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Abstract

Performance and energy efficiency are key aspects of next-generation AIoT
hardware. This chapter presents a scalable, heterogeneous hardware platform
for accelerated AIoT based on microserver technology. It integrates several
accelerator platforms based on technologies like CPUs, embedded GPUs,
FPGAs, or specialized ASICs, supporting the full range of the cloud−edge-
IoT continuum. The modular microserver approach enables the integration
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of different, heterogeneous accelerators into one platform. Benchmarking
the various accelerators takes performance, energy efficiency, and accuracy
into account. The results provide a solid overview of available accelerator
solutions and guide hardware selection for AIoT applications from the far
edge to the cloud.

Keywords: IoT, machine learning, AIoT, microserver, deep learning, (far)
edge-computing, FPGA, accelerator, energy-efficiency, performance classifi-
cation.

9.1 Introduction

Looking into novel architectures optimized to accelerate the computation of
neural networks, adaptable and scalable hardware solutions tailored to the
applications’ requirements are a key component. A fully featured, hetero-
geneous hardware platform integrating several accelerators is described and
evaluated in the following. Over the last years, a large number of diverse
DL accelerators in the form of special ASICs or IP cores, as well as GPU-
or FPGA-based solutions, have been introduced in the market. This chapter
focuses on benchmarking, and a comparative evaluation of selected accel-
erators regarding performance, energy efficiency, and accuracy is performed.
Together with the seamless integration of DL into the IoT hardware platforms,
the benchmarking methodology is used for further optimizing applications
toward performance and energy efficiency. The presented work has been
part of the VEDLIoT project [1]. In this chapter, we present a summary
of the results obtained. More details are available in the respective project
deliverables [2], [3].

9.2 Heterogeneous Hardware Platform for the
Cloud-edge-IoT Continuum

This section deals with the hardware architecture and presents the different
accelerators evaluated. It also acts as an introduction and classification for the
different accelerators used in the benchmarking section.

The hardware platform can be used as a joint infrastructure for different
developments. It supports a wide range of AIoT applications that can be
addressed using a flexible communication infrastructure and exchangeable
microservers. Figure 9.1 shows the RECS platforms covering application
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Figure 9.1 Overview of modular and scalable RECS platforms.

domains from embedded/far-edge computing toward cloud computing. All
platforms commonly target heterogeneous computing with tightly coupled
microservers. The cloud computing platform RECS|Box consists of either
two or three rack units and aims for high-density applications using hundreds
of microservers with high-bandwidth communication requirements. t.RECS
houses up to three microservers in one rack unit and focuses on edge comput-
ing scenarios with low-latency demands like image and video processing use
cases or 5G base stations. u.RECS rounds off the range of the RECS family
toward low-power and compact embedded computing.

Microservers are based on industry-standard computer-on-module
(COM) form factors, allowing for flexible and heterogeneous processing. On
the one hand, RECS|Box and t.RECS support microservers that are based
on COM express and COM-HPC server and client standards. The u.RECS,
on the other hand, supports multiple compact form factors for far-edge
computing, including SMARC, Jetson NX, Xilinx Kria, and Raspberry Pi
compute modules.

9.2.1 Cloud computing platform RECS|Box

The RECS|Box platform is available in two different chassis sizes. The small
chassis with 2U (Durin) is meant as a starter chassis, mainly for evaluation
and non-datacenter use cases, while the 3U (Deneb) chassis is to be used in
larger installations. The RECS|Box server architecture supports microservers
based on x86 (e.g., Intel Xeon), 64-bit ARM mobile/embedded SoCs, 64-
bit ARM server processors, FPGAs, GPUs, as well as other PCIe-based
acceleration units. The smaller Durin can be equipped with up to 9 high-
performance (HP) microservers or with 48 low-power (LP) microservers,
and the larger Deneb can host 27 HP microservers or 144 LP microservers.
The large amount of microservers inside the systems requires a sophisticated
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Figure 9.2 Communication architecture of RECS|Box platform.

communication infrastructure. Therefore, the RECS|Box comes up with
multiple communication standards depicted in Figure 9.2.

