
7
Intelligent Management at the Edge

Mohammadreza Mosahebfard1, Claudia Torres-Pérez1,
Estela Carmona-Cejudo1, Andrés Cárdenas Córdova1,

Adrián Pino Martínez1, Juan Sebastian Camargo Barragan1,
Estefanía Coronado1,2, and Muhammad Shuaib Siddiqui1

1i2CAT Foundation, Spain
2Universidad de Castilla-La Mancha, Spain
E-mail: reza.mosahebfard; claudia.torres; estela.carmona; andres.cardenas;
adrian.pino; juan.camargo; estefania.coronado; shuaib.siddiqui@i2cat.net;
estefania.coronado@uclm.es

Abstract

AI/ML techniques play a key role in 5G/6G networks providing connectivity
to IoT devices. In such scenarios, not only is it necessary to run time-sensitive
applications with strict latency requirements without human intervention, but
it is also key to apply automation techniques at both the application and the
network levels. The chapter is composed of three sections. In the first section,
we present different cloud native (CN) technologies enabling scalable, cost-
efficient, and reliable IoT solutions. The second section details different
distributed and hierarchical monitoring frameworks and metrics collection
schemes as inputs to AI engines. In the last section, application placement
problems focused on delay minimization in geographically distributed single-
cluster environments are first discussed. Afterwards, application placement
issues ensuring latency requirements for the applications and energy con-
sumption in distributed multi-access edge computing (MEC) systems using
AI pipelines are presented.
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7.1 Introduction to Intelligence at 5G/6G Networks Edge

Edge computing refers to bringing computing resources and capabilities
closer to the devices that generate or consume data. This can help to reduce
latency, improve performance, and increase security. It also facilitates both
edge automation and intelligence. On the other hand, according to 5GPPP,
high-performance next generation networks will be operated via a scalable
management framework enabling service provisioning time from 90 hours
to 90 minutes, by reducing the network management OPEX by at least
20% compared to current networks [1]. A promising solution to achieve
5G networks with a level of intelligence similar to that of humans as well
as lower levels of latency is the combination of artificial intelligence (AI)
and edge computing. AI at the edge refers to the use of AI algorithms
and models at the edge of a network, closer to the end-user generating or
consuming the data, which results in performance improvement and latency
reduction.

7.1.1 Edge automation

7.1.1.1 State of the art
Two of the main international organizations and standardization bodies,
namely 3GPP and ETSI, have defined requirements, features, and key tech-
nologies in the context of the 5G edge. The 5G 3GPP system architecture
[2] is intended to support edge computing by enabling services such as the
Internet of Things (IoT), industrial solutions, smart energy, connected health,
autonomous driving and more. Another contribution from 3GPP involves
studying the management aspects of edge computing, where several edge
scenarios and use cases are explored and potential deployment solutions
are discussed [3]. Following this line of work, enhancements regarding
edge computing management and connectivity models have been proposed
[4], which include a number of concepts such as self-organizing networks
(SON) and network data analytics function (NWDAF). SON is an automa-
tion technology designed to streamline and simplify planning, configuration,
management, optimization, and healing. SON architectures are conceived in
three variants, centralized SON, distributed SON, and hybrid SON. Each
variant is a key technology with the main aim of integrating legacy mobile
radio access networks (RAN) [5]. Recent advancements in AI/ML techniques
have led to an increased interest in SON with cognitive features combined
with the software/hardware decoupling movement – via network function
virtualization (NFV), and/or multi-access edge computing (MEC) – leading
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to greater network agility. NWDAF was introduced to provide a standard
method to collect data supporting 5G core network functions and operation
administrations and management systems [6].

ETSI has also published several reference architectures and specifications
of the aforementioned NFV and MEC initiatives. By using zero-touch net-
work and service management (ZSM), end-to-end network management can
be achieved with minimal or no human intervention. ZSM facilitates collabo-
rative management interactions between all layers of the network through the
use of closed-loop automation, AI, adaptive ML, and cognitive technologies
[7], abstracting the 5G network edge resource management. On the radio side,
open RAN refers to the disaggregation movement of hardware and software
in wireless telecommunications as well as to create open interfaces between
them [8].

