Often, the attacker may know only part
of the data, and the attack could also enable them to recover this missing
information [21]. With access to aggregate model parameters from the server,
Nasr et al. [16] empirically show if a target data point is contained within
the client’s dataset or not. A malicious client specifically modifies its local
model parameters to increase the loss on a target data point X. Then the
server receives adversarial parameters from the malicious client and aggre-
gates these parameters with other participants to generate the global model,
which is finally transmitted back to the clients. Now, using the aggregated
parameters, if the local stochastic gradient descent (SGD) algorithm on the
client side abruptly lowers the gradient of the loss on a target data point X,
then X is in the training set of a client. Alternatively, if the data point is not
included in a client’s dataset, the gradient on this point would alter gradually
throughout the course of the training.
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Property Inference Attack – Property inference is a class of privacy attacks
on machine learning models where an attacker attempts to infer properties
of the training set overall, rather than individual instances of the data [22],
[23]. For example, the attacker may attempt to infer if the environment of
most of the data is indoors or outdoors, to identify the proportion of the data
from a particular class (e.g., gender or race), or more specifically inferring
that whether a certain person is wearing glasses or not in the training data.
In conventional machine learning settings, several property inference attacks
have been demonstrated. These attacks can also be conducted in an FL
setting, on the aggregate model or on individual client models if they are
obtained. There are several attack strategies for property inference that arise
in FL settings when training the global shared model [18, 19]. For example,
Melis et al. [18] created a batch property classifier in a collaborative training
(federated) environment. This classifier evaluates whether the server’s global
updates are based on data that includes or excludes the desired characteristic.
The adversary will need many batches of auxiliary data, consisting of data
points with and without the property of interest, to carry out the attack. The
auxiliary data points must come from the same class as the data from the
target client. Using snapshots of the global model the adversary computes two
sets of gradients (A and B) based on the batch of data points with the property
of interest or without the property of interest. The attacker assigns a positive
label to set A and a negative label to set B. They train a binary batch property
classifier with those gradients (A and B), which generalises the gradients of
future batches of data which are given as input and predicts whether or not
they contain the desired property. As a result, without changing anything in
the local or global collaborative training approach, the adversary observes the
global model and performs a property inference attack on the updates.

3.3.2.2 Mitigating client-based attacks
Moving on to defences against client-originated attacks, we uncover a
spectrum of strategies designed to fortify the privacy and security of FL.

Gradient Perturbation with Noise: Exchanging intermediate model updates
with the server introduces vulnerabilities to membership inference and
property inference attacks. These risks arise from the server or colluding
clients inferring private data of honest clients from their raw gradients. To
counteract this, differential privacy techniques inject noise into gradients,
ensuring privacy-preserving exchanges in FL [24]. Naseri et al. [14] propose
Local Differential Privacy (LDP) and Central Differential Privacy (CDP).
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LDP applies differential privacy to local models, while CDP implements it
centrally, leveraging the server’s trust. Both methods mitigate membership
and property inference attacks. Adding noise conceals global properties,
offering protection against various attacks. Despite enhancing security, dif-
ferentially private strategies slightly diminish the shared model’s utility.
Zhu et al. [25] demonstrate that defence efficacy depends more on variance
magnitude than noise type (Gaussian or Laplacian). Increased variance harms
model accuracy, highlighting a trade-off between privacy and utility.

GAN-based Generated Samples instead of the Original: Deploying gen-
erative adversarial networks (GAN) [54] can help to mitigate membership
and property inference attack by generating a large amount of samples in the
same distribution of the training dataset (Anti-GAN in table 2) to train the
model. In the case of Anti-GAN [93], they train the victim’s GAN in a way
that it learns the classification features rather than learning the visual features
of the original images. Then, the generated fake samples from the GAN are
mixed with the original images to train the model. Using GAN, this defence
obscures the visual features of the clients’ training data to defend against this
attack. However, it eventually degrades the accuracy of the model [93]. There
is also evidence that GANs could also result in additional inference leakage
[26] [61].

3.3.2.3 Server based privacy attacks
If a server is malicious, it has full access to the individual client
updates/models and can attempt arbitrary inference attacks on them. We
describe the possible attacks under this model in this section.