The basis is the Ethernet network. It provides multiple 1 and 10 Gbit/s
links to every microserver. Furthermore, it is internally switched and supports
upstream bandwidth toward the top of the rack (ToR) switch up to 120 Gbit/s,
combining three 40 Gbit/s links. In addition to the Ethernet communication
infrastructure, a dedicated high-speed low-latency (HSLL) communication
network is integrated into the RECS|Box architecture. It consists of two
levels. On the physical level, the HSLL can directly connect high-speed serial
links between microservers, as commonly available in FPGA modules. For
processor-driven microservers (e.g., x86 based), the second level is PCIe-
based direct host-2-host communication. Similar to the Ethernet network, it
is internally switched and provides bandwidth of up to 56 Gbit/s to every
microserver. The bandwidth toward a PCIe ToR switch is up to 336 Gbit/s,
combining three 112 Gbit/s links.

9.2.2 Near-edge computing platform t.RECS

While the RECS|Box cloud hardware, described in the section above, focuses
on data center applications, the edge server architecture supports local appli-
cations with high demands for low-latency, safety, and security. Especially
applications with user interaction require local (pre-) processing and reduc-
tion of large amounts of data, which are difficult to achieve using a cloud-
based approach. Three microserver modules of the COM-HPC standard
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Figure 9.3 Communication architecture of t.RECS platform.

can be placed on the carrier board, supporting microservers based on x86
(e.g., Intel Xeon), 64-bit ARM server processors, FPGAs, GPU SoCs (e.g.,
NVIDIA Jetson AGX), as well as PCIe-based acceleration units via the PCIe
expansion slot.

The t.RECS has a powerful and scalable communication infrastructure as
shown in Figure 9.3. It is derived from the RECS|Box cloud platform and
provides the basis for closely coupled heterogeneous compute nodes. The
internal bandwidth for Ethernet, as well as HSLL, is the same as that in the
RECS|Box, but the external bandwidth is reduced to single external links of
40 Gbit/s for Ethernet and 112 Gbit/s for HSLL.

9.2.3 Far-edge computing platform u.RECS

The architecture of the u.RECS is presented in Figure 9.4. The two integrated
module slots support the SMARC 2.1 standard and the NVIDIA Jetson
NX standard. In addition to the two module slots, a PCIe M.2 slot and an
mPCIe slot are integrated, which can be used to add further accelerators or
communication methods, such as 5G, to the u.RECS. Furthermore, commu-
nication options, e.g. Ethernet or PCIe and energy measurement methods, are
integrated on the board to make the u.RECS a perfect fit for a wide range of
AIoT use cases.

The NVIDIA Jetson NX module slot is capable of supporting Xavier
NX and Orin NX SoC modules. These modules have ARM CPUs combined
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Figure 9.4 Architecture of u.RECS platform.

with latest NVIDIA GPU technology. Support for the SMARC 2.1 standard
gives the u.RECS access to a wide range of COMs and ML accelerators, as
SMARC modules are available in the market through different module man-
ufacturers, such as Congatec, ADLINK Technology, or others. The SMARC
slot can be equipped with, among others, the following types of microservers:

• ARM CPU (e.g., i.MX 8)
• x86 CPU (e.g., Atom CPU)
• FPGA (e.g., Xilinx Zynq UltraScale+)

There are a number of additional ML accelerators that can be equipped in
or connected to an M.2 or mPCIe slot. Additionally, it is possible to connect
accelerators via USB 3.0 and access them from one of the compute modules.
Furthermore, with the u.RECS, it is possible to measure the energy of an
accelerator connected via USB. Accelerators supported this way include:

• Intel Myriad X
• Hailo-8
• Google Coral

9.3 Accelerator Overview

There are many accelerators available for a wide range of applications, from
small embedded systems with power budgets in the order of milliwatt to cloud
platforms with a power consumption exceeding 400 W. Figure 9.5 provides
an overview of the different accelerators using a double logarithmic plot,
grouping them into three groups, depending on their peak performance values
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(in giga-operations per second). It should be noted that values provided by
the vendors are used; so no normalization regarding technology, precision, or
architecture is performed. On average, an energy efficiency of about 1 Tera
Operation per W (1 TOPS/W) is achieved. In the following paragraphs, the
main characteristics of the three performance groups are discussed.