7.1.1.2 Key enablers
To meet edge automation expectations several vital technologies are required,
including distributed data collection, real-time processing, and edge automa-
tion for 5G slicing. Both distributed data collection and real-time processing
require streaming, in-memory storage management, and computing close to
the edge in order to minimize latency and maximize bandwidth. In addition,
stakeholders need to plan, design, and activate several customized network
slices rapidly to provide customers with different 5G services. Slice elasticity,
the ability to scale up or down in response to performance changes, also has
become a must. To this end, by forecasting the upcoming traffic with AI/ML
techniques, network slices can be optimized by minimizing resource usage
while meeting quality of service (QoS) or customer requirements. A critical
component of successful 5G service delivery is network slicing. A network
slice is considered as a collection of networking and computational resources
forming a dedicated network that provides an end-to-end connectivity to
hosted applications and services [9]. Stakeholders are able to plan, design,
and activate several customized network slices on demand. Moreover, slice
elasticity, which is defined as the ability to scale up or down in response to
variations in performance, is critical. In this regard, AI/ML techniques play
an important role, since forecasting the upcoming traffic allows the slice to be
adjusted (using a proactive rather than reactive model) to minimize resource
consumption, meet QoS requirements, and perform lifecycle management
tasks on existing slices.
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7.1.2 Edge intelligence

5G/6G networks and AI/ML are closely related with edge devices of limited
computing power are able to leverage 5G/6G network edge intelligence by
distributing the computation, which is driven by the use of AI/ML techniques
and distributed intelligence. A joint perception environment could be formed
of real-time metrics collected from devices in the network. A perception
environment of this type groups decisions in order to enhance the efficiency,
productivity, and safety of several 5G edge applications. Such shared intelli-
gence will be enhanced by the use of a hybrid and distributed architecture. By
combining 5G edge networks with MEC architectures, distributed learning
[10], and collaborative intelligence [11], real-time distributed intelligence and
collaboration are becoming tangible. Intent-based networking [12], which
has recently been applied to the RAN, is another promising idea that is
undergoing development and adaptation for B5G networks.

7.1.2.1 State of the art
A flexible and hybrid architecture, both centralized and distributed, is critical
for edge intelligence architectures. In terms of communication, a number of
developments have been made, including direct device-to-device and multi-
hop communication, which are mentioned in 3GPP standards [13]. They
have been combined with 5G scenarios via the cellular vehicle-to-everything
(V2X) paradigm to meet KPIs in verticals such as autonomous driving. In
terms of radio management, intent-based RAN management is becoming
increasingly important. It consists of altering the configuration of the RAN
from the setting of technical parameters to the specification of connectivity
services, allowing service providers to prioritize users and services based on
their device capabilities and use cases.

Another integral part of edge intelligence is real-time access and analysis
of data, along with concepts such as explainable AI (XAI), named data
networks, joint optimization of communication and computing, distributed
machine learning, and meta-learning, which are examples of technologies
that will pave the way for B5G and 6G edge networks [14].

7.1.2.2 Key enablers
XAI is a set of methods and techniques for producing accurate and explain-
able models, along with explaining how and why the algorithm arrives at a
specific solution, leading to an output that is comprehensible and transparent
for humans. Another technology that is helping to meet the increasingly
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ambitious performance requirements is multi-access traffic management at
the edge. By using the multi-access protocol and multiple access manage-
ment [15], different technologies can be handled seamlessly. A multi-access
protocol stack consists of two layers; a convergence sublayer that manages
access path selection, multi-link aggregation, and more multi-access-specific
tasks, and an adaptation sublayer that handles tunneling, security, and NAT.

In addition, joint optimization of computation and communication is quite
a transcendental point to take into account in 5G/6G networks, as it helps to
improve performance while managing both computation and radio resources
intelligently. Lastly, distributed and federated learning are techniques that
enable edge intelligence without transferring data to the cloud. Such learning
techniques employ a collaborative learning model in which each element
has a partial view of the system. As opposed to fully distributed learning
where nodes must collaborate peer-to-peer, federated learning manages the
collaboration through a central coordinator.