Deep Leakage from Gradients (DLG): Deep Leakage from Gradients
(DLG) is an attack in the context of FL that focuses on exploiting vulnerabili-
ties arising from the exchange of intermediate model updates between clients
and a central server. This attack is particularly concerned with revealing
private information and properties of individual training data instances by
analysing the gradients of the local models used in the learning process. In
the DLG attack, a malicious entity, whether it is a client or a colluding group
of clients, aims to infer sensitive details about other clients’ training data
from the gradients of their local models. The core idea behind this attack is
that the gradients of the local models contain information about the individual
training samples they were trained on. These gradients, when exchanged with
the server as part of the FL process, can leak information about the underlying
data distribution and specific data instances.
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The attack’s mechanism involves carefully analysing the gradients to
identify patterns, correlations, or unique features that correspond to specific
data points. By reverse-engineering these gradients, attackers can deduce sen-
sitive information about other clients’ data, compromising data privacy and
confidentiality. Deep Leakage from Gradients can lead to privacy breaches,
property inference, and membership inference attacks, as attackers exploit
the inherent information present in gradients to gain insights into the dataset
without directly accessing the raw data.

Mitigating Gradient Leakage Attacks:
The primary mitigation strategy against DLG is to mask the gradients of the
clients such that they are not exposed to the server. A number of different
ideas to mask gradients have been proposed, like single masking[25], double
masking[19].

Single masking is an approach that introduces controlled noise into the
gradients before they are sent to the server. This noise acts as a protective
layer, making it difficult for the server to extract sensitive information from
the gradients. The key idea is to obfuscate the gradients in a way that pre-
serves the model’s learning progress while reducing the risk of information
leakage. Single masking adds randomness to the gradients, making them less
susceptible to reverse-engineering by malicious actors.

Double masking, on the other hand, takes the concept of gradient mask-
ing a step further. In this approach, not only are the gradients masked
before transmission to the server, but they are also further masked at the
server’s end before aggregation. This double-layered masking provides an
additional level of security by ensuring that the server itself cannot access
the original gradients contributed by individual clients. This way, even if the
server was compromised, the information contained in the gradients remains
protected.

Both single masking and double masking contribute to thwarting DLG
attacks by minimising the potential leakage of sensitive information through
the gradients. These techniques underline the efforts to strike a balance
between collaborative model training and preserving the privacy of clients’
data in the FL setting.

Our exploration of the multifaceted challenges in the realm of FL high-
lights the intricate interplay between hardware constraints, security vulnera-
bilities, and privacy concerns. We’ve delved into the limitations imposed by
resource-constrained devices, where the balance between model complexity
and hardware capabilities becomes a critical factor. The security landscape of
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FL, encompassing adversarial attacks from both malicious clients and servers,
underscores the imperative to fortify the integrity and authenticity of collabo-
rative learning processes. Moreover, our investigation into privacy challenges
reveals the significance of protecting sensitive data while maintaining the
efficacy of FL.

3.3.3 Hardware constraint and opportunities

The deployment of AI at the Edge has the potential to transform industries and
facilitate personalised products, which largely hinges on its ability to harness
the data from ubiquitous devices spanning from smartphones to Internet of
Things (IoT) devices. Yet, the energy and resource limitations inherent in
these devices pose significant obstacles. Edge devices and embedded systems
operate under stringent energy budgets and have constrained computational
capabilities. These devices lack the computational capacities of data centres,
making resource-intensive ML a challenge.

In this section, we delve into the implications of Edge devices’ hardware
limitations on FL. We also discuss the opportunities that can emerge from
new computing paradigms such as approximate computing on FL security.
FL processes that demand substantial computational power and memory can
strain these devices, potentially leading to increased latency, reduced model
quality, and even device overheating.

Striking a balance between model complexity and the limitations of these
hardware resources becomes a critical consideration, calling for innovative
model architectures and optimization techniques that can maintain model
performance while respecting the resource boundaries of edge and embedded
devices.

To address these challenges, researchers and practitioners have explored a
range of optimization techniques that enhance the efficiency of FL processes.
Quantization[8], for instance, involves representing model parameters with
reduced precision, effectively reducing the memory footprint and commu-
nication overhead during updates. Model compression techniques focus on
minimising the model’s size while preserving its predictive capabilities,
enabling faster training and less demanding communication. In particular, in-
model compression techniques aim to design models that inherently require
fewer computations, thereby reducing energy consumption and resource
usage. One notable approach in this direction is approximate computing,
where local clients introduce controlled inaccuracies into the computations,
trading off precision for efficiency [30, 31]. This innovative strategy approach
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aligns well with the resource-constrained environment of edge devices, allow-
ing them to perform computations more efficiently in terms of both resources
and energy consumption.