Ultra-low power (<3 W): The ultra-low power group of accelerators is
mainly devices integrating energy-efficient, microcontroller-style cores com-
bined with compact accelerators for DL-specific functions. They are focusing
on generic IoT applications like the Maxim MAX78000, the Ambient Scien-
tific GPX-10, or the BrainChip Akida, providing only simple analog or digital
interfaces. Other devices such as the Greenwave GAP 8 and GAP 9, the
Canaan Kendryte K210, or the Kneron KL530 and KL720 also aim at vision
processing, providing an additional camera interface. Typically, those devices
are directly designed into the application itself without using a modular or
microserver-based approach, simply because all interfaces and peripherals
are integrated. Only the Bitmain Sophon BM1880 and Intel Myriad X are
providing a generic USB interface and are designed to act as accelerator
devices attached to a regular host processor. None of these devices integrates
external memory controller interfaces. Based on its wide availability, the Intel
Myriad X device is included in the benchmarking activity.

Low power (3−35 W): While the previous group of accelerators is focusing
on applications with a very low-power envelope (often in a battery-powered
environment with no special requirements regarding cooling), the low-power
group of accelerators includes accelerators for a wide range of applications
in automation and automotive. All devices include high-speed interfaces for
external memories, and peripherals, as well as high-speed communication
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toward other processing devices or host systems, such as PCIe, proving
excellent capabilities for a modular, microserver-based approach as supported
by the RECS platform. Apart from the Hailo-8, the FlexLogix InferX X1,
and the VSORA Tyr family, which are designed as dedicated accelerators
attached to an external host processor, all devices include powerful, general-
purpose application processors, capable of running a fully fledged Linux
operating system. In addition to specialized ASICs including the Coherent
Logix HX40416, the Blaize El Cano, or the Huawei Ascend 310, this group
also includes embedded GPUs from NVIDIA, in particular, the Jetson family,
starting from the Nano and TX2, via the Xavier NX and Orin NX devices all
the way up to the AGX Xavier. The Xilinx Versal Core AI VC1902 and Versal
Edge AI VE2302 are explained in detail in the following section.

High performance (>35 W): The high-performance group of accelerators
includes devices with up to 450 W of TDP, suitable for both inference and
training use cases, typically deployed in the form of a PCIe extension cards
for edge or cloud servers. Besides the classical NVIDIA Tesla GPGPUs
including Tesla V100, A100, and H100, also dedicated ASICs like the Groq
TSP, the SambaNova SN10, the Graphcore C2, or the Google TPUv3 are
part of this cluster. In addition, also powerful inference ASICs like the
SimpleMachines Mozart, the Tenstorrent Grayskull, the Qualcomm Cloud
AI 100 Chip, or the Untether AI RunAI200 are included. As a reference, also
a consumer-class NVIDIA Geforce GTX 1660 GPU has been included in
the benchmarking. The NVIDIA Jetson AGX Orin is also part of this group
due to its high power envelope, although it is part of the embedded NVIDIA
Jetson family.

9.3.1 Reconfigurable accelerators

Field programmable gate arrays (FPGAs) are a promising alternative to
GPUs and TPUs. Due to their reconfigurable architecture, these devices
can be adapted to the specific requirements of an application, making them
promising candidates for the resource-efficient processing of machine learn-
ing algorithms. For acceleration of deep learning models on their FPGAs,
Xilinx provides a dedicated IP core, the deep-learning processor unit (DPU).
Various FPGA devices are already available in the RECS system, and new
devices like Xilinx Versal are expected to be added in the near future. For
the easy yet efficient integration of new reconfigurable accelerators into the
RECS system, an FPGA base design has been developed, supporting the
flexible communication facilities of the RECS platform.