7.1.3 Edge computing and 5G/6G: a cloud native architecture

The current edge computing ecosystem is dynamic and evolutionary, which is
the combination of the classic edge computing with several existing technolo-
gies and techniques including cellular networks, CN, and AI/ML. Thus, there
is no de facto standard set of tools for implementing 5G/B5G edge computing
architectures; however, the direction of such edges is becoming clearer. A
number of factors have been identified as driving the adoption and evolution
of edge architectures [16]. These include connectivity, applications exposed
via APIs, the use of increasingly intelligent orchestrators, service exposure
and optimization, and free open-source software [17].

From a technological point of view, CN technologies seem to be a perfect
fit for edge architectures. In order to meet emerging 5G standards and provide
flexibility for multi-vendor managed networks, edge solutions that are based
on automation and intelligence need to be designed and developed as cloud-
native architecture. The concept of CN is to decompose applications into a
set of microservices that can be developed and deployed independently, in
order to accelerate and optimize the DevOps lifecycle of software systems.
A container orchestrator is responsible to schedule microservices to run
on compute nodes by packaging them into lightweight containers. The CN
approach is concerned with the way applications are developed and deployed,
rather than only the place where they are executed [18]. Kubernetes, also
known as k8s, has been adopted by the Cloud Native Computing Foundation



140 Intelligent Management at the Edge

(CNCF) [19] as the open-source management tool for microservice-oriented
applications. In CN architectures, streaming solutions such as Kafka [20]
and Rabbit-MQ [21] are seamlessly integrated, along with publish−subscribe
protocols such as MQTT [22] and data lake technologies such as Spark,
which, by generating insights on edge nodes, reduces the need to transport
data all the way to the cloud. In spite of the fact that these technologies were
developed for different requirements, they complement each other perfectly
in certain circumstances.

Container technology and Kubernetes orchestration framework provide
scalability, cost-efficient, and reliable solutions. Hybrid k8s clusters with
heterogeneous architectures provide the flexibility needed for the successful
implementation of IoT applications. As the number of microservices in a
scenario increases, it can be challenging to understand the interactions and
identify and track errors. The service meshes can be used to resolve this
problem [23], where linkerd [24] are currently being positioned as the de
facto solution to the problem. Due to the operator’s trend, Kubernetes has
evolved from a declarative to an imperative model, where a set of controllers
perform the required actions to match the intended state. OpenShift [25] is
an example of a tool that adopts this concept, while several aspects, such as
multi-cluster management, multi-cloud connectivity solutions, and workload
migration, require further investigation.

Furthermore, 5G/6G edge architectures could benefit from the adoption
of extended Berkeley filter packer (eBPF) technology [26]. It is emerging
that different tools based on this technology, such as Cilium [27], allow a
code to run within the kernel without the need to compile the entire kernel,
providing unparalleled flexibility, as well as promising improvements in key
areas such as security, networking, and monitoring, where AI will have a
significant impact.

7.2 Distributed Telemetry

The field of intelligent networking has gained momentum in recent years
due to the popularity of machine learning models and artificial intelligence
systems in the telecommunications industry [28]. The concept of intelligent
networking is mainly concerned with optimizing the management and perfor-
mance of different network segments, such as radio, computing, and transport
networks, each of which has heterogeneous objectives and approaches. As
an example, some concepts, such as SON, address autonomic or cognitive
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self-managed networks [29]. Nevertheless, to cope with those characteristics,
cognitive self-managed systems require strong telemetry systems to be aware
of the behavior and performance of each of the elements composing the
network infrastructure and the service communications. It is the consistent
metrics that feed into the self-management systems enabling intelligent
management models to achieve better results and, therefore, improve the
performance of communication networks. However, due to the nature of
current networks, thons of metrics gathered from segments that span several
administrative domains significantly increase the complexity of the telemetry
systems. This means that telemetry systems should be able to provide well-
organized and differentiated metrics from each source so that they may be
able to expose metrics per customer, per service, and per network element on
demand.