The underlying principle of approximate computing stems from the
observation that not all tasks require highly precise computational precision
to achieve satisfactory overall results. By allowing local clients to perform
computations with reduced precision, such as using fewer bits for numeri-
cal representation, devices can significantly lower their computational and
energy requirements.

A wide range of approximation techniques across all layers of the com-
puting stack have been proposed; these techniques leverage the inherent
error tolerance of ML architectures to achieve improvements in inference
efficiency (e.g., power consumption and resource utilisation) [32].

The main categories of approximation techniques explored previously are
as follows:

- Algorithmic level: This mainly includes Quantization, Pruning and
Model Compression. Quantization approximates the model by reducing
the number of bits used to represent the weights and activation outputs
such as Bfloat [33], DLfloat [34], and very recently Graphcore and
AMD proposed a new 8-bit floating-point standard for AI [35]. On the
other hand, pruning and model compression try to reduce model size
by skipping connections through forcing weights to zero. While these
techniques achieve promising benefits towards lower complexity ML
systems, their impact remains limited since: (i) Quantization is mainly
used in convolution layers and other kernels like pooling, activation
and normalisation are still dominated by floating-point arithmetic, and
(ii) Pruning often results in irregular computation and memory access
patterns and hence have little to no impact on hardware accelerator
performance.

- Circuit level: This category focuses on the computing building blocks
of the models; Approximate circuits implement core functions to build
approximate ML systems to leverage maximum benefits. More specif-
ically, the core arithmetic functions (multiplication, addition and non-
linear activation) are either replaced by lower resource approximate
designs [36, 37], or more generically by undervolting the circuit to
inject random computational errors. An example is shown in Figure 3.2,
which corresponds to a circuit implementation of a full adder. Using
this logical approximate building block to design a multiplier or an
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Figure 3.2 Logic diagram of (a) exact Full Adder, (b) Approximate full adder.

adder results in approximate arithmetic elements. These techniques have
a high impact on models power consumption and offer a bottom-up
approach to overcome the models scalability problem for ML hardware
accelerators.

Approximate Computing (AC) as a defense – Recent work [37, 38] has
shown that, perhaps surprisingly, implementing ML models using AC can
provide substantial robustness against adversarial attacks while reducing the
complexity of the implementation. In particular, it has been shown that using
approximation during inference introduces robustness against both black-box
and white-box adversarial attacks. For example Figure 3.3 shows the classi-
fication accuracy of the exact (conventional) model and approximate models
for 3 different benchmarks, namely: LeNet-5, AlexNet, and ResNet-18 CNNs
under adversarial attack, while varying the adversarial attack magnitude.
Specifically, the figure shows the robustness against PGD adversarial attack,
where the approximate model achieves the highest accuracy: about 88% for
LeNet-5, 81% for AlexNet and 67% ResNet-18.

However, these results are empirical, for specific post-hoc approximation
structures and many questions remain. For example, it is not clear whether

Figure 3.3 Precise and approximate models robustness under PGD attack.
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the robustness advantage demonstrated against existing attacks would persist
against adaptive attacks. It is also not clear what approximation structures and
functions would provide best gains, and how and where to apply approxima-
tion to find effective solutions that balance accuracy, robustness to adversarial
attacks, and implementation efficiency.

3.4 Conclusion

In that chapter, we considered the state of FL, spanning hardware limitations,
security vulnerabilities, and privacy considerations.

We briefly discussed the vulnerabilities posed by adversarial attacks,
originating from both malicious clients and servers, on the lights of the
attacker’s objectives and strategies. From a privacy perspective, while FL had
been branded as a privacy-preserving technology, we discussed the challenges
arising from potential inference attacks that could leak sensitive information
during the collaborative learning process.

The main challenge towards developing accurate ML models at the Edge
was the limited energy and hardware resources of Embedded and Edge
devices. While the community had explored the use of emerging paradigms
such as approximate computing to address this challenge, we believed that the
deployment of approximate AI designs (i.e., based on approximate computing
engines) might have significant gains from a security and privacy perspective,
in addition to the by-product gain in terms of energy consumption.
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