9.3 Accelerator Overview 187

A key advantage of FPGAs over ASICs is their reconfigurability, enabling
highly optimized designs for specific application scenarios. However, this
reconfigurability comes at a significant overhead in terms of power and
performance. This overhead is reduced by the integration of embedded
processors and fixed-function units (like DSP blocks and embedded mem-
ories) in modern FPGAs. An additional method to increase the resource
efficiency of reconfigurable architectures is partial dynamic reconfiguration,
enabling, e.g., to switch between different accelerators at runtime. Dynamic
reconfiguration can be used to enable the system to automatically adapt to
changing environmental conditions, like weather changes, when running a
neural network on camera data. In general, accelerators with different power,
performance, and accuracy footprints can be selected at runtime.

Figure 9.6 provides an overview of the architecture and supported inter-
faces of the base design for the u.RECS. For heterogeneous systems, the PCIe
interface connects the reconfigurable accelerator to other compute modules
and accelerators on the u.RECS. The base design was created with the
Xilinx Vitis Core Development Kit (2021.2) in the Vivado block design
environment. When targeting different FPGAs or FPGA platforms, the base
design needs to be adapted, e.g., because of changed internal or external
interfaces. Additionally, other pre- or post-processing steps may be required,
as well as a change of the complete application runtime. Hence, a wide variety
of different FPGA implementations can be expected, which are difficult to

SMARC Module
SoC

FPGA-FabricProcessing System

HDMI

CSI

PCIe x4

GigE

USB

DDR 
(PS)

Memory 
Subsystem

Interrupt 
Controller

Dual/Quad Arm 
Cortex- A53

Dual Arm 
Cortex-R5

I/O Interfaces

AX
I

AXI-Lite

GPIO, UART

DDR 
(PL)

Xilinx/ LiteX
Memory Ctrl

eMMC

Flash

SD 

GPIO, UART
I/O Ctrl

SATA

Platform Mgmt,
System Funct. &
Configuration

HDMI

CSI

Clk

A
X

I C
B

A
X

I –
Li

te
 C

B

Di
sc

on
ne

ct

Accelerator

Di
sc

on
ne

ct

Accelerator

Accelerator

PR-Region

PR-RegionDFX

Figure 9.6 Block diagram of the FPGA base design supporting partial dynamic
reconfiguration.



188 A Scalable, Heterogeneous Hardware Platform for Accelerated AIoT

manage by hand. Therefore, we have set up a scripting environment that
automates the configuration and build process. All necessary calls to the Vitis
build system are automated, enabling an easy transition to new platforms.
The entire hardware platform as well as the software infrastructure are
built automatically, including the configuration of the processing system and
the Linux environment. Changes to the FPGA base design, like additional
interfaces, located in the FPGA fabric, can be done directly in the script.
This is especially important for easy migration between the different FPGAs
supported by the RECS platform.

For the evaluation of performance and energy efficiency, various com-
binations of Xilinx FPGAs and DPU configurations have been generated
with the scripting approach described above. UltraScale+ FPGAs have been
used, ranging from small (ZU3EG) to large (ZU15EG) devices. The DPUs
can be parameterized to match the application requirements, e.g., by varying
the inherent parallelism in terms of the peak number of operations per clock
cycle. In the next section, FPGA implementations are named by the device
and the integrated DPU variant. To give an example, ZU15 2xB4096 refers
to a ZU15EG device that integrates the base architecture together with two
B4096 DPUs, each capable of processing 4096 INT8 operations per clock
cycle. The DPUs are running at a reduced clock frequency of 200 MHz,
limited by power constraints of the used boards.