As 5G networks are based on cloud-native and distributed services,
multiple logical networks can be created and coexisted in a common infras-
tructure through technological enablers such as NFV [30], software defined
networking (SDN) [31], and edge/cloud computing. Logical networks refer
to the network slicing communication paradigm enabled by 5G networks by
nature, which allows for the allocation of slices per service and per client.
Since network slicing spans different network segments, edge computing
must be capable of dealing with network slicing capabilities [32]. To meet the
performance requirements and quality of service expected by users, several
critical, time-sensitive, and less-consuming services are being moved to edge
computing [33]. As a result, intelligent systems are also moving toward edge
environments so that they can manage different services running at the edge
that may belong to different vertical clients or network slices. Telemetry
systems must adapt to paradigms such as network slicing, multi-tenancy, and
multi-domain as well as to environments so that they can monitor aspects of
these services in a flexible and dynamic manner. Monitoring systems may
have to update their sources where metrics are collected frequently when
services change.

Basically, the telemetry systems are a control framework that gives a
detailed view of the state of a system. It allows assuring the desired oper-
ation of infrastructure resources as well as to analyze the performance of
each virtualized service. The monitoring systems have existed since the
emergence of IP networks with the aim to mitigate failures, attacks, and
undesired behavior. As networks have evolved, monitoring systems have
adapted and sophisticated their metrics acquisition models to better address
unpredictable (proactive) and predictable (reactive) situations that violate
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operator-provided service level agreements (SLAs). Addressing proactively
a monitoring situation means foreseeing events that can be mitigated in
advance through the execution of specific actions. Proactive methods are
based entirely on machine learning models that analyze patterns in historical
data and anticipate future behavior. This is the core concept where intelligent
networks are built. However, reactive methods refer to executing actions
at the exact moment that an event occurs, which violates the SLAs. This
principle has been widely used in most control systems. However, since the
democratization of machine learning models, control systems are tending to
use hybrid control methods depending on the requirements of SLAs and use
cases. However, the performance methods are independent of the monitoring
systems but depend on the type and quality of metrics they receive from the
monitoring systems. Consequently, monitoring systems must meet the needs
of each method to assure adequate control of services and resource infras-
tructure. In terms of monitoring system design, it is difficult to anticipate all
the needs of the methods, but if they provide better visibility of each of the
elements that comprise the communication service, the methods will be more
likely to provide better performance.

In this context, previous research has focused on specific aspects of moni-
toring. For example, in [34], the authors make a study on traffic differentiation
detection where they focus on presenting strategies and tools to monitor
network traffic. On the other hand, in [35], the authors present a survey
on network security monitoring. Here, the paper reviews the approaches
and tools focused on network security aspects. In [36], the authors focus
their attention on an exhaustive study of platforms for monitoring cloud
environments. They detail both licensed and open-source tools. The important
aspect of a monitoring system is to be able to perform all these types of
monitoring with a single robust telemetry framework.

The following sections will provide a detailed description of the hier-
archical and distributed monitoring architectural framework for 5G and 6G
networks that provide flexibility and visibility of metrics obtained from both
communication services and network infrastructure. Section 7.2.1 gives a
detailed description of each component composing the architectural frame-
work.

7.2.1 Hierarchical and distributed monitoring framework

The main objective of the distributed and hierarchical monitoring framework
is to collect, organize, and expose the data flow, resource, and configuration
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metrics generated by each of the network segments. The system is hierar-
chical because its components are distributed across several layers of view
or management levels where data is aggregated, filtered, and isolated. This
allows metrics to be persisted and exposed at different levels, even with
different levels of granularity. The different levels of monitoring are fed by
separate and distributed monitoring agents deployed by the operator in each
network segment.

Figure 7.1 illustrates the design of the architectural framework of the
hierarchical and distributed monitoring system. In this case, two levels of
metrics abstraction are defined. In addition, each level allows centralizing
and persisting the metrics obtained from the network segments. This makes
it easier for each network segment to have several monitoring agents and a
common metrics centralizer. For example, for access networks such as Wi-
Fi, small cells, and eNBs, monitoring agents could be deployed for each of
them to interact directly and to extract the metrics generated in each network
equipment. These monitoring agents are then aggregated to the first-level
aggregators, where the metrics can be exposed and visualized by customers
and operators. The same case would be for NFV infrastructure (NFVI) nodes,
where there will be several types of monitoring agents deployed, both for the
NFV node itself and for each of the virtualized network functions (VNFs)
running on it. Similarly, these metrics may be aggregated, exposed, and
visualized by one or more top-level aggregators, depending on the need
of the use cases or customers. However, the communication service and
network infrastructure of a network operator may be composed of multiple
access networks, NFVI nodes, and transport networks; so there will be
multiple first level aggregators. This is the motivation behind the use of a
second level of aggregation, where the metrics collected by the first level
aggregators are centralized. The second level of aggregation allows a network
operator and customers in general to have a global view of the current state
of the network infrastructure and the communication services running on
it. It facilitates filtering by first-level aggregation nodes, without having to
worry about which monitoring agent is being referred to when extracting a
metric.

7.2.1.1 Monitoring agents
Monitoring agents are software tools that interact directly with network ele-
ments. They can be run directly on the network equipment or they can be run
as services in edge/cloud computing. Monitoring agents are known as node
exporters, which take all the metrics and push them to the top-level aggregator
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so that they can be understood and visualized. There are monitoring agents
designed by default for different types of network elements, while others
can be customized (pushgateways) and run as a set of scripts that interact
directly with the operating system of the network element to extract the
metric.

7.2.1.2 Aggregators – monitoring servers
Aggregators are instances of time series databases (TSDB) in charge of
collecting and centralizing the metrics exposed by the monitoring agents.
The aggregators persist the metrics for a given time to allow operators,
users, or other components to access the historical information provided
by the monitoring agents. In addition, they allow metrics to be visualized
and operationalized to contextualize them in human-understandable units
of measurement. Currently, many of the network services are deployed in
conjunction with a metrics aggregator dynamically, which generates the need
to implement a static second-level aggregator. There are several alternatives

Figure 7.1 Architectural framework of the distributed and hierarchical monitoring system.
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in the TSDB market; however, the most popular ones are Prometheus1,
InfluxDB2, TimeStream3, and TimescaleDB4

7.2.1.3 Centralized aggregator − monitoring server
The centralized aggregator is in charge of collecting the metrics exposed by
the first-level aggregators. In other words, it adds the first-level aggregators as
direct targets and is not aware of the number of monitoring agents that exist
in the system. This level of abstraction allows operators to dynamically scale
and manage first-level aggregators that are dynamically deployed alongside
network services. On the other hand, the centralized aggregator also allows
visualizing the metrics exposed by all monitoring agents by filtering them by
each first-level aggregator. One tool that acts as a centralized aggregator is
Thanos5. It has the same working principle as Prometheus.

7.3 AI Pipelines for the Edge-to-cloud Continuum

While the development and deployment of 5G mobile networks is ongoing,
extensive research efforts are currently being directed toward the require-
ments of future 6G mobile networks, covering aspects such as architecture,
enabling technologies, key features, and requirements. Among these, network
cloudification is one clear 6G architectural trend. Moreover, 5G network
developments are already paving the way to support a massive number of
end devices across the cloud continuum [37].

Research challenges related to the massification of end devices in 5G
networks are often related to the placement of applications and network
functions that might be distributed across multiple devices spanning the cloud
continuum [38], and to the optimization of strict latency, reliability, and
bandwidth requirements.

As the 6G paradigm introduces a shift to the full digitalization of the
real world, some additional critical aspects need to be considered, such as
efficient interworking with IoT devices, the support of advanced, novel edge
computing solutions, and adequate cloud support for network operation. In
this regard, the native support of AI and ML in 6G can provide innovative

1 https://prometheus.io/
2 https://www.influxdata.com/
3 https://aws.amazon.com/es/timestream/
4 https://www.timescale.com/
5 https://thanos.io/
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solutions, for example, related to the optimization of network functions and
distributed applications [39]. AI and ML techniques will become critical to
automate decision-making processes in 6G and enable the implementation of
predictive orchestration mechanisms.

However, the intertwining of communication and computation algorithms
in 6G requires suitable in-network governance mechanisms. In particular,
every infrastructure and service component in the network must be control-
lable by the tenant, which requires very versatile, pervasive, and automatic
resource control capabilities [40]. This calls for the design of a 6G-native AI
fabric that caters for the diversity of resources and end devices across the
cloud continuum, which should be able to provide not only novel, natively
embedded governance capabilities but also the ability to optimize the use of
resources in the network in an energy-efficient manner.