In addition to Xilinx UltraScale+ FPGAs, we have also evaluated the
energy efficiency of the new Xilinx Versal architecture, utilizing a VC1902
on the VCK190 evaluation system. The reconfigurable SoCs combine an
ARM processing system with a programmable logic fabric and a variety of
I/O interfaces. In addition to the classical FPGA-based SoCs, the VC1902
integrates new DSP engines, AI engines, and a network-on-chip infrastruc-
ture for communication between the heterogeneous computing resources.
For deep learning applications, especially the 400 AI engines are of high
interest, promising a significant increase in performance and energy effi-
ciency compared to DPU implementations on the reconfigurable fabric. For
the development, Xilinx Vitis AI version 2.5 has been used together with
Xilinx Vitis 2022.1. A wide range of configurations can also be selected
for the Versal DPU. In our implementation, C32B6 refers to an architecture
with six batch handlers, utilizing 32 AI engine cores per batch handler,
for a total of 192 AI engines. The implementation runs at a clock fre-
quency of 333 MHz for the programmable logic and 1.25 GHz for the AI
engines.
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9.4 Benchmarking and Evaluation

9.4.1 Methodology

The evaluation of different accelerators and their corresponding hardware
manufacturer’s optimization toolchains was conducted using a standard set
of convolution neural network (CNN) models. The evaluation utilized three
state-of-the-art CNNs − ResNet50 [4], MobileNetV3 [5], and YoloV4 [6] −
all of which are from the domains of image recognition and classification. The
models were represented using the open neural network exchange (ONNX)
[7], which is an open standard for ML algorithms.

For evaluation purposes, two widely used benchmarking datasets were
employed: common objects in context (COCO) [8], a comprehensive
database for object detection, segmentation, and captioning, and ImageNet
[9], the most frequently used dataset for image classification in the large-
scale visual recognition challenge (ILSVRC). ImageNet contains 1000 object
categories and has 1,281,167 training images, 50,000 validation images, and
100,000 test images. Three versions of each model (ResNet50, MobileNetV3,
and YoloV4), each with a different precision, were evaluated. The first version
was the original trained model with 32-bit floating-point precision (FP32),
followed by two quantized versions of the original model: 16-bit floating-
point precision (FP16) and 8-bit integer precision (INT8). The toolchains
used for evaluation are summarized in Table 9.1.

In order to evaluate the merit of the hardware platforms for various
deployment scenarios with different goals and constraints, we used the
following metrics divided into four categories:

• System metrics: peak performance in giga-operations per second
(GOPS) and idle power1 in Watts (W).

1 The idle power is measured as to determine a more accurate power consumption for the
execution.

Table 9.1 Toolchains used for evaluation.
Hardware Toolchain Version
NVIDIA GPUs TensorRT SDK 7.1.3 and 8.0.1 [10]
Intel CPUs, Myriad OpenVINO 2021.4.1 [11]
Xilinx FPGAs Vitis AIVitis 1.3 and 2.5 (Versal)2021.2 and

2022.1 (Versal)
Google Coral TPU TensorFlow

[12]TensorFlow Lite
2.4 and 2.52.4 and 2.5

Hailo-8 Hailo Software Suite 4.8.1
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• Performance metrics: inference time in seconds (s), achieved perfor-
mance in GOPS, and power consumption in Watt (W).

• Quality metrics: accuracy in percentage (%) and mean average preci-
sion (mAP or mAP@X) in percentage (%).

• Efficiency metrics: power efficiency in GOPS per Watt (GOPS/W).

In this evaluation, two quality metrics were evaluated, each suited for
the targeted CNN domain. For image classification, the most crucial quality
metric is accuracy, which represents the number of correct classifications
divided by the number of images. Accuracy was measured in two ways: top-1
that accuracy measures the frequency of the model prediction with the highest
probability matching the ground truth; and top-5 accuracy that measures if
the top 5 highest-probability predictions include the ground truth. For object
detection, the relevant quality metric is mean average precision (mAP or
mAP@X). mAP@X is the area under the precision−recall curve with an
intersection over union (IoU) threshold X. For instance, mAP(.50) means that
a positive detection must have a minimum IoU of 50%, with everything below
being marked as a false detection with a precision of 0%. Another form of
mAP is mAP@X:Y, calculated as the average AP over a range of minimum
IoUs. We reported the mAP@X:Y from X = 0.5 to Y = 0.95, with a step size
of 0.05.