7.3.1 Native AI for distributed edge-to-cloud environments

6G is promising to become a networking technology whose management and
behavior are meant to be closer to human’s brain reasoning. The vision must
also include the native incorporation of AI processes capable of handling
network functions more efficiently (e.g., intelligent network management and
wireless resource configuration) as well as training and executing AI-based
models [41], [42].

Networking ecosystems have also evolved from the point of view of
the distribution of the radio and computational resources. In this regard,
future mobile networks are expected to be fully geographically distributed
and managed by different entities and operators, and even based on sev-
eral administrative domains (see Figure 7.2). Related to this, the highly
distributed telemetry systems at different network segments make available
huge data volumes which, although provide a full vision of the system’s
status, also multiply the difficulty in knowledge extraction. Therefore, despite
the improvement expected in availability level and network performance,
together with the high-dimensional data, it will greatly increase the com-
plexity of management and error handling, making it impractical for human
operators [43]. For that reason, an AI-enabled architecture able to build
knowledge natively and act autonomously is the goal of 6G networks.

Adopting the aforementioned AI processes as well as regular user appli-
cations at the edge of the network brings, however, new challenges to
next-generation networks. Undoubtedly, the increase in heterogeneity of both
edge nodes and application requirements, the computational limitation of
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Figure 7.2 Example of a highly distributed and independently managed edge infrastructure.

the edge nodes, and the dynamic change of user demands make intelligent
resource management approaches able to ensure the data privacy become
essential [44]. More specifically, application and function placement can be
considered one of the key resource allocation problems, especially as we deal
with highly heterogeneous and distributed infrastructure involving computa-
tional and communication resources [45], [46]. Therefore, there is a need for
intelligent and distributed placement solutions that provide decisions without
sharing the data belonging to each administrative domain or independent
system.

In this regard, distributed and federated learning have been demonstrated
to provide excellent performance due to the ability to collaboratively build
a model without data transferring, therefore avoiding data privacy issues
and extra overheads in the data transmission process [47], [48]. Similarly,
reinforcement learning has shown promising results in tackling this challenge
in centralized scenarios, such as in the works proposed in [49] and [50].

Most of the recent research related to application placement is related
to either (i) computational offloading at the edge from end-user devices, (ii)
latency-aware processes at the radio side, and (iii) edge infrastructures where
telemetry data is not distributed, or in which the various nodes are managed
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by the same orchestration entity. On the one hand, offloading approaches for
energy saving in the mobile devices tend to neglect the energy consumption
of the edge servers, which are also more resource-constrained than cloud
infrastructures. This issue could be made worse by uneven distributions of
users in the geography, which could also make edge placement algorithms
waste energy having nodes with very low resource utilization instead of
being powered off. On the other hand, the maximum latency supported by
applications must also consider the link delay depending on the placing node
and the processing time. In essence, it should ensure that besides meeting the
application requirements, also the QoS constraints are ensured in a unified
manner, especially for the time-sensitive applications. In the next subsections,
these problems are greatly discussed, especially when they are addressed
by AI processes in highly distributed (and administratively independent)
systems.

7.3.1.1 Energy saving in distributed edge computing
Extensive research has been performed in MEC to optimize the energy
consumption of computationally intensive tasks, given the limited resources
of the servers used. Application placement algorithms are increasingly impor-
tant at the edge since, among other consequences, computational tasks
offloaded to the cloud can result in lower utilization of MEC resources
and higher power consumption. The performance of applications could be
affected due to the demanding application requirements that can limit the stor-
age and capacity of end devices. In addition, in future 6G networks, expected
to be extremely geo-distributed in terms of computational resources, cen-
tralized orchestration approaches could lead to constant interaction between
central entities and result in energy consumption.

The state of the art highlights the need to focus on the placement of
applications and workloads that produce lower energy consumption. More-
over, it is to be considered not only the energy consumed by the application
itself when it is running but also some transactions when moving applications
across several nodes. This can be the case of the follow-me scenario. In this
case, energy consumption on edge servers, migrations from edge servers to
cloud servers and between edge servers must be taken into account. In addi-
tion, other approaches suggest maintaining the edge servers in an idle state
or low consumption and activating the server when a new application arrives.
However, not all works consider all possible sources of energy consumption,
because depending on the use case, it might be more necessary to prioritize



7.3 AI Pipelines for the Edge-to-cloud Continuum 149

the minimization of expenditure in some sources of consumption than in
others.

Numerous research contributions that attempt to solve this problem aim to
strike a balance between performance metrics and energy efficiency. Machine
learning techniques have been widely used in this topic, due to their ability to
make predictions from data and to obtain assumptions about the environment
without prior knowledge. For application placement, forecasting methods
predict periodic changes from time series considering the edge node data
as input and the geographic location information [51]. The authors of [52]
aim to reduce the total energy of each user, including local computation and
wireless transmission energy under a federated learning approach. However,
the energy consumption on only the terminal side is addressed in [53]. Rein-
forcement learning and its variants are oriented to minimize the long-term
energy consumption and have been demonstrated to be a good alternative for
these kinds of scenarios [54]. For instance, some authors consider application
placement with multiple metrics in dynamic environments as a problem to
solve with distributed learning approach [53].

7.3.1.2 Latency-aware AI processes in edge computing
As stated previously, one of the key enablers of the incoming generation of
network services is the ability to bring the processing power near to the final
user, using edge computing as a tool to decrease the potential delays in end-to-
end communications. The management of this delay is particularly important
in ultra-reliable low-latency communications (URLLC) as an inappropriate
delay would generate misbehavior in time-sensitive applications, affecting
use cases as diverse as smart living, Industry 4.0, or autonomous vehicles
[55]. Essentially, selecting the proper host to implement the service applica-
tion placement is critical if the stringy delay requirements of the applications
are to be fulfilled. Contrary to what might be expected, the host’s selection
is not a trivial labor, as different elements contribute to the final decision.
However, it is not sufficient to consider the current delay of the proposed
hosts. Additionally, it is essential to account for the processing delay after the
application has been instantiated in the server, the computational characteris-
tics of the host, the distance between the host and the users, and an increasing
number of secondary parameters.

Considering the previously mentioned constraints, human decision-
making would be time-consuming and error-prone, making it necessary
to implement an automated decision-making system instead. Traditional
optimization models include the use of algorithms that perform numerical
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analysis and mathematical optimization methods [56], [57]. However, con-
sidering the dynamicity of the network, a system that is able to adapt to this
type of changes is necessary, excluding the possibility of using traditional
optimization models. Incidentally, machine learning models excel in this type
of conditions and are natively suited to handle data in time-series format and
with an abundance of data categories. Machine learning models can solve
optimization problems successfully and accurately and at the same time being
flexible enough to adapt to the unique changes of the network, showing more
generalization capabilities than its traditional counterpart.

As such, ML processes have been proven to be suitable for solving the
best placement location for delay-constrained applications. When deployed
on a centralized point of the network architecture, ML models use as input
the parameters that are monitored through the network orchestrator or the
network management service. These parameters are affected directly or indi-
rectly by the end-to-end delay; so it is especially important to measure KPIs
that are linked with the propagation delay, the processing delay, and the radio
communication delays, among others. Under this statement, the authors of
[58] look to maximize the quality of experience (QoE) by analyzing packet
loss rate, packet error rate, and latency under a two-level deep reinforcement
learning model that suggests the best application position. Similarly, in [59],
a deep reinforcement learning model is introduced, which uses transmission
delay, propagation delay, and execution delay to reach a compromise between
the application requirements and the server capacity. Finally, the work in
[60] uses parameters directly obtained from the end-users, in a deep rein-
forcement learning configuration, to generate a tradeoff between the current
performance delay-oriented and the cost of running the application. To do
so, it searches for a balance between the delay experienced by the user and
the cost taken from the network provider while distributing the application.
Consequently, according to the state of the art, deep reinforcement learning
is a good fit for scenarios whose initial inputs are unknown and adapts well
to the latency-related metrics in application placement problems, providing
flexibility and adaptability to an ever-changing network environment.
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