To determine the power consumption, we utilized tools provided by the
hardware vendors, and when these were not available, we used laboratory
instruments. For the NVIDIA accelerators, we employed the utilities Tegras-
tats and nvidia-smi. The NVIDIA Jetson-Nano was an exception, where,
due to the absence of integrated tools, we used an external power meter.
The Intel Myriad and its host module were measured using a Tektronix
MDO4054B oscilloscope. The Google Coral TPU and its host module were
also measured with the same oscilloscope. The power consumption of Hailo-8
was measured inside an NVIDIA Xavier NX evaluation system by plugging
it into the M.2 PCIe port and excluding the power consumed by the CPU
module. For FPGA-based systems, the complete system power, including
external memory and I/O interfaces, was measured. Notice that the power
consumption values are also necessary to determine the efficiency metric
(typically measured in GOPS/W).

It is important to mention that, due to the limited space, only the evalua-
tion results for the YoloV4 model are presented in this chapter. However, the
conclusions in this chapter are still relevant to the results of all other tested
models.
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9.4.2 Evaluation results

As mentioned before, the optimization toolchains for the evaluated accel-
erators are vendor-specific and vary between architectures. Despite using
the same source for the DL models, we needed to ensure that all devices
were performing the same computations and produce comparable results. To
validate this, we measured the mAP(.50) and mAP(.50:.95) for each device.
Our findings show that the mAP is significantly influenced by the software
toolchain used to compile and quantize the models. Therefore, the mAP was
grouped into categories based on vendor and quantization (FP32, INT8), as
depicted in Figure 9.7.

The NVIDIA FP32 category encompasses all results obtained from
NVIDIA devices that used 32-bit floating point (FP32) quantization. The
OpenVINO FP32 category combines the results from x86-based processors
and the Myriad DL accelerator that employed FP32 quantization.

Furthermore, tests were also conducted using FP16 quantization, but
since they only show minor deviations from FP32 (<0.1%), only FP32 and
INT8 results are presented here. For the NVIDIA INT8 category, which
encompasses all NVIDIA devices using 8-bit integer quantization, the quan-
tization was done using training data from the COCO dataset with the
toolchain. The Xilinx INT8 and Hailo-8 INT8 categories were based on pre-
quantized models from each vendor’s model zoo. Our attempts to quantize
the YoloV4 model for these categories resulted in poor precision outcomes.
This highlights the significant impact that specific toolchains and hardware
expertise can have on quantization and precision.

Figure 9.7 compares the mAP of all tested architectures with the YoloV4
model. Most of the architectures show slight deviations of less than 5%, with
the exception of the Xilinx INT8 result, which is nearly 8% lower. Further
analysis was conducted by examining the recall−precision gradients for each
of the 80 classes the YoloV4 model is trained on. Figure 9.8 presents an
example of this analysis, showing the mAP(.50) recall−precision gradients,
where objects with an IoU larger than 50% are considered positive detections
and are displayed with their corresponding precision. Objects with an IoU
less than 50% are considered negative detections and are set to a precision
of 0%, which is why the orange and yellow precisions are not present in the
figure. Class I (toothbrush) showed the highest deviation for INT8 quanti-
zation among the tested devices, with the NVIDIA and Xilinx accelerators
performing relatively poorly compared to the Hailo-8 accelerator. This is
by far the class with the highest deviation, unlike class II (vase), where all
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accelerators performed similarly. A detailed analysis of the results, including
all 80 COCO classes for each accelerator with floating point and integer
quantization, showed that most classes behave like class II. This provides
confidence that the accelerators in the evaluation are performing the same
tasks and that the results are comparable.

The evaluation in Figure 9.9 shows the achieved performance in GOPS
and the power consumption in Watt (W) for the execution of YoloV4 on the
different hardware systems. Similar results are obtained for both ResNet50
and MobileNetV3. The notations next to the accelerators (B1, B4, and B8)
indicate batch sizes of 1, 4, and 8. For those cases, the metrics are for
the complete execution of the batch. It is important to note that the power
consumption of all PCIe-based accelerators (Myriad, GTX1660, V100, and
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Figure 9.9 Performance evaluation of YoloV4.

A100) has been measured without the host system. For Hailo-8, both cases
(with and without the host system) are considered.

Figure 9.9 serves as a reference for making hardware choices based on
performance and power requirements. The results can be applied to a variety
of use cases by taking into consideration the power domains depicted in
Figure 9.5.

Two x86 systems (D1577 and Epyc3451) are provided as a reference to
demonstrate the superiority of DL accelerators over traditional processing
systems. In terms of energy efficiency, noteworthy platforms include Hailo-
8, Xavier NX, Xavier AGX, VC1902, Orin AGX, and A100, catering to
different domains, as shown in Figure 9.5.

In this evaluation, three reconfigurable devices (ZU3, ZU15, and
VC1902) have also been studied. On the one hand, the Xilinx Zynq devices
(ZU3 and ZU15) exhibit relatively low performance compared to the spe-
cialized accelerators, as they are basic FPGAs that utilize the Xilinx DPU
accelerator. On the other hand, the Xilinx Versal (VC1902) boasts signif-
icantly higher performance and energy efficiency due to its built-in DL
accelerators. Among all reconfigurable devices, the VC1902 shows the best
energy efficiency with INT8 quantization.

The energy efficiency comparison in Figure 9.10 reveals a clear gap
between classical processing systems (D1577 and Epyc3541) and DL accel-
erators. Even older DL accelerators (TX2, Nano, and Myriad) offer better
efficiency. Newer GPU-based accelerators (Xavier NX, Xavier AGX, and
Orin AGX) provide good efficiency but are obviously surpassed by dedicated
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Figure 9.10 Efficiency evaluation of YoloV4. The missing bars for certain platforms
represent cases where the precision is not supported.

ASIC-based accelerators (Hailo-8 and VC1902). It is important to note that
the power measurement of all PCIe-based accelerators was reported without
the power for the host system. The Hailo-8 presents a significant lead when
compared to Xavier NX and VC1902.

Overall, this evaluation shows that, when considering the different points
in the compute continuum, as presented in Figure 9.9, the Hailo-8 and Xavier
NX are well-suited for far-edge computing platforms, while Xavier AGX,
VC1902, and Orin AGX fit into near-edge computing platforms, and the
A100 can be deployed in cloud computing platforms.

9.5 Conclusion

The main topic of this chapter is the evaluation of heterogeneous AIoT
hardware, in particular, accelerators, for deep learning applications. In addi-
tion, the RECS hardware platforms are introduced, supporting the complete
continuum of heterogeneous cloud, edge, and IoT applications. Especially
for scenarios with low power budgets, energy efficiency is crucial, which is
only achieved by using specialized hardware accelerators. A set of relevant
accelerators was presented and classified into three different performance
groups according to their processing capabilities. Besides ASIC- and GPU-
based accelerators, emphasis has been put on reconfigurable architectures,
presenting a DPU-based FPGA architecture for easy integration of dedicated
DL algorithms.

The evaluation methodology was described in detail, discussing the used
DL models, corresponding datasets, and used specific toolchains. The perfor-
mance and efficiency metrics GOPS and GOPS/W were introduced and the
quality metrics mAP(0.50) and mAP(0.50:0.95) were used for YoloV4. The
power measurement used for this evaluation was described.
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Since toolchains are vendor-specific, an evaluation of the accuracy, of
the model running on different architectures, was performed. An in-depth
analysis of recall−precision gradients per class shows that the results of
different architectures using different toolchains are still comparable. The
YoloV4 evaluation shows an extensive overview of modern DL accelerators
and their performance as well as their energy efficiency. The outcome of
this chapter provides a guideline for hardware selection in the area of DL
accelerator, ranging from far-edge computing up to cloud computing.
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